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In memory of Drew Michael Buxton



Abstract of “Exploiting Structure for Efficient Robotic Manipulation” by Ben Michael Abbatemat-

teo, Sc. M, Brown University, October 2023.

With few exceptions, robots today are unable to quickly acquire new manipulation skills in the real

world. The modern data-driven approach to skill learning is thwarted in practice by the sample

complexity of learning algorithms and a lack of diverse, high-quality data. This thesis develops

algorithms and frameworks that leverage structured models of perception and action to improve the

efficiency of robot skill learning. I first describe our work on modeling articulated objects, posing

a new problem formulation and introducing systems capable of autonomously manipulating novel

objects. I subsequently show how these models can be used to bootstrap motor skill learning. The

thesis then turns to study structure in behavior, illustrating a novel class of policies that are ef-

ficiently learnable and readily composable. Together, these methods present a path toward skill

learning in real-time in the real world.
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Chapter 1

Introduction

The hallmark of natural intelligence is the ability to manipulate the world to accomplish one’s

goals. Across the animal kingdom, creatures grasp and use objects for gathering food and water,

grooming, protection, construction, or just plain recreation. Primates are nature’s most famous

dexterous manipulators, but even birds, fish, and insects use tools to survive. Manipulation serves

as a litmus test of intelligence — hard manipulation problems require not only physical dexterity

but also perception, planning, directed exploration, and reasoning about uncertainty, all in real-time

with constrained computational resources.

If we hope to build robots that are as intelligent as people, or even just robots that are useful,

we must solve the grand challenge of designing robots that can similarly skillfully interact with the

world around them. Manipulation, then, is at the core of the artificial intelligence problem. And it

is hard: tasks that are extraordinarily challenging for humans (e.g. playing chess well) are relatively

simple for computers, whereas simple tasks for humans (grasping, using tools, manipulation) are

excruciatingly difficult for robots. This phenomenon, known as Moravec’s paradox (Moravec, 1988),

suggests that we have our work cut out for us.

While some natural agents are born capable of interacting with the world, the most sophisticated

object manipulation behaviors require years to develop. Human children are born relatively hapless,

and in the first few years of life acquire the physical dexterity and cognitive skills required to stack

blocks, race toy cars, and survive in the world. Human adolescents and adults further refine these

abilities on specific tasks, like shifting gears, using tools, or playing sports, for utility, financial gain,

or enjoyment. Eons of evolution have provided the scaffolding for our learning systems to undergo

1
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Figure 1.1: Some examples of natural agents exhibiting dexterous manipulation. Top row : a human
child stacks blocks (image licensed from stock.adobe.com); a macaque uses a stone tool (photo by
Michael D. Gumert, CC BY 2.5). Bottom row : a bonobo fishes for termites with a stick (photo by
Mike Richey, CC BY 2.5.); a crow solves a puzzle with a tool (photo by Sarah Jelbert, CC BY 4.0);
a capuchin cracks a tough nut (photo by Tiago Falótico, CC BY 4.0). These contact-rich skills are
beyond the current capabilities of artificial agents.

remarkably consistent development — it is our task to do the same for our robots. The central

question in robotics today is how we approach this endeavor: how can we, as designers, equip robots

with this ability to learn to interact with the world?

Robotic manipulation presents three key challenges. The first is the outright complexity of

interacting with the world: the dynamics of contact are discontinuous, making traditional control

methods all but obsolete, even assuming perfect knowledge of the geometry and mechanics of the

world. Moreover, robots are cursed to interact with the world through their sensors and actuators,

presenting large, continuous observation and action spaces that make reinforcement learning of such

skills tremendously challenging. The second is the constant novelty of interacting with an open

world. Robots today are successful in factory environments where they perform fixed, predefined

tasks with perfect knowledge of the environment. In human environments, however, our agents

will lack complete knowledge of the geometry and dynamics of the world they encounter, and must

instead try to make sense of the world’s myriad appearances in order to accomplish their goals.
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They will encounter objects they have never seen before, for which they lack good models, and be

asked to perform tasks their designers had not foreseen. As such, they must adapt to ever-changing

environments and demands — it is here that learning for perception and control is necessary. The

third challenge is data scarcity : it is expensive and time consuming to collect even a small amount

of data on a real robot. Relying solely on data and scaling computing resources, a tactic that has

proven tremendously successful in other AI disciplines like computer vision and natural language

processing, is not an option in robotics — we simply cannot gather enough robotic data to train

systems in the same tabula rasa way. We must be more clever about how we scaffold the learning

systems of our agents — this is the central effort of this thesis.

Despite the novelty and complexity of the world, there does exist structure in the regularities

across the tasks that a robot must face — e.g. space is three-dimensional, objects persist and consist

of parts, physical laws are constant, and time always marches forward. If we hope to build efficient

learning systems, we must carefully consider which of these elements the system should be forced

to learn and which can be designed a priori. This decision — of what to learn, and what not to —

is central to the scientific endeavor of creating intelligent robots. This thesis seeks to identify this

structure across manipulation problems, and develops models of perception and action which exploit

that structure in order to make learning for manipulation a more practical reality. The central claim

of the thesis is:

By exploiting structure present across tasks faced by a robotic agent, we may imbue our

learning systems with greater data efficiency and generalization.

One such critical element of structure is the presence of articulated objects — objects consisting

of rigid parts connected by joints (doors, drawers, cabinets, refrigerators, etc.). These objects are

ubiquitous in human environments, and interactions with them occur in nearly every task we would

like a robot to perform. To make dinner, a robot must obtain ingredients from the refrigerator, tools

from a kitchen drawer, and spices from the cabinet. To clean up, it must place dirty dishes into

the racks of the dishwasher, and obtain the broom from the closet. All of these interactions require

that the robot understands the degrees of freedom of these objects, and that the robot possesses the

dexterity to robustly manipulate them. We first set out to build such systems, then leverage them

to bootstrap more dexterous motor skill learning.

Second, behavior itself is structured. Behavior is modular and compositional, and the design of
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our motor skills should reflect this. Long tasks inherently break down into simpler, reusable routines,

many of which the robot leaves the factory capable of, like moving its arm in free space, or grasping

objects. The truly challenging phases of manipulation are the contact-rich interactions with the

environment that are necessarily difficult to model. To this end, we developed a structured policy

class that is able to much more efficiently and safely learn a class of contact-rich motor skills.

1.1 Contributions

This thesis makes three contributions.

1. First, we formulate the problem of category-level articulated object manipulation — perceiving

and autonomously interacting with novel articulated objects from static observations. Solving

this problem equips robots with the ability to enter human environments and immediately

begin intelligently interacting with objects. The system we built leverages object recognition

and exploits regularities in object categories; we then extended this system, relaxing its as-

sumptions to recover object models by dynamically identifying parts and constructing graph

representations of more diverse objects.

2. Second, we build upon these articulated object models to bootstrap motor skill learning using

kinematic motion planning. Training robots to accomplish basic manipulation tasks is tremen-

dously challenging — robots receive high-dimensional sensor observations from cameras, joint

encoders, and tactile sensors, and need to coordinate long sequences of fine-grained motor con-

trol in order to accomplish their goals. Naively attempting to train this behavior from scratch

for every new task simply is not an option when we want to train a robot in the real world.

Humans use planning to develop approximate solutions when faced with a new task, then con-

vert these planned, cognitively demanding behaviors to performant feedback policies executed

with very little cognition. We formalize this process in a reinforcement learning setting, and

build a system that leverages approximate models in order to initialize skill learning, showing

dramatic improvements in sample efficiency.

3. Third, we develop a policy class for manipulation problems, Compositional Interaction Prim-

itives, that is safely and efficiently learnable, and composable for generating temporally ex-

tended behavior. We achieve this design by exploiting structure present in behavior, and
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leveraging well-studied robotics subproblems like motion planning and grasp detection. The

result is a system capable of learning and sequencing skills in the real world in remarkably few

trials.

Taken together, contributions constitute a step toward robots that are capable of learning new tasks

in the real world, in real time.



Chapter 2

Background

In this section we present the concepts, formalisms, and notation relevant for the remainder of the

dissertation.

2.1 Robotic Manipulation

Robotic manipulation is a term that has historically evaded a precise definition. For our purposes,

we will use the broad definition suggested by Mason (2018):

Manipulation refers to an agent’s control of its environment through selective contact.

Nearly everything a robot physically does falls under this umbrella, from pick-and-place interactions

tool use, and even playing chess. In this sense, manipulation is the “business end” of the artificial

intelligence problem, in which we must confront the complexity of interacting with the world to

accomplish difficult, often abstract goals. Where “manipulation” research once referred to robotic

grasping in particular, now it encompasses the effort to develop a wide range of skills from object

rearrangement to tool use. As such, it requires that we engage with not only the control literature

but also perception and planning, bringing techniques from across robotics and artificial intelligence

disciplines to bear.

The central difficulty in manipulating the world is the inherent novelty and complexity involved.

The physics of contact-rich manipulation inherently poses very challenging optimization problems:

discontinuities introduced by changes in contact state make naive, model-based solutions intractable

6
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for multi-step manipulation problems, even with full knowledge of the world’s dynamics. Even with

such perfect information, solving these problems is still an active research area — typically under

the heading contact-implicit trajectory optimization (Posa et al., 2014; Manchester and Kuindersma,

2020; Huang et al., 2023). But, of course, robots (and humans alike) never have perfect information in

real environments. It is impossible for our agents to discern latent physical quantities (inertia, friction

coefficients, etc.) from visual inspection alone, and identifying them through physical interaction

is prohibitively tedious. Thus, the novelty of objects and situations in the world also poses a

tremendous difficulty to our robotic agents. Nonetheless, these are the problems we need robots to

solve, both to be useful and generally intelligent. This section will cover the basic mathematical

principles underlying the dynamics and control of robotic arms.

2.1.1 Manipulator Dynamics

The position of a robot can be described by its joint configuration q ∈ C, where C is the configura-

tion space (Lozano-Perez, 1981). In these generalized coordinates, we can prescribe the mechanics

governing the robot’s motion by the following equation (Tedrake, 2022):

M(q)q̈ + C(q, q̇)q̇ = τg(q) + τ +
∑
i

JT
i (q)f ci (2.1)

with mass matrix M , Coriolis terms C, torques due to gravity τg, torque supplied by the robot’s

motors τ , and summation over contact forces from the environment. Each contact results in a force

f ci that is propagated to the configuration space via a contact Jacobian Ji.

In the case in which the robot moves through free space, contact forces are zero and control is

relatively straightforward. If we can find a trajectory through configuration space (e.g. via motion

planning, see Section 2.2), we can command that trajectory directly by using the known manipulator

dynamics. Suppose we have a desired trajectory {q̈d, q̇d, qd}Tt=1, if we command

τ =M(q)q̈d + C(q, q̇)q̇ − τg(q),

the robot should track the desired accelerations. Typically, we have small errors in the model of the

robot, so we account for them with PD control with the following control law (perhaps also adding
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an integral term):

q̈d = q̈d(t) +Kp(qd(t)− q) +Kd(q̇d(t)− q̇),

with gain matrices Kp and Kd. In this way, we can move the arm through free space, or in contact

when the forces are negligible. Similar model-based strategies (e.g. force control, hybrid posi-

tion/force control) exist when a precise model of the environment is available.

However, interesting manipulation problems are ones in which the contact forces are non-negligible

and unknown a priori. In real settings, it is typically difficult or impossible to estimate expected

contact forces ahead of interaction. The robot is not privy to a full dynamics model of the world

complete with friction coefficients, inertia matrices, precise geometries, and contact Jacobians when

it encounters new situations; moreover, these quantities may not be inferred from visual sensors

alone. As a result, the model-based control methods described above fail to scale to diverse, real

settings. Care must be taken such that the robot is naturally compliant and robust to modeling

errors, and learning is typically required to compute the desired control.

2.1.2 Cartesian Impedance Control

Consider a robot turning a crank: it is clear that the robot needs to move its end-effector in a

circular motion, but where precisely should this circle be placed? Small errors in this estimation

can result in dramatically large forces, damaging the robot or the crank. Thus, robot motions must

be compliant in the presence of imperfect models. One intermediate step is then to re-write the

manipulator dynamics as a simple dynamical system in the world frame. This approach is typically

referred to as stiffness or impedance control (Salisbury, 1980; Hogan, 1985).

We can write the robot’s dynamics in the end-effector space as follows. Denote the pose of

the end-effector as p ∈ SE(3), computed via the robot’s forward kinematics. The same dynamics

equation above can be re-written in the frame of the end-effector as

Λ(q)p̈+ CX(q, q̇)q̇ = fg(q) + fu + fext, (2.2)

where now we represent the mass matrix Λ(q) and Coriolis terms CX(q, q̇) in the end-effector frame

rather than the joint space (through some algebraic manipulations, see Tedrake (2022)). Gravity

is now a Cartesian force fg, the motor torques act as a virtual force on the end-effector fu, and



9

contact force at the end-effector is given by fext. We can relate the motor torques to the force at

the end-effector fu via the Jacobian τ = J(q)T fu. If we then command the following control,

fu = −fg(q) +Kp(pd − p) +Kd(ṗd − ṗ),

the dynamics at the end-effector are akin to a spring-mass damper system with reference pose pd

and velocity ṗd. This enables us to naturally achieve compliant motions at the point of contact with

the world, yielding robustness in the presence of approximate models of the world and/or learned

control policies.

One further modification is required to deploy stiffness control on redundant manipulators:

nullspace control. As the degrees of freedom of the robot are typically greater than the degrees

of freedom of the end-effector in Cartesian space, the remainder of the joints must be stabilized,

typically via a PD control term relative to a pre-specified reference pose (often the center of the

joint range). The resulting torques commanded to the arm are then

τ = JT fu + [I − J+J ][Kp,joint(q0 − q)−Kd,jointq̇]

where q0 denotes the nullspace reference pose. Taken together, this approach constitutes operational

space control as proposed by Khatib (1987). This controller is deployed in a reinforcement learning

context in the later chapters of this thesis, enabling the agent to learn to control the end-effector pose

and regulate its compliance — it represents an important aspect of structure present in manipulation

problems to be exploited, rather than forcing the robot to learn to command torques directly.

2.2 Motion Planning

Motion planning is the problem of finding a path (sequence of poses) through configuration space

such that the robot is moved to a desired goal configuration, without encountering a collision. While

there exist many different families of motion planning algorithms (LaValle, 2006), they all operate

in a similar fashion: given a configuration space C and start and goal joint configurations q0, q
∗ ∈ C,

return a collision-free path of joint configurations {qt}Tt=0 between the start and end configurations.

Sample-based motion planners provide a principled approach for quickly generating collision-

free robot trajectories. However, motion planners are only as effective as their kinematic models
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Figure 2.1: Kinematic Graph. A simulated object, annotated with the pose of its axis of rotation
and corresponding kinematic graph.

are accurate: they generate trajectories directly, and thus cannot be improved through subsequent

interaction and learning. Furthermore, kinematic planners typically produce trajectories that only

account for kinematics, not dynamics: they explicitly do not account for forces involved in motion,

such as friction, inertial forces, motor torques, etc, which are important for performing contact-rich,

dexterous manipulation.

While we can actuate robot joints by using its motors, when manipulating the degrees of freedom

of an object, we must use the robot’s body to indirectly actuate them. For example, a robot wishing

to open a cupboard must first grasp the cupboard’s door before it can manipulate its hinge joint.

Nonetheless, we can form and exploit kinematic plans in the configuration space of objects as well

for efficient exploration. In these cases, we often employ constrained motion planning (Berenson

et al., 2009) in which we explicitly model the grasp constraint and plan motions jointly for the robot

and the object. Chapters 3 and 4 employ a similar approach to interact with objects in the world;

Chapter 5 leverages such motion planners to initialize motor skill learning.

2.3 Modeling Articulated Objects

One common set of tasks robots will need to be capable of in home and industrial environments

is manipulating articulated objects: objects consisting of rigid parts connected by movable joints,

like cabinets or drawers. Articulated objects are commonly represented by a graph that encodes

kinematic relationships between parts (Sturm et al., 2011). With these models, robots can begin to

derive appropriate plans and control sequences to interact with them.

A kinematic model,M, encodes a motion constraint between two object parts; the most prevalent

model types are revolute (like a door) and prismatic (like a drawer). A kinematic model’s parameter
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vector, ϕ, encodes the constraints on the pose of the object parts, represented as the 6-DoF pose of

the axis of rotation/translation in the world frame, and the 6-DoF pose of the articulated sub-part’s

origin in the axis frame. This parameter vector varies with each object instance, depending upon

the object’s pose and geometry. For example, the exact trajectory of a microwave door will be

different for different microwaves. The object’s configuration, q, represents the articulated pose of

the object, encoding angles in revolute models and displacements in prismatic models, and grows

in dimensionality with the number of joints present in the object. An object’s configuration may

change with each observation as forces are applied to its parts.

A kinematic graph G = (VG, EG) consists of a set of vertices VG = {1, ..., p} representing the

object’s p parts, and a set of undirected edges EG ⊂ VG × VG specifying the motion constraints

between the parts. Each joint (ij) is assigned a kinematic model Mij , parameter vector ϕij , and

configuration qij . The graph of a cabinet, for example, consists of three nodes (a body, a door,

and a handle), with a revolute kinematic constraint encoded in the edge between the body and

door, as illustrated in Figure 2.1. In this example, the parameter vector, ϕ, encodes the position

and orientation of the axis of rotation between the body and the door as well as the radius of the

door’s rotation, and the configuration, q, encodes the angle made by the door and the body. The

kinematic modelM, is revolute. Typically, it is assumed that these graphs are trees without cyclic

dependencies in order to make inference tractable. In Chapter 4, these graph structures are referred

to as kinematic hierarchies.

2.3.1 Related Work

The problem of estimating the kinematic model and articulated pose of an individual object has

been studied extensively in the robotics and computer vision literature.

Many approaches strictly perform articulated pose estimation (e.g. Brookshire and Teller (2016)

and Desingh et al. (2019)), estimating the configuration of an object with a known kinematic model.

