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Abstract

We present an option discovery algorithm that accelerates
planning by minimizing the shortest distance between any
two states in the MDP. The proposed algorithm produces
options that approximately minimize planning time in the
multi-goal setting: it is shown to be a worst-case (4α, 2)-
approximation of the optimal option set, where α is the ap-
proximation ratio of the k-medians with penalties subroutine.
We then present a variation, Fast Average Options, with im-
proved run-time and describe a general means of producing
similar algorithms based on the selection of a k-medians sub-
routine. We empirically evaluate our method on four discrete
and two continuous control planning domains where it out-
performs other leading option discovery algorithms.

1 Introduction
Temporally extended actions, or options, can be used to
solve long-horizon decision problems (Sutton, Precup, and
Singh 1999; Barto and Mahadevan 2003). When designed
by a domain expert, these options lead to deep exploration
(Bellemare et al. 2020) and extend the planning horizon of
the agent (Sutton, Precup, and Singh 1999; Konidaris, Kael-
bling, and Lozano-Pérez 2018). An important question in
both reinforcement learning and planning is that of option
discovery: how can agents use the data gathered in an envi-
ronment to construct useful temporal abstractions?

The majority of work in this area proposes intuitive
heuristics for discovery; examples include identifying rel-
atively novel states (Şimşek and Barto 2004), identifying
bottleneck states (Şimşek and Barto 2008), finding repeated
policy fragments (Pickett and Barto 2002), identifying well
connected regions (Ramesh, Tomar, and Ravindran 2019),
finding states that often occur on successful trajectories (Mc-
Govern and Barto 2001), and lowering the computation time
of planning (Young and Sutton 2023; Wan and Sutton 2022).
While these are sometimes effective, heuristic approaches
provide no guarantee that similar performance should be ex-
pected for a new task (Solway et al. 2014; Brunskill and
Li 2014). As a result, a few recent approaches have taken a
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more formal approach where performance bounds can be de-
rived for an explicit agent-level performance criterion (Jin-
nai et al. 2019a,b). In particular, Jinnai et al. (2019a) discov-
ers options that bound worst-case planning time, which is
the maximum number of iterations required to solve a single
task. However, they do not address the case where the agent
must solve a family of tasks; so, we aim to reduce expected
planning time, where the expectation is over the agent’s task
distribution. This quantity is better suited for the multi-task
(Kaelbling 1993; Solway et al. 2014) and lifelong learning
(Brunskill and Li 2014) settings.

Consider an agent that must solve a family of goal-
reaching tasks, where each task is modeled as an MDP and
differs in its start-goal configuration. In such a task family,
it would be useful for the agent to have options that reduce
planning time on average over all possible tasks. As a result,
we provide an algorithm that minimizes the average distance
between all possible start-goal pairs.

Our core insight is that option discovery in the multi-goal
context is equivalent to the classical k-medians with penal-
ties problem (k-MP) (An and Svensson 2017; Dohan, Karp,
and Matejek 2015). Using k-MPs and a result from graph
theory (Meyerson and Tagiku 2009), we find options that re-
duce the overall expected cost of transitioning between any
two states. This connection between option discovery and k-
MPs allows us to design efficient approximation algorithms
with strong theoretical guarantees.

We present Average Options, a formal option discovery
algorithm for planning in multi-goal environments; we prove
that this algorithm bounds planning time. We then present a
more scalable, approximate version of our algorithm, Fast
Average Options. We test both algorithms on six control
problems and show that they outperform other option dis-
covery algorithms (Jinnai et al. 2019b; Machado et al. 2018)
with a strong theoretical basis.

2 Background and Related Work
The interaction between an agent and its environment can
be modeled as a Markov Decision Process (MDP) M =
(S,A, P,R, γ), where S is the set of states, A is the set of
actions, P is the transition function, R is the reward func-
tion, and γ is the discount factor (Sutton and Barto 2018).
When transitions are deterministic, the transition function
P : S × A × S → [0, 1] is replaced by T : S × A → S.



We say that an MDP has “invertible actions” if for each pair
s ∈ S, a ∈ A, there exists a′ ∈ A such that T (s′, a′) = s.

An MDP can be represented as a graph with the states S
as vertices and with the states s and s′ being connected by
an edge if there exists a ∈ A such that T (s, a) = s′. If an
MDP has invertible actions then this graph is undirected.

In planning, the Value Iteration (VI) algorithm can be
used to find the optimal policy π∗. VI proceeds with the fol-
lowing initialization and update rule for Vk : S → R:

V0(s) = 0,

Vk+1(s) = max
a∈A

(∑
s′∈S

P (s, a, s′)(R(s, a, s′) + γVk(s
′))

)
.