Several approaches estimate kinematic graphs from video demonstrations, tracking sub-parts either

with fiducial markers or by clustering feature trajectories (Sturm et al., 2011; Pillai et al., 2015;

Niekum et al., 2015; Daniele et al., 2017; Yan and Pollefeys, 2006). More recent learning-based

approaches to category-level model and pose estimation from video (Jain et al., 2021, 2022) have

shown promise. Some category-level models also recover object part size via canonicalization (Li

et al., 2020; Weng et al., 2021). These approaches, however, are typically limited to a priori known
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category-level graph templates. Exceptions include Heppert et al. (2022), which employs factor

graphs to efficiently build articulation models and track parts given video data.

Other approaches explore object mechanisms and joint dependencies interactively, leveraging

the embodiment of the robot, tracking sub-parts via fiducial markers or by clustering feature tra-

jectories (Katz and Brock, 2008; Hausman et al., 2015; Barragän et al., 2014; Mart́ın-Martin and

Brock, 2014; Kulick et al., 2015; Baum et al., 2017; Sturm et al., 2010; Jain and Niekum, 2020;

Gadre et al., 2021; Nie et al., 2022). These systems accurately estimate the kinematic structure of

an object having first directly observed or estimated a sequence of sub-part poses. However, they

require observing the very manipulation the robot aims to achieve. Moreover, these methods lack a

notion of object type and typically assume uniform priors over model parameters.

Our work in Chapter 3 introduced the problem of estimating articulated object models from a

static observation — essentially providing a prior distribution over the kinematic model with which

the robot could begin interaction. Most subsequent approaches similarly assume category-level graph

templates (Jain et al., 2021, 2022). Li et al. (2020) extend the idea of canonicalization to articulated

objects to also recover part sizes from static observations.

Other approaches forgo kinematic graph estimation and attempt to recover per-part motion

models without estimating the global graph structure. Zeng et al. (2021) estimate per-part motion

models from static observations. Wang et al. (2019b) train a model to jointly predict movable parts

and their motion parameters from an input point cloud. Yi et al. (2018) take a pair of articulated

3D shapes of the same category but in different kinematic poses, and jointly infer moving parts and

their kinematic motion parameters. Yan et al. (2019) infer movable parts by hallucinating their

motions over multiple time steps. These approaches train deep neural networks which generalize to

geometrically and structurally different input objects. However, none infer the object’s kinematic

graph structure: they treat each articulated part as it if moves in isolation. RigNet (Xu et al.,

2020b) is a system for inferring the skeletal joint structure of articulated humanoid and creature

characters which uses a graph neural network for predicting graph topology information. Our work

in Chapter 4 similarly employs graph neural networks to recover kinematic graphs for novel object

instances, relaxing the assumption of an a priori known category-level template.

More recent methods eschew kinematic model estimation entirely, instead estimating affordances

directly. For example, VAT-Mart (Wu et al., 2021), AdaAfford (Wang et al., 2022), and UMPNet (Xu

et al., 2022) propose end-effector trajectories that accomplish a desired manipulation directly from
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pointcloud input. Schiavi et al. (2022) extend these ideas to an agent-aware setting to handle joint

limits and reachability, albeit under more restrictive assumptions. The FlowBot systems (Eisner

et al., 2022; Zhang et al., 2023) predict a 3D scene flow to derive appropriate controls. Other

approaches eschewing traditional kinematic model estimation include RoboBarista (Sung et al.,

2018), which learns multi-modal embeddings of visual data, language commands, and trajectories

for manipulating common object parts, and kinematic morphing networks (Englert and Toussaint,

2018) which transfer manipulation policies to novel doors. These affordance models are attractive

in that they simultaneously solve the grasp detection problem, identifying candidate locations for

interaction. However, they fail to recover articulation constraints or kinematic graphs, which are

necessary for planning whole-body interactions (Mittal et al., 2022) or task and motion planning

(Garrett et al., 2021).

Recent works have begun to leverage neural fields to create 3D representations of articulated

objects, typically assuming known category-level templates and focusing on geometric reconstruc-

tion, e.g. Tseng et al. (2022); Mu et al. (2021); Lei et al. (2023); Kawana et al. (2022); Deng et al.

(2020); Zhang et al. (2021), but sometimes inferring articulation properties from pairwise inputs

(i.e. Ditto (Jiang et al., 2022; Hsu et al., 2023)). Human articulated pose estimation has also been

studied extensively in the vision literature, e.g., Pavlakos et al. (2018); Wei et al. (2016); Zheng et al.

(2020).

2.4 Reinforcement Learning

Consider a robot trying to perform a task involving contact, like opening a door or sweeping the

floor. If we revisit the mechanics governing this interaction (Equation 2.1), the configuration q now

not only includes the robot’s joints but also the the state of the world: positions of objects and

tools in the world, the states of object joints, etc. Now, the robot must confront the fact that it

lacks complete knowledge of the dynamics of the world around it. While the robot has a good

model of its own body, the precise mass and inertia of other objects are unknown a priori; their

geometries, material properties, and the resulting contact forces are at best approximate; and even

their positions and velocities must be estimated. The robot could attempt to recover all of this

information through interaction (i.e. system identification), but it would be prohibitively tedious.

Moreover, these contact-rich interactions are prohibitively complex: even with perfect knowledge
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of the dynamics, solving for feedback controllers in such discontinuous, non-linear systems remains

very challenging, even for state-of-the-art optimal control methods (Huang et al., 2023). As a result,

a great deal of work instead seeks to leverage data to overcome these challenges, and employs

reinforcement learning to train the robot’s behavior via trial and error interaction.

Tasks of the robot can be formalized as a Markov Decision Process M = (S,A,R, T, γ), where S

is a set of states which describe the current configuration of the task; A is a set of actions available

to the robot; R(s, a, s′) is a reward function describing the reward obtained for executing action a in

state s and transitioning to state s′; T (s′|s, a) is the transition function, describing the probability

that executing a in s leaving the robot in state s′, and γ ∈ (0, 1] is a discount factor expressing a

preference for immediate over delayed rewards. The robot’s goal is to learn a policy π mapping a

state to the action it should execute in that state, such that it maximizes the discounted sum of

expected future rewards (or return) (Sutton and Barto, 1998).

In many cases, a target motor skill is not the entirety of the robot’s task, but should instead

be used as an executable subroutine used as part of the solution. Such skills are typically modeled

using the options framework (Sutton et al., 1999), where an option o is defined by a tuple (Io, πo, βo),

where Io ⊆ S is the initiation set, the set of states from which the robot may choose to execute

the option; βo : S → [0, 1] is the termination condition, giving the probability that option execution

ceases in state s; and πo is the option policy. The robot can choose to execute o if the current

state is inside Io, whereupon execution proceeds according to πo and halts at each encountered state

according to βo. Modeling motor skills as options naturally supports reasoning about sequential

compositionality —option o2 can be executed after option o1 if the state that o1 leaves the robot

in lies within o2’s initiation set (Lozano-Perez et al., 1984; Burridge et al., 1999; Tedrake, 2009;

Konidaris and Barto, 2009). Hierarchical RL studies the discovery and composition of such options

(Nachum et al., 2018; Gupta et al., 2018; Huo et al., 2020).

2.4.1 Policy Search

Policy search methods (Deisenroth et al., 2013) are a family of model-free reinforcement learning

algorithms that search within a parametric class of policies to maximize reward. Formally, given a

Markov Decision Process M, the objective of policy search is to maximize the expected return of
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the policy πθ:

max
θ

E
M,πθ

[
T∑

t=0

γtrt

]
. (2.3)

These approaches can learn motor skills through interaction and therefore do not require an

explicit environment model, and are typically agnostic to the choice of policy class (though their

success often depends on the policy class having the right balance of expressiveness and compactness).

However, their model-free nature leads to high sample complexity, often making them infeasible to

apply directly to robot learning.

2.4.2 Policy Representations

The form of the policy function π : S → A is a design decision critical to efficient reinforcement

learning. In the natural world, we have discovered that motor primitives underlie many behaviors,

like gaits or reaching motions (Thoroughman and Shadmehr, 2000; Flash and Hochner, 2005) — as

such, there is an effort in robotics to produce similar compact, expressive representations of behavior.

The most historically significant motor primitive in robotics is the Dynamic Movement Prim-

itive (Schaal, 2006; Ijspeert et al., 2002; Saveriano et al., 2021) which yields a dynamical system

defined on the robot’s state space:

τ ż = αz(βz(g − y)− z) + f(x), (2.4)

τ ẏ = z, (2.5)

τ ẋ = αxx, (2.6)

where τ here represents a time constant, y represents position, x is a phase variable, z is an aux-

iliary variable, g defines the goal position, and αz and βz are gain parameters. The primitive is

parameterized through weights w and basis functions Ψ in the term f(x) which serve to modulate

the shape of solution trajectories to this dynamical system, typically given as

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x, (2.7)

where the basis functions Ψ are usually chosen as Radial Basis Functions. This simple parameteriza-

tion enables fitting from a single demonstration (Schaal et al., 2002). Each DMP governs one degree
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of freedom, typically either in the joint space or the Cartesian space of the robot’s end-effector,

where special care must be taken to address the dynamical system for orientation on SO(3) (Ude

et al., 2014; Koutras and Doulgeri, 2020). This policy class yields robot behavior that is smooth and

asymptotically stable while retaining a low-dimensional parameterization, and as a result has been

wildly successful — accomplishing tasks ranging from ball-in-cup (Peters and Schaal, 2008) and ta-

ble tennis (Muelling et al., 2010, 2013) to contact-rich manipulation (Kalakrishnan et al., 2011). We

refer the reader to the recent review paper from Saveriano et al. (2021) for a comprehensive survey,

and discuss limitations and extensions below in Section 2.4.4. More recently, neural networks are

commonly employed as the policy representation, sacrificing data efficiency for generality (Levine

et al., 2016). The central effort of the latter half of this thesis is to develop a novel class of policies

which retains a compact parameterization while increasing the expressivity of possible behaviors.

Related design considerations are the state and action spaces. The robot’s sensors do not always

constitute a Markov state space, so we instead deal in observation spaces, sidestepping a complicated

and unknown a priori underlying state space. The robot receives high-dimensional observations in

the form of data from cameras, tactile sensors, motor encoders, and force/torque sensors, and is

ultimately forced to command torques to its motors. Often, though, reinforcement learning in these

native observation and action spaces is prohibitively challenging, and neglects the structure present

in each. In the tasks studied in this thesis, we typically assume the robot is able to estimate the pose

of objects and their articulated state rather than learning in image observation spaces directly. This

represents a tradeoff — lower-dimensional observation spaces should result in faster reinforcement

learning (Sutton and Barto, 1998), potentially at the cost of less generalizable policies (Driess et al.,

2022). The action spaces employed in this dissertation vary on the task; the work in Chapter 5

employs joint position control through dynamic movement primitives, whereas Chapters 6 and 7

permit the agent to control its end-effector pose and compliance as described in Section 2.1.2 and

recently reviewed comprehensively by Abu-Dakka and Saveriano (2020). Formally, in the Variable

Impedance Control in End-Effector Space (VICES) action space (Mart́ın-Mart́ın et al., 2019), the

agent policy π maps observations to a desired delta end-effector position ∆pos = (pd−p) and rotation

∆ori = Rd ⊖ R, as well as commanded stiffness terms kposp ∈ R3×3 and korip ∈ R3×3 for position

and rotation respectively. These terms are then used to map to joint torques τ via the following
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equation, modified slightly from Equation 2.2:

τ = JT
pos[Λ

pos[kposp (pd − p)− kposd v]] + JT
ori[Λ

ori[korip (Rd ⊖R)− korid ω]], (2.8)

where Λpos and Λori are the position and orientation components of the inertia matrix Λ ∈ R6×6

in the end-effector frame, Jpos and Jori are the position and orientation components of the end-

effector Jacobian J , and Rd ⊖ R corresponds to subtraction in SO(3). Linear and angular velocity

are denoted by v and ω, respectively; kposd ∈ R3×3 and korid ∈ R3×3 are the damping matrices for

position and rotation, usually set such that the system is critically damped. This enables the agent

to be compliant enough to be robust to perturbations and control end-effector pose directly, rather

than being forced to confront control in the joint space. This leads to more performant, generalizable

policies in most practical manipulation settings (Mart́ın-Mart́ın et al., 2019).

As the observation and action spaces are continuous in manipulation problems, policies are

learned using policy search methods like CMAES (Stulp and Sigaud, 2012) or policy gradient actor-

critic methods like TD3 (Fujimoto et al., 2018).

2.4.3 Learning from Demonstration

Due to the complexity of learning manipulation behaviors, in practice, researchers resort to human

demonstrations of desired behavior. Typically this is done via teleoperation or “kinesthetic teach-

ing”, though recently learning from observations alone has been receiving attention (Brown et al.,

2019; Torabi et al., 2019). Learning from Demonstration methods (Argall et al., 2009) broadly

consist of two families of approaches that either mimic (Behavioral Cloning) or generalize (Inverse

Reinforcement Learning) demonstrated behavior. Inverse reinforcement learning methods estimate a

latent reward signal from a set of demonstrations; throughout this thesis, we assume a given reward

function, and omit a discussion of inverse reinforcement learning methods here.

Behavioral cloning methods (Atkeson and Schaal, 1997; Pastor et al., 2009; Ho and Ermon, 2016)

attempt to directly learn a policy that reproduces the demonstrated data. Given a dataset of expert

demonstration trajectories D, the objective of behavioral cloning is:

max
θ

∑
(s,a)∈D

πθ(a|s).
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These methods often result in policies with undesirable behavior in states not observed during

demonstrations, though this can addressed with interactive learning (Ross et al., 2011; Nair et al.,

2017; Sun et al., 2017).

Many approaches investigate incorporating human-provided demonstrations into policy search

to drastically reduce sample complexity via a reasonable initial policy and/or the integration of

demonstrations in the learning objective (Cheng et al., 2018; Rajeswaran et al., 2017; Levine and

Koltun, 2013). Others seek to generate demonstrations autonomously, e.g. with Model-Predictive

Control (MPC) (Pan et al., 2017) or heuristically derived controllers (Kurenkov et al., 2019). Guided

Policy Search (GPS) (Levine and Koltun, 2013) uses LQR to similarly aid in exploration. Residual

learning has also been recently proposed, in which learn a policy is superimposed on hand-designed

or model-predictive controllers (Silver et al., 2018; Johannink et al., 2019; Zeng et al., 2020). In

Chapter 5, we study the problem of generating demonstrations autonomously, bootstrapping skill

learning with useful exploration strategies derived from motion planning with kinematic models. Our

method enables motion planning to bootstrap policies that are more expressive than the original

planner.

2.4.4 Related Work

This thesis builds upon a tremendous amount of work that has applied reinforcement learning to

problems in robotic manipulation. A great deal of recent work has examined the setting where a

robot learns to map its sensor input directly to motor torques via deep reinforcement learning (Levine

et al., 2016; Khazatsky et al., 2021). These methods offer flexibility, generality, and autonomy by

exploiting recent advances in deep learning. However, that generality has a cost: such methods

rely on access to massive amounts of compute and data and therefore typically require additional

methods that implicitly encode design insight into the data set (Finn et al., 2017; Sadeghi and

Levine, 2016; Andrychowicz et al., 2020), collect experience from multiple robots in parallel (Gu

et al., 2017), or include human demonstration (Schaal, 1999; Argall et al., 2009; Nair et al., 2018).

Additionally, these approaches make it difficult to incorporate the structural knowledge that robotics

as a field has developed around techniques like forward and inverse kinematics, motion planning,

wrench closure, safety, and feedback control.

The alternative approach, taken by earlier works, is to carefully design and structure a policy

class to guarantee desirable properties (e.g., stability, joint and torque limits, and safety constraints)
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while exploiting the properties of a broad class of target tasks to support sample-efficient learning

— like parameterizing gaits (Saggar et al., 2007) or trajectories via Dynamic Movement Primitives

(DMPs) (Kober and Peters, 2010; Muelling et al., 2013). The key assumption underlying DMPs is

that dynamic motions can be represented largely as a trajectory shape—represented separately for

each degree of freedom, as a linear combination of learned weights with basis functions over time—

coupled with a second-order dynamical system that stably controls the robot towards the shape

trajectory. Although DMPs have seen wide usage (Kroemer et al., 2021), they have largely not been

integrated with high-dimensional, multi-modal data for contact-rich tasks (Saveriano et al., 2021),

and typically must be bootstrapped by an expert demonstration trajectory (Argall et al., 2009).

Other important policy classes overcome the standard shortcomings of DMPs, such as Probabilistic

Movement Primitives (Paraschos et al., 2013), Conditional Movement Primitives (Seker et al., 2019;

Akbulut et al., 2021b,a), and Riemannian Motion Policies (RMPs) (Cheng et al., 2021; Ratliff

et al., 2018; Shaw et al., 2022; Xie et al., 2023). These approaches help account for variability

across demonstrations, high-dimensional task parameters, and different task spaces but still fail to

robustly handle the contact dynamics and high-dimensional observation spaces present in dexterous

manipulation (Saveriano et al., 2021). We investigate combining RMPs with variable impedance

control for safe manipulation skill learning in Chapter 6.

A burgeoning area of research is incorporating learned motor skills into task-and-motion planning

(TAMP) solvers, e.g. Wang et al. (2021); see Garrett et al. (2021) for a recent review. Briefly, TAMP

systems alternate search between abstract, symbolic spaces and low-level geometric spaces to solve

long-horizon manipulation problems. TAMP methods have generally assumed composable skills,

focusing on bilevel planning rather than how such skills might be constructed. Recent work by

Silver et al. (2023) learns skills in a TAMP framework by segmenting demonstrations consisting

of sequences of skills (ala Niekum et al. (2012)). Other related approaches include the works of

Sharma et al. (2021); Sharma and Kroemer (2022) which seek to identify and select among object-

centric, single-axis controllers for pushing or using tools, and the work of Liang et al. (2022) which

seeks to identify skill preconditions for hybrid force-velocity controllers. Our work in Chapter 7

seeks to design a policy class that is compatible with TAMP systems by construction and efficiently

learnable. We do so by exploiting structure — building upon the variable impedance control action

space (Mart́ın-Mart́ın et al., 2019), using motion planning to control the arm in free space, and

exploiting grasp detection methods (ten Pas and Platt, 2015; ten Pas et al., 2017; Mahler et al.,
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2017; Corsaro et al., 2021).

2.5 Safe End-Effector Variable Impedance Control

A central effort in Chapters 6 and 7 is develop safer policy classes in order to enable learning with

real robots in the real world. Safety has been studied extensively in the reinforcement learning

literature (Garcıa and Fernández, 2015) as well as in the optimal control literature (Chen and

Sankaranarayanan, 2022). Here we briefly overview related approaches to safe impedance control in

Cartesian space.

The traditional approach in the control literature is to compute safety sets (using known dynamics

models), and ensure that the policy stays within those bounds. Wabersich and Zeilinger (2018)

propose a general formulation of a learning problem where these bounds can be computed. Once

the safety set is known, a method such as control barrier functions (Wei and Liu, 2019; Cheng et al.,

2019) can be used to ensure that the policy stays within that set (termed forward set-invariance).

However, finding these safety sets is computationally expensive. While these methods are compelling

due to their formal safety guarantees, we have yet to see them applied for safety of an impedance-

control scheme in learning to solve contact-rich manipulation tasks, at least in part because of their

assumption of a priori known dynamics.

Many have discussed formulations of impedance control to ensure Lyapunov stability. Khader

et al. (2021) constrain the stiffness parameters of the action space to ensure that their controller is

Lyapunov-stable, and thus resilient to perturbations and unexpected behavior. Others prove Lya-

punov stability for more general formulations of learning problems (Chow et al., 2018; Berkenkamp

et al., 2017). Lyapunov stability guarantees a convergence property of the system showing that the

system state must be contained in smaller regions of the space as dynamics evolve in accordance to

the Lyapunov function. However, since Lyapunov stability discusses convergence and not safety-set

forward-invariance, it is difficult to guarantee the robot will remain free from unsafe behavior in the

presence of unmodeled contact dynamics (e.g. violations of joint position limits, joint torque limits,

or collisions with objects).



Chapter 3

Learning to Generalize Kinematic

Models to Novel Objects

This work was presented at the Conference on Robot Learning in November of 2019, in Osaka, Japan.

3.1 Introduction

As robots move out of controlled laboratory environments and into homes and work environments,

it is critical that they are capable of readily manipulating common objects with functional parts.

This implies that our robots must be able to robustly perceive and manipulate articulated objects

as soon as they are encountered. For example, a robot should be able to recognize an object like

a microwave and infer whether the door is open or closed, as well as the information necessary to

change the kinematic state of the door.

Existing approaches to learning to manipulate articulated objects are instance-based (Katz and

Brock, 2008; Sturm et al., 2011; Pillai et al., 2015; Hausman et al., 2015). They estimate the

kinematic model of an object having observed the object’s motion, either demonstrated by a human

or generated by the robot through slow, deliberate interaction. This enables manipulation but

requires the robot to learn about each object in its environment from scratch, regardless of how

similar the object is to those it has previously experienced. This chapter introduces a method

that achieves generalization via object types: objects may be categorized according to their shared

21
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kinematic structure, such that all objects in a particular class have the same set of kinematic

constraints between parts. This allows a robot to be taught the prototypical kinematic structure for

many types of objects commonly experienced in human environments, then exploit that knowledge

to readily manipulate novel instances of those objects after having recognized them.

Grouping objects in this way helps to relate similar manipulation problems, aiding the gener-

alization of learned policies to new tasks, a long-standing challenge in robotics and reinforcement

learning (Taylor and Stone, 2009). Additionally, a robust notion of object type enables efficient

high-level planning through abstraction: objects of the same type can be treated identically in a

plan (Diuk et al., 2008).

This chapter introduces a framework capable of jointly estimating the kinematic model param-

eters, kinematic state, and geometry of a novel object from RGB-D observations, given its catego-

rization and prior experience with objects of the same type. We use object recognition to select a

kinematic model, and use deep neural networks to learn object-specific mappings from depth sensor

observations to kinematic model parameters, kinematic state variables, and geometric parameters.

Inspired by recent approaches to object recognition and pose estimation (Wei et al., 2016; Burchfiel

and Konidaris, 2018; Wang et al., 2019a), we cast kinematic model parameter inference as a regres-

sion task given a known kinematic model type specified by the object’s categorization. To train these

networks, we developed a dataset of simulated articulated objects, recorded ground-truth geometry

and kinematic models, then simulated object articulation and rendered depth images. We evaluated

the performance of our system with withheld simulated objects, real objects observed with a Kinect

sensor, and manipulation scenarios. Our results demonstrate that our networks learn to localize

kinematic mechanisms, infer kinematic state, and predict object geometry sufficiently well to enable

the manipulation of novel articulated objects on a real robot.

3.2 Learning to Generalize Object Kinematics

Our goal is to map a segmented depth image of an object to its kinematic graph parameters,

configuration, and geometry. For example, the robot will observe a depth image of a microwave and

estimate the location of the microwave door’s axis of rotation (shown in Figure 3.1), the transform

from that axis to the center of the door, as well as the angle between the door and the body,

and a simple parameterization of the object’s geometry. We begin by making the assumption that
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Figure 3.1: Kinematic model prediction for a novel object. Our model predicts the pose and
state of a microwave’s hinge from a point cloud captured with a Kinect depth sensor.

an object’s kinematic structure is directly specified by its category. Thus, for an object to be a

member of a class, it must possess the particular kinematic graph connectivity shared among all

instances of that class. Additionally, we assume that the kinematic graph structure of each object

class is known a priori, leaving the estimation of prototypical graphs for each class to future work.

This assumption enables us to forgo fitting a kinematic model type to a sequence of observations

and proceed to estimating model parameters immediately following object recognition. As such,

our system is able to generalize within object categories without first observing a trajectory. We

cast this as a regression problem, and develop a learning framework that is trained on a dataset of

simulated articulated objects before being tested in reality.

3.2.1 Model Description

The robot takes as input an RGB-D image. We use off-the-shelf object detection algorithms to

classify and segment the object from the rest of the scene. We manually specify a kinematic model

for each object category. We aim to estimate p(ϕ, qt, θ|xt, c), the probability of the object’s kinematic

model parameters, ϕ, its present configuration, qt, and a simple parameterization (length, width,

height, chirality) of the object’s geometry, θ, conditioned upon a single depth image, xt, and the

object’s class label, c. In practice, we train a unique mixture density network (Bishop, 1994) for
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each object class c, which consumes a depth image and regresses to the parameters of a mixture of

Gaussians:

p(ϕ, qt, θ|xt, c) =
m∑
i

πc
i (xt) N (ϕ, qt, θ|µc

i (xt), σ
c
i (xt)), (3.1)

where xt is a depth image sampled from the object’s articulation at time t, the object class c is

known to the learner, and πc
i (xt), µ

c
i (xt), σ

c
i (xt) are neural networks which consume depth images

and output mixing parameters, means, and diagonal covariances, respectively. We use a ResNet-18

(He et al., 2016) backbone with a fully connected network head for each parameter (π, σ, µ) of the

mixture of Gaussians. We found m = 20 mixture components to be sufficient.

3.2.2 Training

Training the model requires point clouds annotated with the underlying pose, geometry, and kine-

matics of the articulated object. To generate this data, we created a dataset of synthetic articulated

objects (see Section 3.2.3). Ground truth kinematic models allowed us to train inference networks

by maximizing the probability of the labels (ϕ, qt, θ) under the model p(ϕ, qt, θ|xt, c):

L = −E [log p(ϕ, qt, θ|xt, c)] . (3.2)

We sampled batches of individual image-label pairs rather than training on full object articulation

demonstrations to enable one-shot model inference with new objects.

3.2.3 Synthetic Dataset

Our synthetic dataset consists 6 object categories (cabinet, drawer, microwave, toaster oven, two-

door cabinet, refrigerator). The kinematic graph for each of these classes, known a priori to the

learner, was specified in Universal Robot Description Format (URDF) and rendered via Mujoco

(Todorov et al., 2012). Example objects are shown in Figure 3.2. Two-door cabinets and refrigerators

are modeled as having two degrees of freedom, while the rest of the objects are modeled with one

degree of freedom.

A generator specific to each object class sampled object pose and geometry, and computed the

location(s) of kinematic mechanism(s). The simulator rendered observations from each object’s
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Figure 3.2: Example synthetic objects: cabinet, drawer, microwave, toaster oven, cabinet2,
refrigerator, respectively.

articulation. We sampled object position uniformly from the view frustum of the camera up to a

maximum depth dependent upon object size. Object orientations were sampled uniformly from the

range [−π
4 ,

π
4 ] about the z-axis. A unique neural network was trained for each object class, using

160, 000 depth-image/label pairs (10, 000 objects) for training and 16, 000 pairs (1, 000 withheld

objects) for testing per class. We make the dataset publicly available here for broader use by the

community. More details are provided in Appendix A.

3.3 Experimental Evaluation

We evaluated our approach’s ability to jointly estimate kinematic model parameters and kinematic

configuration of articulated objects from depth images using withheld simulated objects and real

objects observed with a Kinect depth sensor. Additionally, to demonstrate that our approach indeed

enables the manipulation of real articulated objects, we use our model to open a microwave door

and a drawer with a real mobile manipulator.

3.3.1 Predicting Kinematics From Depth Images

Parameter estimation accuracy was evaluated by measuring the Euclidean distance between the

estimated and the true pose of the axis of rotation/translation, and the orientation error of the

axis of rotation/translation about the z-axis. Kinematic state estimation accuracy was evaluated by

measuring the error in kinematic state, reported in degrees for revolute mechanisms and centimeters

for prismatic mechanisms. These estimates are produced from a single depth image, and are not

accumulated over time. The error is computed using the maximum likelihood sample from the

https://github.com/babbatem/SyntheticArticulatedData
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mixture density network for each class. As a baseline, we compared against the mean of each

quantity for each object class (Mean), nearest neighbor in depth-image space (NN), and a variant

of ICP in which we registered each test observation to the mean model for each object class in 16

different poses and found the best match (ICP). The ICP baseline finds a 6-DoF transformation,

but we report error only about the z-axis for comparison. Table 3.1 displays these results for 1, 000

withheld objects for each of the six object classes studied. Our framework learns to infer the position,

orientation, and state of simulated kinematic mechanisms to within a few centimeters/degrees.

Axis Pos. Error (cm) Axis Rot. Error (deg) Config. Error

Cabinet - Mean 53.83± 18.36 10.81± 14.29 40.62± 26.06 ◦

Cabinet - NN 18.08± 11.31 10.39± 12.02 19.66± 17.30 ◦

Cabinet - ICP 35.68± 17.36 34.75± 26.76 40.58± 26.13 ◦

Cabinet - Ours 1.84 ± 4.43 0.36 ± 1.03 1.61 ± 1.70 ◦

Drawer - Mean 55.59± 17.98 11.22± 14.42 9.75± 5.43 cm

Drawer - NN 16.51± 9.99 8.72± 11.84 9.89± 8.03 cm

Drawer - ICP 22.8± 12.36 19.33± 25.02 16.47± 11.16 cm

Drawer - Ours 5.23 ± 3.91 1.14 ± 3.38 4.64 ± 4.05 cm

Microwave - Mean 50.78± 16.73 11.33± 14.28 22.74± 12.88 ◦

Microwave - NN 18.08± 11.31 10.39± 12.02 19.66± 17.30 ◦

Microwave - ICP 21.29± 10.76 25.3± 20.0 40.64± 26.14 ◦

Microwave - Ours 1.28 ± 1.31 0.34 ± 1.58 1.73 ± 2.11 ◦

Toaster - Mean 61.65± 18.58 11.48± 14.08 22.75± 12.89 ◦

Toaster - NN 14.59± 8.37 10.58± 12.40 18.79± 20.70 ◦

Toaster - ICP 16.22± 5.9 21.26± 20.22 40.73± 26.15 ◦

Toaster - Ours 2.33 ± 1.46 0.80 ± 1.60 3.22 ± 4.06 ◦

Cabinet2 - Mean 62.43± 20.04 11.16± 14.41 42.91± 21.52 ◦

Cabinet2 - NN 17.16± 10.20 10.81± 11.95 39.95± 35.99 ◦

Cabinet2 - ICP 19.56± 9.9 26.22± 22.92 66.08± 33.77 ◦

Cabinet2 - Ours 3.81 ± 2.71 2.14 ± 4.59 11.97 ± 9.56 ◦

Refrigerator - Mean 108.96± 56.02 11.17± 14.23 35.23± 23.09 ◦

Refrigerator - NN 24.69± 16.00 8.92± 11.39 24.07± 32.20 ◦

Refrigerator - ICP 58.25± 35.16 27.15± 19.89 42.3± 29.6 ◦

Refrigerator - Ours 4.67 ± 9.17 0.75 ± 3.93 6.59 ± 11.17 ◦

Table 3.1: Simulation Results. Mechanism localization and configuration results are presented
as mean and standard deviation of the error, evaluated over 1000 withheld objects in simulation,
measured using the model’s maximum likelihood sample.

Next, we evaluated the system’s accuracy on objects in the real world. We evaluated our trained

models with one real object per class, show in Figure 3.3. Recognition and segmentation were
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performed using Mask R-CNN (He et al., 2017; Girshick et al., 2018) pretrained on the MS COCO

dataset (Lin et al., 2014) for the microwave and refrigerator object classes, and manually for the

others. Kinematic mechanism poses were acquired using AR tags, and configurations were held

constant. Between 47 and 170 samples were acquired for each class. For real objects, we found the

model’s accuracy improved when only considering points in the point cloud as candidates for the

mechanism position. To compute the estimates for Table 3.2, points in the point cloud were scored

by computing their likelihood under the model, and the maximally likely point was selected as the

system’s estimate. Our framework learns to accurately generalize kinematic models to real, novel

objects after being trained exclusively in simulation. Performance on the simulated refrigerator

Figure 3.3: Real objects studied. Clockwise: refrigerator, microwave, 2-DoF cabinet, drawer,
toaster oven. To obtain 1-DoF cabinet data, we segmented the 2-DoF cabinet into its respective
halves.

object class is relatively low due to more pose variation in the dataset in order to accommodate

for the refrigerator’s size, and more samples with only partial views of the object. Interestingly,

networks trained on this object class generalized relatively well to the real object. Additionally, the

drawer object class is challenging in both simulation and reality due to occlusion of the mechanism’s

pose during actuation; this affects the accuracy of the model on the real data of the open microwave,

as well.

The error rate of the model on the 1-DoF cabinet class is higher due to ambiguity in which side

of the object the mechanism resides on. In simulation, there are sufficient artifacts to predict this
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Axis Pos. Error (cm) Axis Rot. Error (deg) Config. Error

Cabinet 14.96± 13.37 7.82± 8.68 15.27± 10.75 ◦

Drawer 9.12± 5.97 1.32± 1.83 11.45± 3.77 cm

Microwave - Closed 3.96± 3.48 2.65± 3.60 12.96± 14.34 ◦

Microwave - Open 11.87± 6.97 5.45± 4.81 19.39± 9.72 ◦

Toaster 6.30± 3.56 2.79± 3.31 10.32± 10.47 ◦

Cabinet2 6.55± 3.10 3.02± 3.39 16.49± 8.87 ◦

Refrigerator 3.56± 2.32 2.59± 3.62 1.30± 2.85 ◦

Table 3.2: Real Object Results. Mechanism localization and configuration results are presented
for real sensor data with real objects. Objects were imaged in a closed configuration unless denoted
otherwise. Errors were measured using the maximally likely point in the point cloud under the
model. Ground truth measurements were obtained using AR tags.

accurately, but in reality, the model makes some erroneous predictions. Resulting samples from the

model are visualized in Figure 3.4, wherein the agent has assigned probability to both sides of a

1-DoF cabinet after several estimates of the cabinet’s hinge pose.

Figure 3.4: Model estimates under uncertainty. Samples drawn from the model of a cabinet’s
hinge pose, accumulated over time and overlaid on a point cloud. With the door closed, it is
challenging to discern whether the cabinet opens left or right. Accordingly, our model has assigned
probability to both sides of the object.

3.3.2 Using Estimated Kinematic Models for Manipulation

Finally, we evaluated our system’s accuracy by demonstrating successful manipulation of novel

articulated objects in the real world. The robot, a Kinova MOVO mobile manipulator, was driven

around the area in front of each object, and recorded observations of the object and its own pose
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in a pre-computed map of the room. Using these observations, the agent estimated the position

and orientation of the object’s axis of rotation/translation, articulated pose, and geometry. We

provided the agent with a fixed grasp on the object’s handle, and computed a series of waypoints as

a function of the estimated object kinematics, end-effector pose, and desired object configuration.

Using our system’s estimates, we were able to generate kinematic motion plans that achieved the

desired manipulations, as shown in Figures 3.5 and 3.6.

Figure 3.5: Novel object manipulation. Top: A MOVO robot manipulating a novel microwave
using our system’s estimates of the object’s kinematics and geometry. Bottom: Rendered estimates
of the object’s pose, geometry, and kinematic state before and after the manipulation.

Figure 3.6: Novel object manipulation. A MOVO robot manipulating a novel drawer using a
kinematic model estimated from a single depth image.
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3.4 Discussion and Conclusions

We presented a framework for the perception and manipulation of articulated objects, without the

need for first observing the object’s articulation at runtime, by leveraging object recognition and a

novel dataset of synthetic articulated objects.

Our work assumes that models are directly specified by object class, and that each object class

has exactly one appropriate kinematic model. This assumption is relaxed in the next chapter to ac-

commodate the variation present in many real object classes. Conversely, while previous approaches

to learning object classes have relied exclusively on appearance, our work suggests that functionality

should also play a key role.