(1)

The update step is repeated until Vk+1(s)−Vk(s) < ϵ for all
s ∈ S. To compare different option discovery methods, we
follow Silver and Ciosek (2012) and measure the number of
iterations required for convergence of VI.

2.1 Options
Options are temporally extended actions (Sutton, Precup,
and Singh 1999). An option o is defined as a triple
(Io, πo, βo). Io ⊂ S is the set of states from which o can
be executed, πo : S × A → [0, 1] is the option policy, and
βo : S → [0, 1] is the probability that the option terminates
in a given state. If βo(s) ∈ {0, 1} ∀s ∈ S it is more conve-
nient for βo to represent the set of states where the termina-
tion probability is 1, {s|βo(s) = 1}.

Following Jinnai et al. (2019a), we focus on a special case
of options called point options. Point options initiate and ter-
minate in single states, i.e, |Io| = 1, |βo| = 1. An option
is bi-directional if it has a policy to go from Io to βo and
a policy to go from βo to Io. For brevity, we will refer to
bi-directional point options as options. This is a restrictive
model of an option, but it is commonplace in formal option
discovery as it allows us to apply results from graph theory
and precisely bound agent performance. Despite the simplic-
ity of point options, similar algorithms (e.g, Covering Op-
tions (Jinnai et al. 2019c)) have served as the foundation for
deep RL algorithms for more complex environments (Jinnai
et al. 2019c; Klissarov and Machado 2023).

2.2 k-Medians with Penalties Subroutine
The k-medians with penalties (k-MP) (An and Svensson
2017; Dohan, Karp, and Matejek 2015) is an algorithm from
Operations Research that is best explained using the analogy
of opening a set of facilities that serve a set of cities. For
example, consider the situation where a company is trying
to decide where to place its warehouses (facilities) so that
it can distribute packages (serve) to major American cities
with the lowest cost possible. When the company decides
to serve a city c ∈ C using a facility f ∈ F , it incurs a
cost d(c, f); when the company decides to not serve a city c
(perhaps because the city is very difficult to access by road),
then it incurs a positive real valued penalty pc. The function
d : C × F → R is an arbitrary distance metric, i.e., it is
symmetric and satisfies the triangle inequality.

While the k-MP problem succinctly models many real
world problems, it is known to be NP-Hard (Kariv and
Hakimi 1979). As a result, we must resort to approxi-
mation algorithms. An approximation algorithm is an α-
approximation if it finds a solution F with cost no higher
than α times the cost of the optimal solution, F ∗. Many ap-
proximation algorithms exist, each with its own set of trade-
offs: while some provide tighter approximations, others have
lower run time (Jain et al. 2002; Xu and Xu 2005; Arya et al.
2001). For our theoretical analysis, we will use an approxi-
mation algorithm with α < 2 (Jain et al. 2002) and for our
experiments use a 5-approximation method with improved
run-time (Arya et al. 2001).

2.3 Related Option Discovery Algorithms
Option discovery is a challenging open problem in rein-
forcement learning (Pateria et al. 2021). Recent work has
made substantial progress on skill-discovery in large single
(Konidaris and Barto 2009; Bacon, Harb, and Precup 2017;
Tiwari and Thomas 2019; Nachum et al. 2018; Bagaria
and Konidaris 2020; Bagaria et al. 2021) and multi-goal
(Levy et al. 2019; Sharma et al. 2020; Bagaria, Senthil, and
Konidaris 2021) domains. By contrast, we seek options with
strong theoretical bounds on planning time.

Graph-Based Option Discovery. Many other approaches
also derive options from graph-theoretic properties of
MDPs. Based on the “bottleneck” intuition (Mcgovern 2002;
Stolle and Precup 2002), Relative Novelty uses state count-
ing (Şimşek and Barto 2004) and Betweenness Options uses
a graph-centrality measure to discover option terminations
(Şimşek and Barto 2008). Q-Cut (Menache, Mannor, and
Shimkin 2002) and L-Cut (Şimşek, Wolfe, and Barto 2005)
use classical algorithms like Max-Flow/Min-Cut to identify
subgoals. Evans and Özgür Şimşek (2024) use graph modu-
larity to learn multi-level hierarchies. These methods borrow
tools from graph theory but the property of interest is chosen
based on intuition.

Spectral Methods. Several methods have used properties
of the graph Laplacian to learn options (Mahadevan and
Maggioni 2007; Chiu and Soo 2010; Machado et al. 2018;
Wu, Tucker, and Nachum 2018; Wang et al. 2021; Jinnai
et al. 2019c; Bar, Talmon, and Meir 2020). Among these,
Eigen Options has demonstrated the most empirical suc-
cess; they use the eigenvectors of the Laplacian to create op-
tions that traverse the principle directions of the state-space
(Machado et al. 2018). Due to their strong theoretical foun-
dation and empirical success, we compare our algorithms
against Eigen Options as a representative spectral method.