Our work introduces and relies upon a simulated dataset which has several shortcomings. The

simulated objects present artifacts and are not photo-realistic, forcing us to use only depth images

and to regularize the models heavily during training. Additionally, the length, width, and height

of objects was sampled independently, which does not accurately reflect the true joint distribution

of object shapes in many categories. Furthermore, our dataset only includes objects in isolation;

objects are often occluded in real scenes, and this presents a challenge for our models. This avenue of

research could benefit immensely from a large dataset of real articulated objects; the Sapien dataset

(Xiang et al., 2020) has since been developed and seen wide adoption. Nonetheless, our real-world

experiments provide evidence that our system does generalize well to real objects.

Robots will have to be able to generalize their manipulation skills in order to be useful in real en-

vironments. Our system accurately produces probabilistic estimates of kinematic model parameters,

articulated pose, and object geometry from individual sensor observations; our experiments show

that our approach enables the perception of household articulated objects immediately following

object detection—thus enabling a robot to manipulate novel instances of familiar object classes.

We now turn our attention to the aforementioned limitation of this system – assumption of a

category template – and describe a system which is capable of recovering kinematic hierarchies from

observation.



Chapter 4

Learning to Infer Kinematic

Hierarchies for Novel Object

Instances

This work was done in collaboration with Hameed Abdul-Rashid and Miles Freeman, under the super-

vision of Daniel Ritchie and George Konidaris. The work appeared in the 2022 IEEE International

Conference on Robotics and Automation in Philadelphia, PA.

4.1 Introduction

In the previous chapter, we introduced the challenge of inferring the kinematic models of novel

articulated objects from sensor data. To a human, interactions with such objects are effortless, but

the underlying process is complex: one must perceive the kinematic hierarchy of the object (i.e.

which parts can move, how they move, and how those motions are coupled). Then, one must plan a

sequence of actions to transform the object from its current kinematic pose into another, and finally,

manipulate the object to execute that plan. The perception part of this process is particularly

challenging, as objects with similar function can vary considerably in both their structure and their

geometry. Wardrobes, for example, can have differing numbers of parts in different arrangements,

and many different doorknob shapes. To succeed at manipulating such objects in the wild, an

31
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agent must infer the kinematic hierarchies of never-before-seen object instances with these kinds of

variations. In the previous chapter, we assumed that we could determine this hierarchy based on

object classification, and focused on inferring fine-grained properties like the motion models between

parts. But, in practice, this assumption does not always hold: real object classes like storage furniture

or chairs posses wide variety in their structure.

In this chapter, we describe a perception system that infers kinematic hierarchies, generalizing

to novel object geometries and structures. Our system infers the moving parts of an object and

the kinematic couplings between them. To infer parts, it uses a point cloud instance segmentation

neural network. To infer kinematic hierarchies, it uses a graph neural network which learns to infer

the existence, direction, and type of edges (i.e. joints) that relate the inferred parts. This system is

trained on simulated scans of a large set of synthetic 3D models, enabling it to learn to generalize

to new, never-before-seen object instances which may differ geometrically and structurally from the

training data. We evaluate our system’s perception abilities on synthetic point clouds, and find that

our system reliably detects moving parts and reconstructs kinematic hierarchies on synthetic data.

We also demonstrate a proof-of-concept application of using the output of our perception system to

drive manipulation executed by a real-world robot platform.

In summary, the contributions in this chapter are twofold: the first method for inferring kinematic

hierarchies from never-before-seen instances of 3D objects, without reliance on a schema or template;

and a novel graph neural network approach for predicting hierarchies from part segments.

4.2 Approach

In this section, we overview our method for kinematic mobility perception. Fig. 4.2 shows a schematic

of our pipeline.

4.2.1 Part Segmentation

The input to our system is an unlabeled point cloud depicting an articulated object; a robot can

obtain such input by unprojecting and consolidating frames from an onboard depth sensor. Our

system first segments this point cloud into parts, some of which are movable (Fig. 4.2a). This

stage relies upon an existing neural network architecture for point cloud instance segmentation (i.e.

segmenting a point cloud without consistent part labels) (Mo et al., 2019).
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Figure 4.1: We propose a system for robot perception of the kinematic structure of never-before-seen
object instances. The robot scans the object from multiple viewpoints, building a 3D point cloud
representation of it. Our system then segments this point cloud into parts and infers the kinematic
hierarchy that couples them, allowing for the robot to plan and execute articulated motions of the
object.

Input Point Cloud Kinematic Graph Labeling Hierarchy CreationPart Segmentation

(a) (b) (c)

Figure 4.2: Overview of our system. Given an input 3D point cloud representation of an object,
our system (a) segments the point cloud into parts using an instance segmentation network, (b)
constructs a part graph and uses a graph neural network to label its nodes and edges with kinematic
properties, and (c) constructs a kinematic hierarchy from this graph which can be used for robot
manipulation.

4.2.2 Kinematic Graph Labeling

Given a part-segmented point cloud, our system next infers the articulation properties of those parts:

the type of articulated motion they support (if any) and how the motions of different parts are
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coupled. To do this, it converts the segmented point cloud into a graph and phrases the problem as

one of graph labeling : nodes in the graph represent parts, and edges between them represent potential

kinematic connections (e.g. joints) between parts. A graph neural network predicts whether each

node is static, rotating, or translating, as well as whether each edge should exist (i.e. whether two

parts should be kinematically connected), the probability of each node being the root of the tree,

and the direction of kinematic dependency (Fig. 4.2b).

4.2.3 Hierarchy Creation

Given the labeled graph, we construct a kinematic hierarchy by converting the bidirectional graph

into a n-ary tree. Xu et al. address this problem by constructing a pairwise matrix where each entry

represents the negative log probability of the corresponding parts possessing an edge connection (Xu

et al., 2020b). The pairwise matrix is traversed from a predicted root node and a n-ary tree is

extracted via a Minimum Spanning Tree (MST) algorithm (Prim, 1957). We adopt this method to

convert our predicted bidirectional graphs to an n-ary tree.(Fig. 4.2c).

4.3 Part Segmentation

To segment point clouds into parts, we use a neural network based on that of PartNet (Mo et al.,

2019). This architecture uses a PointNet++ network (Qi et al., 2017b) to compute per-point embed-

dings, each of which is then fed to a semantic segmentation branch (assigns semantic labels to each

point) and an instance segmentation branch (assign each point to one of N possible instance masks;

we use N = 24). As our system does not assume parts are semantically labeled, we could remove the

semantic segmentation branch. However, PartNet showed that semantic segmentation helps improve

the quality of instance segmentation. Thus, we treat the semantic segmentation branch as a “motion

type prediction” branch (static, rotating, translating, rotating and translating)—labels which we do

assume of our data.

We train the segmentation network on 3D objects from the PartNet-Mobility dataset (Xiang

et al., 2020). For augmentation, we use multiple poses for each moving part of each object, as

described in more detail in Section 4.5. To simulate a robot’s onboard depth sensor, we render point

clouds from these objects using a software simulator of the Kinect sensor (Landau, 2017). We train

the network using the Adam optimizer (Kingma and Ba, 2015) with learning rate 10−4. Training
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Part Segments Initial Graph GT Tree

Figure 4.3: Segmented point clouds, their initial overcomplete part graphs, and their ground truth
part graphs (as determined by a human labeler).

was run for at most 8 hours per category.
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Figure 4.4: Neural network architecture for kinematic graph labeling. A PointNet (Qi et al., 2017a)
converts each part point cloud into an initial node feature x. These features go through graph
convolutional + pooling layers to produce features y which are passed to MLPs for predicting node
and edge attributes.

4.4 Kinematic Graph Annotation

Here we describe how our system takes a segmented point cloud, converts it to a graph, and labels

this graph with the information required to construct a kinematic hierarchy.

4.4.1 Point Cloud to Graph Conversion

The kinematic hierarchy for a segmented object is a directed tree: tree nodes correspond to parts,

nodes are labeled with a motion type (rotation and/or translation) and edge directions indicate

kinematic couplings (i.e. edge A → B means part B moves with part A). To infer this tree from

a segmented point cloud, our system first constructs an overcomplete, undirected, unlabeled graph

over the parts, and then prunes edges, determines edge directions, and labels nodes using a graph

neural network. Our system constructs the initial graph by adding an undirected edge between

any two parts whose Euclidean distance is below a small threshold. Fig. 4.3 shows some example

segmented point clouds and their initial graphs.

4.4.2 Graph Labeling Network

Given a graph constructed by the above procedure, we use a graph neural network to label its nodes

and edges with the information required to construct a kinematic hierarchy.

Input features: Every node corresponds to one part, i.e. one subset of points from the object point

cloud. We encode these point subsets into per-node vectors x using a PointNet (Qi et al., 2017a).

Graph network: To make per-node and per-edge predictions, our system must understand the
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context of each node or edge within the object. To satisfy this goal, we use a graph convolutional

network to convert node features x into context-aware features y (Fig. 4.4). Our network passes all

nodes through three GraphSAGE convolution layers (Hamilton et al., 2017), which compute new

node features based on learned aggregations of neighbor node features. Each convolution layer is

followed by a pooling and unpooling layer based on learned edge collapses (Diehl, 2019). In early

experiments, we found this pooling + unpooling scheme to perform better than architectures that

used only convolution. Finally, the outputs of all convolution layers and all pooling layers are

concatenated to form a multi-scale feature vector y for each node.

Node and edge attribute prediction: The per-node features y are fed to multi-layer perceptrons

(MLPs) for predicting node attributes. For edge attributes, the y’s for both edge endpoints are

concatenated and fed to the MLP.

4.4.3 Training

We train the graph labeling network on synthetic 3D models from PartNet-Mobility (Xiang et al.,

2020). We first pre-train the node feature PointNet by training it as the encoder in an autoencoder

framework; this network trains for 500 epochs using Nesterov SGD with a learning ratte of 10−3.

The graph labeling network trains for 30 epochs using Adam with a learning rate of 10−3. Training

both networks takes 1.5 - 3 hours on a machine with a NVIDIA RTX 2080 Ti, 6-core Intel i7 CPU,

and 32GB of RAM

4.5 Results

Here we evaluate our method’s ability to infer kinematic hierarchies via controlled experiments and

a demonstration on a real-world robot. For experiments on synthetic PartNet-Mobility objects,

we use the same train/test splits introduced by Mo et al. (2019), restricted to models with valid

kinematic trees. We augment the training and test datasets by uniformly sampling articulated poses

within each part’s ground truth range of motion. We train on 249 storage furniture models, 22

lamp models, and 53 chair models; we test on 69, 8, and 12 models, respectively. We use 18 pose

augmentations for training and testing.
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Figure 4.5: Examples of part segmentation for both Clean and Noisy point clouds.

4.5.1 Part Segmentation

Table 4.1 summarizes the performance of our part segmentation method on synthetic 3D objects.

We use an established instance segmentation metric (Mo et al., 2019): we compute the intersection

over union (IoU) of each predicted part segment with its closest ground truth part segment, classify

it as a “correct” prediction if the IoU is over 0.5, and then compute the mean average precision

of these classifications across all parts in all test set objects. We compute this metric under two

conditions: (1) Clean point clouds sampled directly from the surface of PartNet-Mobility 3D meshes,

(2) Noisy point clouds generated by simulated Kinect scans of PartNet-Mobility models as described

in Section 4.3. Fig. 4.5 shows some qualitative examples.

The network reliably segments parts in clean point clouds, and this performance degrades slightly

in the noisy depth scans. The lamp category is especially challenging due to the small number of

models present in the training data.

Table 4.1: Part segmentation on PartNet-Mobility (mAP @ 0.5 IoU)

Category Clean Noisy

Storage Furniture 0.922 0.907
Lamp 0.695 0.593
Chair 0.824 0.811
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4.5.2 Kinematic Structure Prediction

We next evaluate our graph neural network module’s ability to infer the structure of an object’s

kinematic hierarchy. To assess this performance, we use four metrics:

• Etype: % of nodes whose motion type is mis-predicted.

• Eexist: % of edges whose existence is mis-predicted.

• Edir: % of edges whose direction is mis-predicted.

• Eroot: % of models whose root node is mis-predicted.

• Tree F1: the F1 score of the predicted kinematic hierarchy with respect to the ground truth

one. Precision is computed via top-down traversal of the predicted tree, counting the fraction of

nodes and edges which match their counterparts in the ground truth tree. Recall computation

uses the same procedure, with the roles of the predicted and ground-truth trees reversed.

Table 4.2 summarizes the performance of our network on Clean and Noisy synthetic data. As

expected, the GNN evaluated on clean data with ground truth instance segmentation preforms well

on all classes. Even in the case where Edir is relatively high for the lamp and chair class the negative

log probability pairwise matrix complemented with MST is able to construct trees with a negligible

amount of error. On noisy data, performance again degrades slightly. Fig. 4.6 shows some qualitative

examples.

Table 4.2: Kinematic structure error for different data types

Category Data Type Etype ⇓ Eexist ⇓ Edir ⇓ Eroot ⇓ Tree F1 ⇑

Storage Furniture
Clean 1.16 1.2 2.22 0 99.73
Noisy 0.39 2.03 29.04 0 99.02

Lamp
Clean 0.47 4.63 31.11 0.23 98.24
Noisy 0 0.98 17.24 0.92 97.82

Chair
Clean 0.08 0.1 39.64 0 99.77
Noisy 0.24 0.99 41.73 0 98.67
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Figure 4.6: Examples of predicted kinematic hierarchies for both Clean and Noisy point clouds. All
examples shown use ground truth part segmentations.

4.5.3 Robot Demo

Finally, we demonstrate that the model enables a Kinova Movo robot to manipulate novel object

instances. A storage furniture object was densely scanned using the robot’s Kinect sensor by driv-

ing the robot around the object. Pointclouds were merged using RTAB-Map (Labbé and Michaud,

2019), which performed SLAM using the robot’s odometry, base laser scans, and visual data. The

object was manually segmented from the scene and assigned a frame of reference. Our model suc-

cessfully performed part segmentation and kinematic hierarchy inference; predictions are visualized

in Figure 4.1. Motion model predictions, i.e. the axes of rotation, were generated using the mo-

tion type predictions from the estimated kinematic tree and a heuristic: the axes of rotation were

determined from the intersection of part bounding boxes and oriented in the world vertical direction.

Using the predicted tree and motion models, the agent is able to plan and execute interactions

with the object. We fixed a grasp on the relevant object part, and ran a simple controller which

moves the end-effector along the predicted direction of motion toward a goal configuration. Fig. 4.7

shows frames from a video of the robot scanning the cabinet and closing one of its doors.
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Scanning

Interacting

Figure 4.7: Frames from a video demonstrating a robot scanning and then interacting with an
articulated object.

4.6 Conclusion

We presented a perception system that infers kinematic hierarchies for never-before-seen object

instances. Our system infers the moving parts of an object and the kinematic couplings between

them. To infer parts, it uses a point cloud segmentation neural network. To infer kinematic couplings,

it uses a graph neural network to predict the existence, direction, and type of edges (i.e. joints) that

relate the inferred parts. We train these networks using simulated scans of synthetic 3D models. In

experiments, our system inferred accurate kinematic hierarchies for simulated scans of 3D objects

and scans of real-world objects gathered by a mobile robot.

Training our neural networks requires collections of part-segmented, kinematically-annotated

3D models. Such data is not widely available, as it requires nontrivial human annotation effort.

Recent computer vision research has demonstrated the possibility of segmenting 3D models with

limited or even no human supervision (Chen et al., 2019; Zhu et al., 2020a). The development of
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similar techniques for identifying articulated motion within 3D shapes would allow our methods to

be applied to any object type for which unsegmented 3D models are available (Xu et al., 2020a).

Our approach treats segmentation and graph labeling as separate sub-problems, but one can

argue that they are coupled: parts determines what motions are possible, and whether a motion is

possible determines whether a proposed part is a good one. Accordingly, the Shape2Motion system

found benefits in jointly segmenting and predict motion parameters for parts (Wang et al., 2019b). It

is possible that jointly segmenting and predicting kinematic hierarchy could confer similar benefits.

We focused on inferring the structure of an object’s kinematic hierarchy. Our system could be

combined with one that focuses on kinematic motion parameter prediction (Wang et al., 2019b; Yan

et al., 2019; Yi et al., 2018) to produce a complete mobility perception system.

In the preceding chapters, we have developed systems capable of inferring kinematic hierarchies

and their associated models. We used these models and simple motion planning algorithms to

compute approximate policies for interacting with the objects. However, these policies are strictly

kinematic: they fail to reason about object dynamics or high-dimensional observations like vision or

touch data. To develop more performant manipulation controllers for these sorts of tasks, we now

turn our attention to the problem of learning motor control, leveraging these kinematic models to

perform intelligent exploration.



Chapter 5

Bootstrapping Motor Skill

Learning with Motion Planning

The following chapter appeared as a conference paper in the 2021 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, co-authored with Eric Rosen.

5.1 Introduction

Robots require motor policies for interacting with objects in their environment. Reinforcement

learning (RL) provides a framework for acquiring motor policies without explicitly modeling the

unknown world, but model-free RL methods like policy search (Deisenroth et al., 2013) have high

sample-complexity, and often fail to learn a reasonable policy from random initialization. Supervised

approaches for policy learning like Learning From Demonstration (LfD) (Argall et al., 2009) can

encode human prior knowledge by imitating expert examples, but do not support optimization in

new environments. Combining RL with LfD is a powerful method for reducing the sample complexity

of policy search, and is often used in practice (Levine and Koltun, 2013; Rajeswaran et al., 2017;

Cheng et al., 2018; Schaal, 1999). However, this approach typically requires a human demonstrator

for initialization, which fundamentally limits the autonomy, and therefore utility, of a robot that

may need to acquire a wide range of motor skills over its operational lifetime. More recently, model-

based control techniques (including Model Predictive Control (Pan et al., 2017) and LQR (Levine

43
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and Koltun, 2013)) have been proposed as exploration methods for policy search; these methods

still require human demonstrations or complete dynamic models of both the robot and every object

in the scene.

We propose the use of kinematic motion planning to initialize motor skill policies. While previous

work has leveraged sample-based motion planners for learning motor skills (Tosun et al., 2019;

Jurgenson and Tamar, 2019; Jiang et al., 2019), they only focus on either free-space motions or do

not learn a closed-loop controller. To our knowledge, this is the first use of motion planning to

provide initial demonstrations for learning closed-loop motor skill policies by leveraging estimated

object kinematics.

We show that given a (potentially approximate, and readily estimated) kinematic description of

the environment and the robot, off-the-shelf motion planning algorithms can generate feasible (poten-

tially successful but inefficient) initial trajectories (Figure 5.5a) to bootstrap an object-manipulation

policy that can subsequently be optimized using policy search (Figure 5.5b). This framework en-

ables the robot to automatically produce its own demonstrations for effectively learning and refining

object manipulation policies. Our work enables the robot to exploit kinematic planning to realize

the benefits of an initial demonstration fully autonomously.

To evaluate our method, we used two different motor policy classes (Dynamic Movement Primi-

tives (DMPs) (Ijspeert et al., 2002) and deep neural networks (Levine et al., 2016)). We compared

bootstrapping with motion planning against learning from scratch in three simulated experiments,

and against human demonstrations in real hardware experiments. We show that motion planning

using a kinematic model produces a reasonable, though suboptimal, initial policy compared to a

supervised human demonstration, which learning adapts to generate efficient, dynamic policies that

exploit the dynamics of the object being manipulated. Our method is competitive with human-

demonstrated initialization. It serves as a suitable starting point for learning, and significantly

outperforms starting with a random policy. Taken together, these results show that our method is

competitive with human demonstrations as a suitable starting point for learning, enabling robotics to

efficiently and autonomously learn motor policies for dynamic tasks without human demonstration.
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5.2 Bootstrapping Skills with Motion Planning

Our methodology is inspired by how humans generate reasonable first attempts for accomplishing

new motor tasks. When a human wants to learn a motor skill, they do not start by flailing their

arms around in a random fashion, nor do they require another person to guide their arms through

a demonstration. Instead, they make a rough estimate of how they want an object to move and

then try to manipulate it to that goal. For example, before being able to drive stick shift, a human

must first learn how to manipulate a gear shifter for their car. Just by looking at the gear shifter,

humans can decide (1) what they should grab (the shaft), (2) where they want the shaft to go

(positioned in a gear location), and (3) how the shaft should roughly move throughout the action

(at the intermediate gear positions). Similarly, a robot that has a good kinematic model of itself,

and a reasonable kinematic model of the object it wishes to manipulate, should be able to form a

motion plan to achieve the effect it wishes to achieve.

That plan may be inadequate in several ways: its kinematic model may be inaccurate, so the plan

does not work; object dynamics (like the weight of a door, or the friction of a joint) may matter, and

these are not represented in a kinematic model; or a feasible and collision-free kinematic trajectory

may not actually have the desired effect when executed on a robot interacting with a real (and

possibly novel) object. These are all the reasons why a novice driver can immediately shift gears,

but not very well. But such a solution is a good start ; we therefore propose to use it to bootstrap

motor skill learning.

Our approach, outlined in Figure 5.1, leverages the (partial) knowledge the robot has about its

own body and the object it is manipulating to bootstrap motor skills. Our method first assumes

access to the configuration space of the robot, denoted as CR, as well as its inverse kinematics function

f−1
R . This assumption is aligned with the fact that the robot often has an accurate description of

its own links and joints and how they are configured during deployment. However, the world is

comprised of objects with degrees of freedom that can only be inferred from sensor data. Therefore,

our approach only assumes access to estimated kinematics of the object to be manipulated, in the

form of configuration space CO and forward kinematics fO. Recent work has shown that estimating

these quantities for novel objects from sensor data in real environments is feasible (Abbatematteo

et al., 2019; Li et al., 2020), though state-of-the-art estimates still include noise.

Finally, our approach assumes that the task goal can be defined in terms of kinematic states
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Figure 5.1: System overview illustrating our proposed framework for generating demonstrations
with a motion planner and subsequently performing policy search. The dashed box contains the
steps from Algorithm 2.

of the robot and environment. Examples of such tasks include pick-and-place, articulated object

manipulation, and many instances of tool use. (Note that this requirement cannot capture reward

functions defined in terms of force, for example exerting a specific amount of force in a target

location.) Such a goal, together with object and robot kinematics, enables us to autonomously

generate useful initial trajectories for policy search.

Our approach is outlined in Algorithm 1, and can broken down into five main steps: 1) collect

initial trajectories from a motion planner using estimated object kinematics, 2) fit a policy with

these initial trajectories, 3) gather rollouts to sample rewards for the current policy based on the

kinematic goal, 4) update the policy parameters based on the actions and rewards, 5) repeat steps

3-4.
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Algorithm 1 Planning for Policy Bootstrapping

1: procedure PPB(CR, f
−1
R , CO, fO, q

∗
O)

2: D ← ∅
3: for 0 to N do
4: D ← D∪ InitialMPDemos(CR, f

−1
R , CO, fO, q

∗
O)

5: end for
6: θ ← FitPolicy(D0, ..., DN )
7: for 0 to E do
8: T0, .., Tn ← Rollout(π, θ, q∗O)
9: θ ← UpdatePolicy(T1, .., Tn, θ)

10: end for
11: end procedure

Algorithm 2 Initial Motion Plan Demos

1: procedure InitialMPDemos(CR, f
−1
R , CO, fO, q

∗
O)

2: TO ← MotionPlanner(CO, q
∗
O)

3: g ← EstimateGrasp(CO,fO)
4: eepath← GraspPath(TO, CO, fO, g)
5: TR ← MotionPlanner(CR, eepath, f

−1
R )

6: return TR
7: end procedure

5.2.1 Fitting a Policy to a Demonstration

After collecting initial demonstrations from the motion planner, D, we can bootstrap our motor

policy by initializing the parameters to the policy θ using any behavioral cloning technique; in

practice, we use Locally Weighted Regression (Schaal and Atkeson, 1998) for DMPs, and maximize

the likelihood of the demonstration actions under the policy for neural networks.

5.2.2 Policy Search with Kinematic Rewards

To improve the motor policies after bootstrapping, we can perform policy search based on the given

(kinematic) reward function. Specifically, we choose a number of epochs E to perform policy search

for. For each epoch, we perform an iteration of policy search by executing the policy and collecting

rewards based on the goal q∗O. We define our reward functions using estimated object states qO and

goal states q∗O, and add a small action penalty.
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5.3 Experiments

The aim of our evaluation was to test the hypothesis that motion planning can be used to initial-

ize policies for learning from demonstration without human input. We tested this hypothesis in

simulation against learning from scratch, and on real hardware, against human demonstrations, on

three tasks: microwave-closing, drawer-opening, and t-ball. We note that we do not show asymp-

totic performance because our emphasis is on learning on real hardware from a practical number

of iterations. All the elements of the motion planner—state sampler, goal sampler, distance met-

rics, etc.—are reused between problems without modification. We chose these two different motor

policy classes because they represent opposite ends of the policy spectrum: deep neural networks

are extremely expressive in what policies they can represent, but are extremely sample inefficient

compared to structured motor primitives like DMPs, which are more structured and less expressive.

5.3.1 Simulation Experiments

We used PyBullet (Coumans et al., 2013) to simulate an environment for our object manipulation

experiments. We used URDFs to instantiate a simulated 7DoF KUKA LBR iiwa7 arm and the

objects to be manipulated, which gave us ground-truth knowledge of the robot and object kinematics.

For all our simulated experiments, we compared implementations of our method against starting with

a random policy.

For all three tasks, the state was represented as st = [qR, qO]
T where qR denotes robot configu-

ration and qO denotes object configuration. The action space A was commanded joint velocity for

each of the 7 motors. The reward at each timestep rt was given as:

rt = −c ||q∗O − qO||22 − aTt Rat, (5.1)

where qO denotes the object state at time t, q∗O denotes desired object state, and at denotes the

agent’s action. We set c = 60 and R = I × 0.001 for all experiments. As such, maximum reward is

achieved when the object is in the desired configuration, and the robot is at rest.

Our first simulated task was to close a microwave door, which consisted of three parts: a base, a

door, and a handle. The pose of the handle was used for the EstimateGrasp method in Algorithm

2. The robot was placed within reaching distance of the handle when the microwave door was in an
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(a) Microwave closing (MLP) (b) Drawer opening (DMP)

(c) T-ball (DMP)

Figure 5.2: Simulation Results. a) Comparison of our method optimized with DAPG against
Natural Policy Gradient starting with a random policy in a microwave closing task using Gaussian
multi-layer perception policies. b) Comparison of our method against PI2-CMA starting with a
random policy in a drawer opening task with DMP policies. c) Our method compared with PI2-
CMA with a initially random policy in t-ball with DMP policies. Results are shown as mean and
standard error of the normalized returns aggregated across 20 random seeds.

open position, but was too far to reach the handle in its closed configuration. Thus, the agent was

forced to push the door with enough velocity to close it. We used Gaussian policies represented as

multi-layer perceptrons with two hidden layers of sizes (32,32) in this experiment. The randomly

initialized policy was optimized with natural policy gradient (Kakade, 2002). Ten demonstrations

were generated by perturbing the start state and initial kinematic plan with Gaussian noise. The

behavior cloning was performed by maximizing likelihood over the demonstration dataset for 10

epochs. Our pretrained policy was optimized using Demo Augmented Policy Gradient (Rajeswaran

et al., 2017), which essentially adds the behavior cloning loss to the natural policy gradient loss,
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(a) (b) (c)

Figure 5.3: Opening a Drawer experiment in simulation, where the robot needs to apply enough
force on the handle to slide the drawer open. (a) An image of the starting pose of the robot arm
and drawer. When learning from scratch, the robot random explores for many steps before grasping
the handle. (b) An image of the robot using our method to produce an initial demonstration from
a motion planner based on the drawer’s kinematics. This demonstration guides the robot to the
handle, but ignores the dynamics of the heavy drawer which leads to failure. (c) An image after the
robot has bootstrapped a skill with our method. The final policy learns to leverage the dynamics to
precisely grasp the handle and then produce a strong pulling force to open the drawer completely.

annealing it over time. This ensures that the agent remains close to the demonstrations early in

learning, but is free to optimize reward exclusively as learning progresses. Results are shown in

Figure 5.2a.

The second simulated task was to open a drawer (Figure 5.3). This task required the agent to

grasp the drawer’s handle and pull the drawer open.

Again, the pose of the object’s handle was used for EstimateGrasp method in our algorithm. In

this experiment, we used DMP policies. The weights, goals, and speed parameters of the policies

were optimized using PI2-CMA (Stulp and Sigaud, 2012). We used 32 basis functions for each of

the DMPs. The pretrained policy was initialized using Locally Weighted Regression (LWR) (Schaal

and Atkeson, 1998) with a single demonstration. The results of this experiment are shown in Figure

5.2b.

The third simulated task was to hit a ball off a tee. The ball started at rest on top of the tee.

The pose of the ball was used in the EstimateGrasp method. The object state was defined as the

object’s y position relative to its initial pose. This is a poor initialization for a hitting task because

it is based only on the ball’s kinematics and ignores the dynamics involved in swinging, resulting

in low-return, but it is effective for bootstrapping policy search. This experiment again used DMPs

initialized with LWR and optimized with PI2-CMA. Results of this experiment are visualized in

Figure 5.2c.
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Figure 5.4: Hardware experiment comparing our initialization scheme with human demonstra-
tion. Results are shown as mean and standard error, aggregated across three random seeds.

Across all three tasks, we observe that policies initialized with our method dramatically out-

perform starting learning with a random policy. This confirms our hypothesis that using motion

planning to generate demonstrations significantly speeds the acquisition of motor skills in challenging

tasks like articulated object manipulation and t-ball.

5.3.2 Real-world Experiments

For all our real-world experiments, we used a 7DoF Jaco arm (Campeau-Lecours et al., 2019) to

manipulate objects (Figure 5.5). We used ROS and MoveIt! (Coleman et al., 2014) as the interface

between the motion planner (RRT* (Karaman et al., 2011) in our experiments) and robot hardware.

For all real-world experiments, we compared implementations of our method against bootstrapping

with a human demonstration, which we supplied.1 To collect human demonstrations, we had an

expert human teleoperate the robot with joystick control to perform the task. For all tasks, the state

1We acknowledge this potential bias in expert trajectories, and qualify our decision by only training on human
demonstrations that at least accomplished the task.
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(a) (b)

Figure 5.5: A robot using our method to autonomously learn to close a microwave that is out of
reach. (a) The robot uses a motion planner to generate an initial attempt at closing the microwave
door using a kinematic model of the microwave. The resulting plan is unable to fully close the
microwave door because of the robot’s limited reach. (b) After bootstrapping a motor skill with the
trajectory from (a), the robot learns a motor skill that gives the door a push, exploiting its dynamics
to fully close the microwave.

space, action space, and reward were defined in the same way as in our simulated results (Section

5.3.1). Both experiments used DMP policies initialized with LWR (Schaal and Atkeson, 1998) and

optimized with PI2-CMA (Stulp and Sigaud, 2012) with 10 basis functions for each of the DMPs.

Our first real-world task was to close a microwave door, similar to the one described in our

simulated domain (Section 5.3.1). As in the simulated microwave task, we used the pose of the

handle for the EstimateGrasp method in Algorithm 2, and also the robot was similarly placed such

that it was forced to push the door with enough velocity to close. We placed an AR tag on the

front-face of the microwave to track the microwave’s state using a Kinect2. Results are shown in

Figure 5.4. The behavior is visualized in Figure 5.5.

We observe that the human demonstration is better than the one produced by the motion planner,

which we credit to the fact that the motion of the door was heavily influenced by the dynamics of

the revolute joint which the motion planner did not account for. Nonetheless, both policies converge

to a similar final performance, with our method converging slightly faster. Note the importance of

the policy search: the motion planner alone is insufficient for performing the task efficiently.

Our second real-world task was to hit a ball off a tee as far as possible (Figure 5.6). Similar to

our simulated task, the ball started at rest on top of the tee. The pose of the ball was used in the

EstimateGrasp method. The object state was defined as the object’s y position relative to its initial

pose. We placed scotchlite-reflective tape on the surface of the ball and conducted our experiments
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(a) Human Demonstration (b) Bootstrapped from (a)

(c) Motion Plan Demonstration (d) Bootstrapped from (c)

Figure 5.6: Real-world Ball Hitting. Images comparing bootstrapping motor skills with a human
demonstration vs. a motion planner on a real-world robot hitting a ball off a tee. In both cases,
the bootstrapped motor skill outperforms the initial demonstration. (a) A demonstration provided
by a human teleoperating the robot. (b) A motor skill bootstrapped by the human demonstration.
(c) A demonstration provided by a motion planner. (d) A motor skill bootstrapped by the motion
planner demonstration.

within an OptiTrack motion-capture cage to track the object pose. We observe that when using

a motion planner to hit the ball, it moves the bat in a linear motion to make contact, therefore

transferring only horizontal motion to the ball. We qualitatively observe that during policy search,

the robot learns a dynamic policy that accounts for the dynamics of the ball by applying force under

the ball to “scoop” the ball upwards and forwards.

5.4 Related Work

To our knowledge, our method is the first to use an object’s estimated kinematics in conjunction

with a known robot model to bootstrap motor policy learning.

While classic robot motor learning papers (Atkeson and Schaal, 1997) leverage the known kin-

odynamics of the robot, they do not discuss kinematics of external objects or grasp candidates to

bootstrap motor policies for object manipulation. We emphasize that we cannot form dynamic plans
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in the problem setting we are interested in: objects with unknown a priori dynamics.

Recently, Model-Predictive Control (MPC) has been used in the context of imitation learning

and reinforcement learning to address the high sample complexity of policy search (Pan et al.,

2017). These approaches require a priori object dynamics, or human demonstrations to fit learned

models; in contrast, our approach requires only object kinematics, which are much more readily

estimated from visual data at runtime (Abbatematteo et al., 2019; Li et al., 2020). As such, our

approaches enables the learning of manipulation skills to be more autonomous than existing MPC-

based methods. Tosun et al. (2019) proposed a neural network model for generating trajectories

from images, using a motion planner during training to enable the robot to generate a trajectory

with a single forward pass at runtime. While this approach uses a motion planner for behavior

cloning, it stops short of optimization to improve the resulting policy. By contrast, our method

uses object kinematics to produce initial trajectories, while Tosun et al. (2019) only use the robot’s

kinematic model, which is insufficient when the task is to manipulate an object to a specific joint

configuration.

Kurenkov et al. (2019) proposed training an initially random RL policy with an ensemble of

task-specific, hand-designed heuristics. This improves learning but the initial policy is still random,

yielding potentially unsafe behavior on real hardware, and delaying convergence to a satisfying

policy. By contrast, we choose to initialize the policy with demonstrations from a kinematic planner,

ensuring feasibility, safety, and rapid learning. Moreover, we argue that motion planning is the

principled heuristic to use to accelerate learning, as it is capable of expressing manually programmed

heuristics like reaching and pulling. Finally, our approach can use the existing estimated object

kinematics to provide a principled reward signal for model-free reinforcement learning.

Recently, residual reinforcement learning approaches have been developed which learn a policy

superimposed on hand-designed or model-predictive controllers (Silver et al., 2018; Johannink et al.,

2019). Our method is compatible with these approaches, where demonstrations from the motion

planner can be used as a base policy on top of which a residual policy can be learned based on

kinematic rewards. These methods typically suffer from the same limitations as MPC-based methods

mentioned above.

Guided Policy Search (GPS) (Levine and Koltun, 2013) uses LQR to guide policy search into high-

reward regions of the state-space. The models employed are fundamentally local approximations,

and thus would benefit greatly from a wealth of suboptimal demonstrations from the outset (as
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made evident by Chebotar et al. (2017)). GPS is one of the state-of-the-art algorithms we expect

to be used within our framework as the policy search implementation (Section 5.2.2). A critical

distinction between our work and GPS is the notion of planning trajectories in object configuration

spaces and reasoning about grasp candidates to achieve a desired manipulation. This is done using

information available a priori, and thus is immediately capable of generating high-value policies,

whereas GPS estimates dynamics models given observed data (obtained either from demonstration

or random initialization). In the absence of a human demonstrator, our method would provide

far more useful data at the outset of learning than running a naively initialized linear-Gaussian

controller (as evidenced by our comparisons to random initialization).

Most similar to our line of work are those that use sample-based motion planners for improved

policy learning. Jurgenson and Tamar (2019) harness the power of reinforcement learning for neural

motion planners by proposing an augmentation of Deep Deterministic Policy Gradient (DDPG)

(Lillicrap et al., 2015) that uses the known robot dynamics to leverage sampling methods like

RRT* to reduce variance in the actor update and provide off-policy exploratory behavior for the

replay buffer. However, Jurgenson and Tamar (2019) are only able to address domains where they

can assume good estimates of the dynamics model, such as producing free-space motions to avoid

obstacles. Our setting, in contrast, focuses on object manipulation, where dynamics are not readily

available, but are critical for learning good policies. Jiang et al. (2019) address learning to improve

plans produced by a motion planner, but do not bootstrap closed-loop policies. Motion planners

are insufficiently expressive to leverage the dynamics in object-manipulation tasks, especially in the

presence of unknown dynamics, and traditionally are unable to handle perceptual data like RGB

images. Our method, on the other hand, enables motion planning to bootstrap policies that are

more expressive than the original planner.

5.5 Conclusion

We have presented a method that uses kinematic motion planning to bootstrap robot motor policies.

By assuming access to a potentially noisy description of the object kinematics, we are able to

autonomously generate initial demonstrations that perform as well as human demonstrations—but

do not require a human—resulting in a practical method for autonomous motor skill learning.
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Our methodology is agnostic to the motion planner, motor policy class, and policy search algo-

rithm, making it a widely applicable paradigm for learning robot motor policies. We demonstrate

the power of our methodology by bootstrapping different policy classes with demonstrations from

humans and a motion planner, and learn motor policies for three dynamic manipulation tasks: clos-

ing a microwave door, opening a drawer, and hitting a ball off a tee. Our framework is the first to

enable robots to autonomously bootstrap and improve motor policies with model-free reinforcement

learning using only a partially-known kinematic model of the environment.

The preceding chapters have developed intelligent exploration methods for autonomous mobile

robots by exploiting structure in perceptual spaces. We now shift our focus to exploiting structure

present in behavior itself, aiming to develop a policy class for contact-rich manipulation skill learn-

ing that builds on the impedance control scheme described previously. The next chapter explores

Riemannian Motion Policies as a potential candidate for a safer policy class. Chapter 7 explores

additional structure in skill learning that we can exploit for efficiency and compositionality, and

proposes a different formulation of a safety controller.



Chapter 6

RMPs for Safe Impedance Control

in Contact-Rich Manipulation

The following appeared as a conference paper in the 2022 IEEE International Conference on Robotics

and Automation in Philadelphia, PA. The work was primarily authored by Seiji Shaw under my

supervision.

6.1 Introduction

Learning autonomous contact-rich manipulation behavior is a critical challenge for robotics; indeed,

the very purpose of a robot is often to make contact with the environment in order to manipulate

it. However, contact-rich behavior is challenging—robots must be able to reason about sudden

constraints when contacting target objects and model the unknown dynamics of the objects they

are manipulating, all the while respecting joint limit and collision constraints.

To address these issues, Mart́ın-Mart́ın et al. (2019) discuss the advantages of formulating the task

in the robot’s end-effector space. They propose the use of variable impedance control in end-effector

space (VICES), which defines the robot’s actions in terms of displacements and compliance of the

end-effector. The VICES commands are then translated back as lower-level torque commands to the

joints in the arm by an operational-space impedance controller (OSC). When training an agent using

reinforcement learning, the policy is trained to output actions in the VICES action-space, directly
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controlling end-effector behavior, and thus can manage the discontinuous mode-changes made at

contact using the compliance component of the space.

While the VICES modality serves as a useful layer of abstraction for learning and transfer,

the agent loses the ability to reason about the configuration of the rest of its arm in relation to

the environment. This can lead to routine hyperextension and collisions during and after training,

which are undesirable and potentially dangerous. The problem of safe variable impedance control

has therefore not yet been solved robustly (Abu-Dakka and Saveriano, 2020).

In this chapter, we study the problem of safely learning contact-rich manipulation behavior. We

present RMP-VICES, a principled way to incorporate well-defined collision and joint-limit avoidance

behavior into the robot’s control system prior to the start of learning. We leverage Riemannian

motion policies (RMPs), which allow a user to specify different behaviors in more convenient ‘task’

manifolds and then synthesize them (Ratliff et al., 2018; Cheng et al., 2021). Most importantly,

RMPs have a mechanism (the Riemannian metric of these task manifolds) for designating the priority

of these behaviors, which can vary based on the current position and velocity of the arm. We

reformulate the VICES impedance controller as an attraction-type Riemannian motion policy, and

synthesize it with pre-defined obstacle avoidance and a joint limit behavior (Cheng et al., 2021).

We verify the efficacy of our approach by demonstrating that RMP-VICES is comparably per-

formant to state-of-the-art learning-based manipulation algorithms while largely preventing unsafe

behavior. We do so by training a 7DOF Kinova Jaco 2 on three different simulated domains and

analyzing the frequency and severity of collision and joint limit events that occur over the course of

learning. Afterwards, we run the trained agents in the same domains with randomly-placed obsta-

cles to evaluate RMP-VICES’s ability to adapt to obstacles not present in training. RMP-VICES

reduces the number of collision by up to ∼ 50% and joint limit events by up to ∼ 90% in all of these

domains with only a moderate impact on task performance.

6.2 Background

6.2.1 Variable Impedance Control in End-Effector Space

Recall the action space VICES (Mart́ın-Mart́ın et al., 2019) that enables us to use end-effector space

(SE(3)) and compliance of the end-effector as the action space of the agent. VICES defines an action

a = (∆x, kppos, k
p
ori) ∈ A = SE(3)×R3×R3, where kppos and k

p
ori are vector representations of stiffness
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matrices in an impedance controller.

In a single timestep, ∆x is composed with the current end-effector position to produce desired set-

points pd and Rd. The corresponding joint torques τ are then computed using Khatib’s formulation

of operation space control (Khatib, 1995, 1987):

τ =JT
pos[Λ

pos[kposp (pd − p)− kposv v]]+ JT
ori[Λ

ori[korip er(Rd, R)− koriv ω]], (6.1)

where Jpos and Jori are the Jacobians associated with the FK map to end-effector position p and

orientation R, Λpos and Λori the corresponding end-effector inertia matrices, and v and ω the velocity

and angular velocity of the end-effector. We compute damping matrices kposv and koriv so that the

system is critically damped relative to given kppos and kpori as chosen by the agent. er is an error on

SO(3) that can be used for impedance controllers (Luh et al., 1980); see section 6.3.2.

The greatest strength and weakness of VICES is that the control signal (actions) a and states

are restricted to the end-effector space, SE(3). While this means that the agent will learn policies

that can be transferred from one robot to another using SE(3) as a layer of abstraction, the policy

is not able to reason about its joint states (and by proxy, the pose of the robot’s links) that lead to

its end-effector configuration to avoid collision.

6.2.2 Riemannian Motion Policies

The Riemannian motion policies framework (RMPs) is a mathematical formalism that decomposes

complex robot motion behavior into individual behaviors specified in more interpretable task spaces

(Ratliff et al., 2018). RMPs enable the controllers to be expressed in their appropriate task spaces

and then manage the transforms and flow of control between those spaces to the robot’s configuration

space, which is where control must ultimately occur. Additionally, they allow us to blend multiple

such controllers to, for example, reach to a point (an attractive controller between the robot’s end-

effector and a target location) while avoiding obstacles (a repulsive or dissipative controller between

the robot’s arm and obstacles in its 3D environment).

RMPs are organized in a tree-like structure—the RMP-Tree—where the root represents the

robot’s configuration manifold Q, and every node represents a task manifold (e.g. SE(3)). The

edges of the tree represent maps from the positions in the parent task space to the child task space

(for an example, see Fig. 6.1). Here, we denote a parent space asM and the ith child space as Ni.
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We will write the map fromM to Ni as ϕi.

Individual component behaviors to be synthesized are represented by maps from position and

velocities to forces at the leaf nodes. If N is a leaf task-space, we notate the behavior map as f(x, ẋ).

The priority of each of these behaviors is specified by a positive-semidefinite tensor that resembles

the Riemannian metric of these task manifolds, which can vary based upon the position and velocity

in that task space. We denote this metric as M(x, ẋ) ∈ Rn×n, where n = dimN , and x ∈ N .

RMP-trees are evaluated in two phases: pushforward and pullback. In pushforward, the current

state of the arm (q, q̇) is propagated through the tree to compute the state in each child manifold.

In pullback, forces fi are evaluated at each child manifold and then synthesized back to compute

the joint accelerations q̈ at that timestep.

Pushforward

LetM be a parent space, and let Ni be one of its child spaces, and let x, ẋ be a computed position

and velocity inM. In pushforward, the corresponding position y and velocity ẏ in N are computed

as y = ϕi(x) and ẏ = Jϕi ẋ respectively, where Jϕi is the Jacobian of task-mapping ϕi.

Pullback

After pushforward is complete, we have position and velocity in each of the leaf task manifolds. We

then must evaluate each policy fi and propagate the force signal back to the configuration manifold.

Given parent manifold M and child leaf manifold Ni, with position yi and velocity ẏi in Ni we

first evaluate ÿi = fi(yi, ẏi) to find the corresponding leaf’s acceleration, and Mi(yi, ẏi) to find the

Riemannian-metric priority tensor. We then compute the corresponding acceleration ẍ and metric

M inM as follows:

ẍ =

n∑
i=1

JT
ϕi
(ÿi −Mi(yi, ẏi)J̇ϕi

ẋ),

M =

n∑
i=1

JT
ϕi
Mi(yi, ẏi)Jϕi

.

We then recursively pullback from the leaf nodes to the root node and find the joint accelerations

by computing q̈ = M†f , where M† is the Moore-Penrose pseudo-inverse of M . This process solves

the least-squares problem that trades off policy outputs with respect to each metric Mi.
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6.2.3 Related Work on RMPs

RMPs build on many earlier methods that decompose behavior into a number of different task

spaces. Nakamura et al. (Nakamura et al., 1987), Sentis et al. (Sentis and Khatib, 2005), and

Coelho and Grupen (Coelho Jr and Grupen, 1997) all propose similar frameworks that decompose

the robot task space in recursively-defined nullspaces. RMPs are formulated in a way that subsume

these methods.

RMPs have been used primarily to guide robot arms through free space in a variety of reaching

and manipulation-based tasks (Li et al., 2021; Mukadam et al., 2020; Lee et al., 2020; Handa et al.,

2020; Kappler et al., 2018). However, none of them perform contact-rich manipulation by training an

agent whose actions are translated into attraction-type behavior in the RMP-tree itself. While not

addressing contact-manipulation problems, Li et al. (Li et al., 2021) introduces RMP2, a framework

that allows an agent to learn with RMPs to accomplish 2D reaching tasks safely using state-of-the-art

deep RL methods.

6.3 RMP-VICES

A naive operational-space controller (e.g. as in VICES (Khatib, 1987)) fails to reason about col-

lision with the environment and violation of the arm’s joint limits. We propose RMP-VICES, an

operational-space controller which translates SE(3) impedance commands from a learned policy to

low level torques that accounts for the geometry of the configuration space and surrounding en-

vironment. We formalize variable-impedance control as an attractor-type RMP, and fuse it with

repulsion-type RMPs based at points sampled from the robot’s arm. The resulting controller blends

the desired policy control with collision avoidance behavior in training and in deployment.

In this chapter, we assume perfect knowledge of the robot arm dynamics and the pose and

geometry of all obstacles in the environment, but neither object nor contact dynamics. The goal of

RMP-VICES is to solve manipulation tasks with comparable performance to VICES but with fewer

obstacle collisions and joint-limit extensions over training and deployment.

6.3.1 Tree Structure

The forward-kinematics (FK) map to the last link of the arm is used to compute the pose of the

end-effector in SE(3). We then perform a selection mapping to decompose SE(3) into R3 and SO(3),
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and define the variable impedance behavior in those spaces. We perform an identity map from the

robot’s configuration space to itself, where we define the joint-limiting behavior as shown in Cheng

et al. (Cheng et al., 2021) and was tuned via experimental validation.

For the purpose of collision avoidance, we sample control points on the links of the arm, and

define distance spaces to each obstacle. Since we conducted training with a 7DOF arm, we need

seven different FK maps from the configuration space to SE(3) for the pose of each individual link

of the arm. From each of the sampled control points, we compute a selection map to R3 and then a

distance map to R for each obstacle, and define collision-avoidance behavior there. A schematic of

the RMP-tree can be seen in Fig. 6.1.

Q joint limit avoidance Q R3 R collision

SE(3) R3 R collision

R3 SO(3)

R collision R3var. imp. attractor SO(3)var. imp. attractor

ϕ7,∗
ϕ6,∗

ϕ1,∗ d1

dk

ep,∗
dn,∗

id

Figure 6.1: The RMP-tree structure used for RMP-VICES. ϕ1, ..., ϕ7 denote FK maps from Q to
each link of the arm, where VICES sits in SE(3). The rest of the RMP-tree is made up to control
points sampled from the link meshes, which are mapped to the shortest-distance space each obstacle
(d1, ..., dn act as signed-distance functions) where collision avoidance is defined. The selection map
from SE(3) to R3 has been omitted.

6.3.2 Impedance Control as Attractor-type RMPs

We formulate impedance controllers as RMP leaves in the R3 and SO(3) task spaces. Both of these

controllers are formulated as attraction-type policies (Ratliff et al., 2018).

Let x ∈ R3 be a position of the end-effector in free space and ẋ be its associated velocity as

computed by the pushforward operation. Let xg ∈ R3 be a desired position. Then the motion

behavior is formulated as a spring-damper attractor-type policy in R3:

f(x, ẋ) = kp(x− xg)− kd(ẋ), (6.2)
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with the associated metric being the identity matrix I. The diagonal matrices kposp and kposd specify

the stiffness of this controller and are set by the trained policy at every timestep.

The attractor in SO(3) is written in a very similar way to the RMP above, except we also must

account for the non-Euclidean topology of SO(3) in the error term. Let r ∈ SO(3) and ω be the end-

effector’s current orientation and angular velocity, and rg be the desired orientation. We represent

r, rg ∈ SO(3) as rotation matrices, i.e. r = [rx, ry, rz] and rg = [rgx, rgy, rgz]. We then use the same

error term on SO(3) from VICES:

er(r, rg) =
1

2
(rx × rxg + ry × ryg + rz × rzg) . (6.3)

This error is equivalent to the sine of the angle to rotate r to rg about a single axis (Luh et al.,

1980). We then define the impedance controller using this error:

f(r, ω) = korip · er(r, rg)− korid · ω, (6.4)

where kp, kd are the stiffness and damping coefficients respectively. As before, the metric associated

with this attraction-type policy is the identity I.

It is important to note that removing the obstacle-avoidance and joint-limit policies from the

RMP-tree reduces the controller to VICES (Ratliff et al., 2018; Mart́ın-Mart́ın et al., 2019).

6.3.3 Collision Avoidance RMPs

For both types of obstacles, we use the signed-distance function to map the position of the control

point sampled on the arm to the distance space between the point and the obstacle. We define the

Riemannian metric m(x, ẋ) ∈ R of this 1-dimensional space to be the following expression:

m(x, ẋ) =
(max{ẋ, 0})2

x4
. (6.5)

This metric was derived via experimental validation. As described in (Ratliff et al., 2018), the

collision policy will only activate and strengthen if the control point is moving towards the obstacle.

For both planar and spherical collision-avoidance behaviors, we do not provide a repulsive signal but

a damping term (f(x, ẋ) = ηẋ, for some damping coefficient η). As Bylard et al. (2021) observe,

using only the Riemannian metric and a dissipation function to reduce the movement towards the
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obstacle to generate collision-avoidance behavior reduces the likelihood of the arm to trap itself in

local-minima.

6.3.4 Integrating Policy Actions in the RMP-VICES Controller

In an MDP formulation of a manipulation task, our state space will always be a superset of SE(3)×

Sobj , where SE(3) is the space of end-effector pose and Sobj is the space of states of the manipulated

object. An action will be a tuple (∆x, kposp , korip ) ∈ SE(3) × R3 × R3, where ∆x is a displacement

in SE(3) for the next goal pose and kposp and korip are the stiffness coefficients for the impedance

controllers (kd is computed so the impedance controllers are critically-damped). The policy π will

be sampled in pushforward and used to update kposp , korip , kposd , korid , and rg, and xg in eqs. 6.2 and

6.4 in the RMP-tree on every timestep.

After the pullback stage of the RMP, we obtain a corresponding joint acceleration q̈ given by

the synthesis of the end-effector impedance control and collision avoidance behavior. To convert q̈

into joint torques, we multiply by the inertia matrix of the arm in joint space and compensate for

gravity and Coriolis forces.

6.4 Experiments

We test and verify the efficacy of RMP-VICES on the trajectory-following and door-opening domains

constructed in Martin-Martin Mart́ın-Mart́ın et al. (2019) and an additional block pushing domain

we developed. In each simulated domain, we first train VICES and RMP-VICES in an environment

with no additional obstacles to evaluate any negative impact the RMP-tree has on learning efficiency.

We also record the force of all collisions of the arm with objects in the workspace to understand the

severity of collisions events using VICES and RMP-VICES. Collision and joint-limit events incur

a penalty in the reward function and termination of the episode (but an ablation on these two

properties showed that they were not essential for effective training). Afterwards, we perform 100

rollouts with the learned policy in each domain with two randomly placed spherical obstacles and

record the force of any collision events to verify the adaptability of each algorithm to obstructions

not seen during training.

All simulated experiments were conducted in Robosuite (Zhu et al., 2020b). The agent was given

a stochastic policy parameterized by two fully-connected layers of 64 nodes with tanh activations



65

and optimized using PPO, as done in VICES. Our PPO implementation is based on the code written

for OpenAI’s SpinningUp (Achiam, 2018). In each domain, each episode was given a length of 1024

steps, with 4096 steps per epoch. The policy network was initialized with random weights (10 seeds)

and was trained for 367 epochs ( 1.6× 106 training steps).

6.4.1 Environments

Trajectory-Following

We randomly place four via points in the workspace, and specify an order in which the robot end-

effector must traverse through them. As in VICES, the state of the agent is represented by the pose

and the velocity of the end-effector, the position of each via-point, and whether each via-point has

been checked. For the rollouts after training, we randomly generate two spherical obstacles with a

radius of 5 cm in the bounding volume that is used to generate the via-points. We ensure that no

obstacles overlap with a via-point so that the task still has a guaranteed solution.

Door-Opening

The RMP-tree is initialized with two plane collision avoidance policies to avoid the panel of the door

and the surface of the table. For the rollouts after training, we generate two spherical obstacles in a

bounding volume placed at a distance of front of the door to ensure that it can still swing open for

task completion.

Block-Pushing

We construct a domain where the robot must push a block across a table to a goal position. The

state includes the end-effector’s pose and distance to the block as well as the distance between the

block and the goal position. The reward function gives a small shaped reward that depends on the

distance between the end-effector and the goal, and a larger shaped reward between the cube and

the goal:

rmain(dh2c, dc2g) =rh2c ∗ (1− tanh (20dh2c))+

rc2g ∗ (1− tanh (20dc2g)),

(6.6)

where dh2c, dc2g are the distance form the hand to the cube, and distance from the cube to the goal

respectively. rh2c and rc2g are the maximum rewards made to provide incentive for the agent to
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bring the end-effector to the cube, and the cube to the goal, respectively.

6.5 Results

(a) Traj-follow., performance (b) Trajectory-follow., collisions (c) Trajectory-follow., joint limits

(d) Door-opening, performance (e) Door-opening, collisions (f) Door-opening, joint limits

(g) Block-pushing, performance (h) Block-pushing, collisions (i) Block-pushing, joint limits

Figure 6.2: Average reward, collision, and joint limit performance of VICES and RMP-VICES over
the course of training on the trajectory-following (6.2a,6.2b,6.2c), door-opening (6.2d,6.2e,6.2f), and
block-pushing domains (6.2d,6.2e,6.2f). When integrating the average curves for joint limits and
collision avoidance behaviors, we see that RMP-VICES outperforms VICES in every domain. Percent
decrease in collision and joint limit rates, respectively: trajectory-following: N/A%, 90.5%; door-
opening: 39.8%, 90.7%; block-pushing: 54.6%, 93.2%.
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Figure 6.3: Regularly-timed stills of a single rollout of VICES (top) and RMP-VICES (bottom)
after training is complete.

6.5.1 Safety During Training

In the trajectory-following task, RMP-VICES has far fewer joint-limit events than VICES (Fig. 6.2c)

throughout training. Furthermore, RMP-VICES learns more sample-efficiently than just VICES

alone (Fig. 6.2a). Since violating a joint limit causes episode termination, RMP-VICES has access

to more viable data earlier in training, which accelerates the agent’s ability to learn the task.

In the door-opening task, we see that while RMP-VICES avoids collision better than VICES

(figs. 6.2e, 6.4a), the agent trained with RMP-VICES learns with worse overall performance (Fig.

6.2d). However, RMP-VICES is significantly safer in guiding the robot away from collision avoidance

behavior. After reviewing several rollouts of each policy (Fig. 6.3), we see that the policy learns a

behavior that keeps the robot’s pose largely the same with the elbow pointing straight up, which

the RMP-VICES joint-limit and collision-avoidance policy represses. As a result, the RMP-VICES

controller first pitches the elbow downward, and then opens the door. Since we give a dense reward

that increases with door angle, the RMP-VICES agent obtained a lower average reward in VICES.

However, the RMP-VICES policy is a safer behavior than the one learned by VICES alone, since

the VICES behavior is prone to collision with the door (Fig. 6.3). This problem can be addressed

with better tuning of the joint-limit policy or by learning the Riemannian metric (Li et al., 2021).

In the block-pushing task, we see that RMP-VICES starts with better joint-limiting performance

at the beginning of training figs. 6.2h 6.2i. While VICES performs slightly better than RMP-VICES
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(a) Door-open. (b) Block-push.

(c) Traj-follow. (d) Door-open. (e) Block-push.

Figure 6.4: Severity of collision events in training (a,b), and in environments with randomly gener-
ated obstacles (c-e).

in efficacy of learning, RMP-VICES is much more performant in collision avoidance throughout

training.

6.5.2 Deployment in Environments with Generated Obstacles

For each experiment, we choose the best performing seeds from the VICES and RMP-VICES agent

from each domain, and played through 100 episodes with randomly-generated spherical obstacles in

the environment. The size and location of the bounding volumes used for each domain were chosen

as areas where the arm would frequently pass through to the solve the task. Table 6.1 gives an

aggregation of the performance of VICES and RMP-VICES from this set of experiments. See Fig.

6.5 in the for visualizations of all three environments for a single rollout instance.

Relative to performance in training, we see a drop in performance in all tasks. This makes

intuitive sense because neither the VICES nor RMP-VICES policies experienced these obstacles

before training. RMP-VICES, in all tasks, collides less frequently than VICES. While we do see a
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(a) Traj-follow. env. (b) Door-open. env. (c) Block-push. env.

Figure 6.5: Instances of task environments with randomly-generated obstacles (red spheres).

slight drop in performance in average reward, it is important to note that the success of the agent

must be measured by its efficacy its ability to remain safe while completing the task.

It is clear that the agent trained on RMP-VICES exploits the geometric prior given by the

collision-avoidance RMPs for more safe behavior. An agent trained with VICES alone has no

obvious way to incorporate this information, and the arm moves through the space blindly without

adjusting its trajectory to avoid the new obstacles in its path.

Furthermore, we see that RMP-VICES reduces the impact of collision between the arm and

its surrounding environment. Here, we see that RMP-VICES in these domains exhibits a sharper

distribution about 0N (Fig. 6.4).

Task Avg. Reward Coll. Jnt Lim.

VICES
Traj-follow. 7864± 1.167× 104 56 44
Door-open. 1703± 1.948× 103 61 36
Block-push. 1755± 2.256× 103 93 0

RMP-VICES
Traj-follow. 6847± 3.723× 103 25 22
Door-open. 1051± 6.96× 102 5 11
Block-push. 1740.± 8.54× 102 19 0

Table 6.1: Results from rollouts with randomly-generated obstacles. As collision or passing a joint
limit triggers the episode to end, the maximum number of collision and joint events for a single
domain for a single agent is 100.
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6.6 Conclusion

RMP-VICES is a geometry-aware operational-space controller for contact-rich manipulation. Our

formulation synthesizes learned impedance control in SE(3) with predefined collision and joint limit

avoidance behaviors, yielding a safer framework for reinforcement learning of manipulation skills.

Our evaluation shows reduced frequency of collision and joint limit violation on the majority of

tasks studied, especially early in learning. The main drawbacks of our proposed approach are

the intensive tuning efforts required to weight leaf policies appropriately in the RMP-tree. Our

framework also lacks Lyapunov or control barrier-certificates that guarantee stability or safety set

invariance, respectively. Future work is warranted to investigate the design and tuning of provably

safety behaviors and their interaction with policy optimization. In the next chapter, we propose

Compositional Interaction Primitives (CIPs), a policy class for achieving safe, efficient motor skill

learning. While RMPs showed some improvement in safety, ultimately the tuning effort proved to

be prohibitively challenging. We used the experience in developing the system of the present chapter

to develop a simpler safety controller for CIPs.



Chapter 7

Compositional Interaction

Primitives

The following chapter is derived from a conference paper under review. The work was co-authored

with Eric Rosen, Skye Thompson, Tuluhan Akbulut, Sreehari Rammohan, and George Konidaris.

7.1 Introduction

The unique potential of robots lies in their ability to do physical work in the world—every pro-

cess that currently requires a human to meaningfully interact with a physical object can only be

automated by a robot. Despite this immense potential value, only a tiny fraction of the physical

manipulation tasks that can be automated currently are (Kroemer et al., 2021). There are multiple

causes of this failure, but one of the most acute is that robots are currently not as flexible as humans

in their ability to learn to interact with objects around them. A factory worker can be trained to

basic proficiency in an unfamiliar task in a day; skillful and reliable execution of rote manual labor

tasks rarely requires more than a few weeks. Achieving the same level of flexibility, reliability, and

skill in robots requires major advances in their learning capabilities, so that a robot can be trained

to solve a new task, and subsequently improve its own performance, in reasonable time and without

the support of expert programmers.

71
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There are two families of approaches to learning manipulation skills. The first combines end-

to-end deep neural networks with reinforcement learning (RL) (Sutton and Barto, 1998; Kober and

Peters, 2010) to learn “pixel to torque” controllers (Levine et al., 2016) that directly map sensor

input to motor output. Such approaches couple RL’s promise of flexibility, generality, and autonomy,

with the opportunity to exploit the power of deep networks. However, they have dauntingly high

sample complexity and face difficulty incorporating other techniques from robotics such as forward

and inverse kinematics, motion planning, wrench closure, and feedback control. The second family

aims to develop carefully designed and highly structured policy classes (Ijspeert et al., 2002; Cheng

et al., 2021; Ratliff et al., 2018) to achieve sample-efficient learning, thereby trading design effort,

flexibility, and generality for sample efficiency. Such approaches have learned an impressive range

of dynamic behaviors (Kober and Peters, 2010; Muelling et al., 2013) in a feasibly low number of

interactions, but are best suited for targeting a restricted class of motor skills where there is structure

to be exploited and sample efficiency is paramount.

We focus on one such class, sustained contact manipulation skills—where a robot must establish

stable contact (in the form of a grasp) with an object in order to change its state, and sustain

that contact throughout execution. Examples of such tasks include opening a drawer, pulling a

lever, turning a doorknob, opening a door, turning a wheel, or shifting gears. We introduce a new

policy class, Composable Interaction Primitives (or CIPs), that draws from the best of both motor

skill learning approaches: it exploits the structure present in sustained contact tasks, resulting

in a policy class that is structured, safe, and highly parameter- (and therefore data-) efficient;

and then applies deep networks to the components where learning from high-dimensional input is

unavoidable. Additionally, CIPs are sequentially composable by construction, so that learned skills

can be sequenced to solve new tasks in an order determined at runtime by a task-level planner. Using

an ablation experiment in four simulated manipulation tasks, we experimentally explore the role of

structure in manipulation skill learning, and show each of the components of CIPs substantially

improves learning efficiency and safety. We then demonstrate the use of CIPs to efficiently learn,

and subsequently sequence on-demand, sustained-contact manipulation skills on real robot hardware.
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7.2 Composable Interaction Primitives

The success of DMPs suggests that one approach to achieving successful motor skill learning is to

match a restricted but important class of motor skills with a representation designed to exploit its

structure (Schaal, 2006; Ijspeert et al., 2002). We address learning motor skills in the sustained

contact regime: skills where a robot must establish and maintain contact with an object while

exerting force on that object to successfully manipulate it, such as when a human opens a door, pulls

a lever, wipes a surface, or shifts gears. Such motor skills are common, complex, and important:

much of the work that a robot with a gripper will be tasked with performing in the world—all

except pick-and-place and instantaneous contact skills like pushing a button—will require sustained

interaction with an unmodeled (or partially modeled) object. They are also highly structured (e.g.,

including making and breaking contact via a pre-grasp pose), necessitate complex safety constraints

such as joint position and torque limits, and demand precise control driven by policies that must

be learned from noisy and high-dimensional tactile and force feedback. Finally, they should be

designed to support composition: suitable for sequential execution to address new tasks in an order

determined at runtime, a capability that is unlikely to occur by chance and can only be achieved

through design. All these reasons make sustained-contact motor skills excellent candidates for a

specialized motor policy class.

We identify four important properties present in sustained-contact motor skills. First, skill

execution can be decomposed into phases: the robot first moves through free-space to reach a pre-

grasp pose, then achieves a stable grasp, then manipulates the object, then releases its grasp, and

finally controls its gripper back into free-space. Second, most phases involve little or no per-task

learning : motion through free-space and to achieve or release a grasp can be computed using motion

planning and feedback control, respectively; the choice of where to grasp the object is a supervised

learning task that can be resolved (or at least bootstrapped) using a generic grasp detector (Bohg

et al., 2013). Only the sustained-contact controller itself need be largely learned on a per-task basis,

though it could be bootstrapped using learning from demonstration (Argall et al., 2009) or kinematic

motion planning (Abbatematteo et al., 2021). Third, the sustained-contact controller itself naturally

suggests structure: the controller must be a function of force- and tactile-feedback, learned using

reinforcement learning; the goal of learning should be to reach a task-specific goal (e.g., opening

a door, or switching a light on) while avoiding task-general failure modes (like losing contact with



74

Figure 7.1: Composable Interaction Primitives (CIPs) are a structured policy class that
enables safer, sample-efficient learning of contact-rich manipulation skills by incorporating model-
based priors. Our approach (a) identifies promising grasp poses for initiating manipulation (b) uses
motion planning to move in free space rather than learning to reach (c) learns model-free policies for
interaction where necessary (d) enables composition by construction to support task-level planning.

the object or becoming stuck); and during learning the policy should be able to explore while being

position- and torque-constrained so as to never damage the robot or the object. Here, task-specific

structures are components that are either learned or hand-specified for a specific object manipulation

skill, whereas task-general structures are components that may be specific to the robot but can be

reused across different object manipulation skills. Finally, a natural means of composition is through

free-space motion planning : motor skills can be sequenced by simply motion planning from one

skill’s release point to another skill’s grasp point.

We therefore propose Composable Interaction Primitives (CIPs), a new policy class structured

by these insights and aimed at learning composable sustained-contact manipulation skills in tens,

rather thousands, of real-world interactions. CIPs are structured as a tuple, where components

subscripted by c are specific to the task, and the remainder are specific to the robot but generic

across tasks:

C = (πc, σ, βc, Ic, h, t,Γ, B) ,where:
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• πc : ϕ→ τ is a motor control policy that maps tactile sensor signals, proprioceptive data, and

object state information to joint torques τ and gripper commands τg, and is parameterized by

ψ.

• Policy πc is constrained by σ, a safety envelope specific to the robot but not to the task.

Execution is constrained to obey σ so that the agent does not damage the object it is interacting

with or itself.

• βc : ϕ → {0, 1} is a task-specific success indicator that maps the robot’s observations ϕ to a

boolean indicating whether the interaction primitive has achieved its goal.

• B is a task-general classifier indicating interaction failure (e.g., that contact has been lost,

the interaction has timed out, or execution cannot continue without a safety constraint being

violated). Once initiated, πc continues execution until either βc indicates success or B indicates

failure. The resulting signal informs a policy search algorithm to optimize πc.

• Ic : v, g, ψg → [0, 1] is the grasp initiation set, a probabilistic classifier conditioned on visual

data v that maps end-effector poses g and grasp parameters ψg to the probability with which

executing πc from grasp g terminates in βc (success) as opposed to B (failure). During learning,

selecting promising grasps is formulated as a bandit problem.

• h and t are the head and the tail, motion planners that control the robot through free space

to achieve a grasp generated by Ic, and extract it from contact back into free space—or into

the head of another skill—after termination. These serve to establish and break contact, and

to sequence skills: the tail of one skill simply becomes the head of another.

• Γ : g, ψg → τg is a grasp controller parameterized by grasp pose g, sampled from the initiation

set, and grasp parameters ψg (e.g. grasp type, force), and outputting motor commands for the

gripper τg.

For most tasks, we envision that all the skill components are given or designed except πc and Ic,

which leads to a problem of jointly learning a policy and affordance model for functional grasping.

The CIP model structures the motor skill learning problem so that: only motor control involving

contact with the object is learned, and free-space motion is generated using a planner; interaction

with an object is always safe; and motion planning is used for the remainder of motor control, espe-

cially to stitch motor skills together. At the same time, the components that must be learned offer
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natural opportunities for incorporating powerful deep network methods to learn rich sensorimotor

policies. The result will be small, isolated pockets of motor skill learning connected by much longer

trajectories generated by a motion planner. Note that the CIP model does not assume access to a

simulator or dynamics model of the environment.

7.2.1 Instantiating CIPs

One benefit of the CIP framework is that its different components may be chosen to match the robot

hardware it is being instantiated on. We now detail our specific choices of component instantiations

used in the experiments (described in Section 7.3) as an illustrative example.

Motor control policy πc Sensor input from the touch sensors on the robot’s grippers, the joint

and Cartesian state of the robot, and object joint state are fed into a neural network policy. For the

action space, we chose to have the robot command the end-effector in Cartesian space while remaining

compliant to promote sample-efficiency and safety during sustained contact. We therefore selected

the Variable Impedance Control in End-Effector Space (Mart́ın-Mart́ın et al., 2019) scheme as our

action space. Recall motor policy πc maps sensor readings ϕ to a desired delta end-effector position

∆pos = (pd − p) and rotation ∆ori = Rd ⊖ R, as well as commanded stiffness terms kppos ∈ R3×3

and kpori ∈ R3×3 for position and rotation respectively. These terms are then used to directly map

to joint torques τ as before. The resulting action space therefore consists of 13 dimensions: six for

end-effector pose, six parameterizing the diagonal of the stiffness matrices, and one for the state of

the parallel-jaw gripper.

Safety envelope σ We limit the maximum value of stiffness parameters kposp and korip , so that

the robot remains compliant and does not generate high torque values when it contacts the object.

In addition, the torques are clipped if they exceed the allowed range. We use a two-fold strategy to

prevent joint limit violations, with two threshold parameters, σ1 and σ2 (σ1 > σ2), that check how

close the robot joints are to its limits. If a joint position θi exceeds its threshold σ1, we switch to a

null-space controller (Khatib, 1987) that attempts to move θi away from its limit without changing

the end-effector pose. If the robot nonetheless exceeds σ2 at joint index i (e.g. due to a high

enough initial velocity to overcome the null-space controller), the controller generates a torque in

the opposite direction for θi until it returns to a safe configuration.
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Task-specific success indicator βc These were designed by hand for each task, and return true

when the object’s joint states are above a threshold position. In principle, they could be learned

from data.

Task-general failure classifier B In our case, B simply served as a joint limit safety check: if the

robot is within 5 degrees of its joint limits, the classifier returns true and ends the learning episode.

Episodes are also terminated if the agent loses contact with the object for several timesteps.

Grasp initiation set Ic In each case, the visual data v is represented as a point cloud of the

scene, which is segmented to only include the part of the object that the robot should manipulate.

An existing task-general grasp generator by ten Pas et al. (2017) is used to sample a set of grasp

poses G based on the normals calculated from the point cloud. Each grasp g ∈ G is then checked for

reachability and collision. Grasps g which pass these checks are added to a list of acceptable grasp

poses that define the domain of Ic.

To sample a grasp pose g ∈ Ic for the head h during learning, we cast grasp sampling as a bandit

problem that is solved with Upper Confidence Bounds (UCB) (Kocsis and Szepesvári, 2006) where

Q-values are task success rates. We therefore treat learning Ic and sampling grasp poses as an active

learning problem, and use UCB since it appropriately balances exploration and exploitation.

Once a grasp pose g is sampled, we obtain a suitable joint configuration θ by optimizing ma-

nipulability. A manipulability score is computed for a joint configuration θ as the product of two

values: 1) the manipulability index introduced by Yoshikawa (1985) that analyses the volume of the

manipulability ellipsoid: w =
√
det(JJT ) where J is the Jacobian for a particular joint configuration

θ, and 2) a penalization term introduced by Tsai (1986) based on the distance to the upper and

lower joint limits for a particular joint configuration θ,

P (θ) = 1− exp(−k
n∏

j=1

(θj − l−j )(l
+
j − θj)

(l+j − l
−
j )

2
), (7.1)

where l−j and l+j are the lower and upper joint limits for joint j. These two metrics capture for a

joint configuration θ how close the robot’s end-effector is to a singularity and how close the robot’s

joints are to joint limits, respectively.
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Motion planners h and t These were instantiated for each domain using the IKFlow inverse

kinematics solver (Ames et al., 2022) and MoveIt! (Coleman et al., 2014) to move the robot to the

grasp pose sampled from the grasp initiation set Ic.

Grasp Controller Γ The implementation of the grasping controller depends heavily on the mor-

phology of the gripper. For simple parallel jaw grippers the parameterization is simply the opening

state of the gripper. For more complex hands, e.g. with three or more fingers, the grasping controller

may select among power and pinch grasps (Corsaro et al., 2021).

Algorithm 3 below describes the process of learning a CIP for an object manipulation task.

Algorithm 3 Learning a CIP

Require: CIP C = (policy πc with parameters ψ, safety envelope σ, termination classifier βc, failure
classifier B, initiation set classifier Ic, head h, tail t, grasp controller Γ), visual observation v,
initial joint configuration θ0

1: v ← observe scene()
2: G← get grasp candidates(v)
3: Ic(g)← 0 ∀g ∈ G ▷ initialize initiation classifier
4: D ← {} ▷ initialize policy replay buffer D
5: while not converged do:
6: g, ψg ← select grasp(Ic, G) ▷ UCB for grasp selection
7: Θ← get ik solns(g)
8: θ ← optimize manipulability(Θ)
9: execute motion plan(θ, θ0) ▷ head of CIP h

10: execute grasp(Γ, g, ψg)
11: obs, actions, rewards, success ← rollout(πc, ψ, βc, B)
12: D ← D ∪ (obs, actions, rewards)
13: ψ ← improve policy(D,πc, ψ)
14: Ic(g, ψg)← update success rate(g, ψg, success)
15: end while

7.3 Experiments

We evaluate the CIP framework in simulation using Robosuite (Zhu et al., 2020b). We conducted

experiments on four different articulated object tasks: opening a door, opening a drawer, sliding a

knob, and lifting a lever. The position and orientation of the object in each episode is randomized

over a small range as in the original benchmark.

The observations consist of the state of the object, position and velocities of the robot’s joints,

end-effector pose, and tactile readings from the force sensors at the robot’s gripper. We use TD3

(Fujimoto et al., 2018) as our actor-critic method. The reward functions are dense as a function
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(a) Open door task (b) Slide knob task

(c) Open drawer task (d) Flip lever task

Figure 7.2: Simulation Task Environments.

of progress toward the object goal joint state, which leverages potential-based reward shaping (Ng

et al., 1999) to ensure the optimal policy is not changed compared to the sparse reward setting based

on success.

To incorporate exploration during learning, we add Gaussian noise parameterized with 0 mean

and 0.05 standard deviation to the policy. We use the Adam optimizer with a learning rate set

to 0.0001. The neural network policies are two-layered multi-layered perceptrons (MLP) with 64
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hidden nodes.

Training episodes are ran for a maximum of 250 steps each, and trained for a total of 500 training

episodes. We evaluate performance every 10 training episodes with 20 policy roll-outs.

The safety envelope parameters σ1, σ2 were set to 0.3, 0.2 rad respectively and were determined

empirically (relative to the joint limit violation threshold 0.1 rad).

We consider two evaluation metrics: 1) Task Success Rate, which measures how successful

the policy is at manipulating the object, and 2) Joint Limit Violation Rate, which is a proxy

measure for how safe the policy is. To analyze how each of the structures of CIP impact these

metrics, we run ablations that incrementally include structure described in Section 7.2.1:

1. E2E: This setting is an end-to-end baseline that incorporates none of the CIP structure. The

robot begins in a home pose with no contact to the object, and must learn a complete policy

for moving to the object and manipulating it.

2. Head: This baseline incorporates the head h structure of the CIP, but no initiation set

learning—the robot samples grasp poses randomly and uses naive IK to reach them.

3. Safety: This baseline extends Head to additionally incorporate the safety envelope.

4. Manipulability Value (MV): This baseline extends the Safety setting, and additionally

incorporates the manipulability value into the sampling approach for Ic, which adds additional

structure on top of the Head approach. After sampling a random grasp, we sample a set of

inverse kinematics solutions and select the one with the highest manipulability value.

5. CIP: Incorporates all the structure of the CIP; extends the MV approach to additionally

perform active learning with UCB over grasp poses.

6. CIP+BC: Ten demonstrations from an expert policy are provided to the CIP learner and

incorporated into policy search using the behavior cloning loss and Q-Filtering (Nair et al.,

2018).

7. E2E+BC: Ten demonstrations from an expert policy are provided to the E2E learner.

Results The results for all our experiments can be found in Figures 7.3 and 7.4, where we show

the best-to-date performance for both metrics across all the tasks. Across all the tasks, the E2E
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baseline is unable to learn any meaningful policy, and also has many joint violation rates throughout

learning. This is expected as exploration is extremely challenging in the absence of a strong reward

signal for reaching the object and making contact. We also see that once the head of the CIP

is incorporated (Head), the agent is able to start achieving some amount of task success, but

still encounters many joint state violations throughout the learning process. The Safety baseline

is able to achieve a task success rate on par with Head, but significantly reduces the joint state

violation rates during learning. The MV baseline has improved task success over the Head baseline,

which demonstrates the usefulness of incorporating the manipulability value when selecting joint

configurations for sustained-contact manipulation tasks, but still has trouble learning an effective

policy for the Lever and Drawer task in a small number of training episodes. Once the full structure

of the CIP is incorporated (CIP), the agent is able to rapidly learn a policy with a high success

rate (at least an average of 80%) within hundreds of training episodes. When demonstrations

are available (CIP+BC) we see rapid, safe learning within tens of episodes. Note that CIP+BC

outperforms the end-to-end agent with demonstrations (E2E+BC). We hypothesize that the Drawer

task is challenging due to the relatively low manipulability of grasps on the object. These results

demonstrate that each structural component of the CIP is useful for promoting safe and efficient

learning across a diverse set of sustained-contact manipulation tasks.

7.4 Skill Composition Demonstration on Hardware

One of the advantages of the CIP structure is it enables zero-shot composition by construction. The

motion planning performed via the head h and tail t, together with learned initiation sets Ic, enable

a robot to learn sustained-contact manipulation skills in isolation, and then sequentially execute the

skills with no additional learning necessary. We validate our approach by learning and sequencing

two manipulation skills—opening a cabinet door and pulling a drawer open—on a KUKA LBR

iiwa7 with a Schunk Dexterous Hand 3-fingered gripper as shown in Figure 7.5. The sequence is

determined a priori by an expert but could be computed using off-the-shelf task planning methods.

First, the the cabinet door is opened by sampling a grasp, planning to it, and running the policy.

The robot releases the cabinet handle, then plans to the drawer grasp. Then the drawer pulling skill

is used to open the drawer.

For each skill, we produce a set of possible pinch grasps by collecting a set of grasp proposals on
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Figure 7.3: Task success rates vs. the number of training episodes. The shaded region around the
average shows the standard error over 10 seeds.

the object’s handle using the grasp pose generator of ten Pas et al. (2017). This set of grasps is filtered

for collision, IK feasibility, and successful contact with the handle. We provide 3-5 demonstrations

by manually guiding the arm through the task on different grasps, which we use to train the skill

on the robot using behavior cloning and policy search.

Given a grasp proposed by the UCB sampler, we sample multiple possible IK solutions and select

the one with the highest manipulability index as described in section 7.2.1. The grasp is executed and

the policy execution begins. The observation space consists of the Cartesian position and orientation

of the robot end effector, tactile readings from each of 6 touch sensors on the gripper’s fingers, and
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Figure 7.4: Joint limit violation rates for simulated tasks.

the state of the door or drawer. The actions consist of Cartesian displacements in position and are

executed using the iiwa’s Cartesian impedance functionality. A shaped reward is provided as in the

simulation experiments as a function of object state tracked using ar track alvar.

We used the iiwa’s native safety controller for detecting collisions, constraining joint limits, and

limiting forces exerted on or by the arm, in conjunction with an additional orientation constraint

limiting the gripper from large rotations along the plane of the wrist after grasping, to protect the

gripper and objects.

As shown in Figure 7.5, when trained with behavior cloning and policy search, the robot is able

to successfully learn and execute each skill, and to compose the two skills and execute them in
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Figure 7.5: Two CIPs executed in succession on robot hardware.

sequence.

7.5 Conclusion

We propose a new policy class for sustained-contact manipulation skills: Composable Interaction

Primitives (CIPs). CIPs are designed to exploit readily-accessible structure in the world and struc-

ture in the robot to enable sample-efficient and safe policy learning, and be easily leveraged by

high-level planners due to their sequential composability via motion planning. Future work will in-

vestigate efficient methods to learn effect models to autonomously construct a symbolic vocabulary

to support integrating CIPs with a high-level task planner.
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Conclusion

To build useful robots, and to solve the grand challenge of artificial intelligence, we must equip

our robots with the ability to quickly learn new tasks on the fly. The novelty and complexity of

unstructured home and industry environments preclude us from pre-programming motor skills; the

scarcity of real robotic data forces us to cleverly scope learning problems of embodied agents for

maximum efficiency. In this thesis, we have sought to identify and exploit structure – regularities

across the tasks faced by a robot – to build systems capable of learning motor skills in the real world.

First, we introduced the problem of category-level articulated object manipulation, and built

a machine learning model capable of inferring object models from individual observations. This

enabled a robot to interact with novel articulated objects despite encountering them for the first

time. This system exploits structure present in articulated objects as well as patterns in object

categories. We then extended this system to more dynamically infer kinematic graphs by leveraging

advances in graph neural networks and part segmentation, resulting in a more broadly applicable

system for category-level kinematic model estimation. Both of these approaches were the first of

their kind. Both represent an example of learning that we can perform prior to sending robots out

into the world – an instance of learning deployed at design time in order to make runtime learning

of motor skills easier.

We then built a system which did just that – learned motor skills by first using approximate,

kinematic models of the world, emulating the process humans employ when faced with a new task.

Initial attempts are computed via planning which are then used to initialize motor skill policies

for feedback control. This system enables intelligent exploration in a broad class of manipulation

85
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problems, combating the complexity of these contact-rich interactions and autonomously obtaining

high-quality data for skill learning.

Finally, we sought to exploit the modularity and compositionality of behavior, designing a novel

motor primitive that is efficiently learnable and readily composed to generate abstract plans. We

investigated multiple safety controller designs in Chapters 6 and 7, ultimately arriving at a simple

solution that enables real world skill learning with minimal damage to the robot and environment.

The experimental evidence presented throughout give credence the main claim of the thesis:

By exploiting structure present across tasks faced by a robotic agent, we may imbue our

learning systems with greater data efficiency and generalization.

8.1 Future Directions

In the era of multi-billion-parameter language models, this dissertation advocates for the view that

not all of behavior will emerge from big data and big models. Scale alone has revolutionized the

fields of computer vision and natural language, and it is tempting to believe the same will be true

of robotics. But obtaining data of real robots interacting with the world, at the scale required

to reliably learn behavior, is impossible. This thesis instead suggests that we need to build upon

decades of research in robotics and AI, interweaving mature techniques with machine learning and

the data that we can generate.

Many such questions of structure remain. One is the development of more general approximate

models of the world — a structural ingredient necessitated by the novelty of life in human envi-

ronments. Our work in Chapters 3, 4, and 5 illustrates the utility of such models for manipulating

articulated rigid bodies which can be modeled kinematically. But, of course, many classes of objects

do not fit this mold. Deformable objects, liquids, and particulate matter evade such a description;

tool use is typically forceful and would be difficult to capture with a purely kinematic model. As

such, there is a need for a broader class of dynamics models that capture forces required to manip-

ulate the world, rather than just kinematics, unifying these seemingly disparate object categories.

Here, there is an opportunity to leverage scale in the form of video data; the critical questions are

how one might repurpose that data for control, and what role these kinematic models might play.

Should these models include the notions of objects? Object parts? Or will these concepts emerge

from sufficient data? Articulated object modeling itself will undoubtedly continue to be explored
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because of its practical utility; interesting directions include the incorporation of neural fields to

recover geometry and the unification of affordance-based and traditional graph-based kinematics

estimation.

On the control side, there is still much work to do in order to rein in the power of deep learn-

ing. The critical structural question of policy representation still largely persists. Chapters 6 and

7 illustrate the role of traditional robotics primitives like motion planning, grasping, and collision

avoidance; the challenge still remains to find appropriate representations of the feedback policy re-

sponsible for control when in contact with the world. Human motions are generally smooth and

stable, but generically applying deep networks by no means provides these properties. It remains an

open challenge to rectify dynamical systems and lower-dimensional action spaces with the expres-

sivity of neural networks necessary to handle high dimensional inputs like vision and tactile data.

There are many exciting works in this area to expand upon and integrate with the CIPs framework,

e.g. Sharma et al. (2021); Allshire et al. (2021); Xie et al. (2023); Wang et al. (2023). Finally,

integrating these systems with task-level planning remains an open challenge. The CIPs framework

illustrates that the structure of reaching and grasping should be reflected in our motor primitives.

How we reconcile this with approximate forward models, discussed above, and the role of skills in

such a context, are still unclear. Moreovever, how we should approach the daunting complexity of

task-and-motion planning remains to be pinned down. Here, common sense reasoning displayed by

large language models may well serve as a useful heuristic.

Such questions are suggested and made possible by the work presented in this thesis. Even in

the era of scale, the future of exploiting structure in robotic manipulation is bright, indeed.



Appendix A

Synthetic Dataset

A.1 Synthetic Dataset

Our simulated dataset of procedurally generated articulated objects (available here) consists of 6

categories (cabinet, drawer, microwave, toaster oven, two-door cabinet, refrigerator). The quantities

which were randomized during data generation and their ranges are displayed in the tables below.

Geometric parameters were sampled from independent, uniform distributions over depth, width,

and height. Cabinets that open clockwise/counterclockwise were generated with equal probability.

Table A.1: Randomized Geometric Parameters

Depth (cm) Width (cm) Height (cm)

Cabinet 56 - 64 60 - 140 60 - 140

Drawer 45 - 60 30 - 76 10 - 30

Microwave 25 - 56 40 - 76 22 - 45

Toaster 20 - 50 40 - 60 20 - 50

Cabinet2 56 - 64 60 - 140 60 - 140

Refrigerator 60 - 80 60 - 90 82 - 88

Pose parameters were sampled similarly for each object. The camera was positioned looking

down the positive x-axis with the positive z-axis upward. The x,y,z values refer to the center of

the base of the object. Rotation denotes angle about the z-axis. Configuration denotes articulated

pose, reported in radians for revolute mechanisms and centimeters for prismatic joints. For 2-DoF

objects, configuration was randomized to cover the full 2-dimensional configuration space in the

88
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range provided.

Table A.2: Randomized Pose Parameters

x (m) y (m) z (m) Rotation (rad) Configuration

Cabinet [1.0, 2.0] [-0.5, 0.5] [-0.7, 0.3] [−π
4
, π

4
] [0, π

2
] rad

Drawer [1.0, 2.0] [-0.5, 0.5] [-0.8, 0.0] [−π
4
, π

4
] [0, 40] cm

Microwave [1.0, 2.0] [-0.5, 0.5] [-0.7, 0.3] [−π
4
, π

4
] [0, π

2
] rad

Toaster [1.0, 2.0] [-0.5, 0.5] [-0.7, 0.3] [−π
4
, π

4
] [0, π

2
] rad

Cabinet2 [1.0, 2.0] [-0.5, 0.5] [-0.7, 0.3] [−π
4
, π

4
] [0, π

2
] rad

Refrigerator [1.5, 3.5] [-1.0, 1.0] [-1.5, -0.7] [−π
4
, π

4
] [0, π

2
] rad
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