State Aggregation. Option discovery algorithms often
cluster the state-space and connect the resulting clusters us-
ing options (Agostinelli et al. 2019; Ramesh, Tomar, and
Ravindran 2019; Srinivas et al. 2016; Li, Walsh, and Littman
2006; Campos et al. 2020). Unlike our algorithm, these
methods cluster states in a continuous vector space Rd,
whereas we use k-medians on the discrete graph representa-
tion of the MDP.



Formal Option Discovery. These methods precisely for-
mulate option discovery (Solway et al. 2014) as an opti-
mization for certain characteristics (like planning time Jin-
nai et al. 2019a) and then formally bound the agent’s perfor-
mance (Jinnai et al. 2019a,b); our method falls in this cat-
egory. Brunskill and Li (2014) also find that option discov-
ery is NP-Hard, but their approximation algorithm for dis-
covery does not have theoretical guarantees. “Small world
options” (Chaganty, Gaur, and Ravindran 2012) bound the
number of steps needed to reach the maximum value state,
but their guarantees only apply to lattices, which are a re-
strictive type of graphs. The A-MIMO algorithm provably
bounds planning time, but is applicable only to single-goal
planning problems (Jinnai et al. 2019a). By contrast, our al-
gorithm minimizes expected planning time averaged over all
goals, and thus can be used in a multi-goal context. Cover-
ing Options bounds the expected number of steps needed to
reach a rewarding state with a random walk (Jinnai et al.
2019b). Assuming the agent acts randomly gives a bound
on the worst-case time to travel between two states. This as-
sumption is overly pessimistic in practice and minimizing
cover time applies to option discovery in single task MDPs.
Due to the similarity in approach and problem formulation,
we empirically compare against Covering Options.

3 Average Options
Consider a graph representation of an MDP where the nodes
are states and edges are actions. We can think of (point-) op-
tion discovery as the process of identifying which two nodes
in the graph should be connected via a single edge. Where
might we add an edge to the original graph so that the result-
ing graph permits faster planning? While previous methods
have bounded planning time for single-goal MDPs, we pro-
pose a new method that provably minimizes planning time
averaged over a distribution of start and goal states.

Fortunately, the problem of finding which new edges
would minimize average planning time is closely related
to the well-studied k-medians with penalty (k-MP) prob-
lem. This problem is NP-Hard, but we can use a good
polynomial-time approximation algorithm find a set of k
bidirectional point options that minimize the average num-
ber of VI iterations needed to converge on the optimal value
function, V ∗. We first consider the case of deterministic
MDPs with invertible actions and then generalize to stochas-
tic communicating MDPs. We will show that our algorithm
is able to achieve a (4α, 2)- approximation of the optimal
set of options in polynomial time O(n2 log(n)+n3), where
n = |S|. Then we will show that our algorithm bounds plan-
ning time, specifically the number of iterations of VI.

3.1 Deterministic MDPs with Invertible Actions
Let O be a set of options. For a graph G, we denote adding
options to the graph as G+O = G′. G′ has the same vertices
as G and for each o ∈ O an edge is added from the initiation
state of o to its termination state. We take the added edges in
G′ to have length 1 and the distance on G′ is defined as the
shortest-path distance.

For a graph G with added options O now define d(G′)

and the average distance, AvgDist(G′), as

d(G′) =
∑
s∈S

∑
s′∈S

dG′(s, s′), (2)

and
AvgDist(G′) = d(G′)/|S|2. (3)

For a given MDP M and corresponding graph G, we want
to find the set of k point options O such that AvgDist(G′) is
minimized. We prove in Section 3.3 that this is a bound for
the number of iterations of VI, so minimizing AvgDist(G′)
is equivalent to minimizing average planning time.

The length of the shortest path from s to s′ in G is written
as dG′(s, s′) or d(s, s′) when the graph is implied. Note that
minimizing d(G) is equivalent to minimizing AvgDist(G).
To find such a set of k point options we first find a set of
states F , |F | = k+1, which minimizes cost for the (k+1)-
medians with penalties problem on an augmented version
of the graph G. We augment G so that the cost of a can-
didate k-MP solution is the average distance in the graph
when the k states in F are connected with options. Searching
for a cost minimizing k-median with penalties solution thus
reduces the bound on average distance. We construct the
augmented graph G analogously to Meyerson and Tagiku
(2009) and summarize the construction here. Consider a set
C constructed by creating a duplicate uuv of each state u
in the graph for each other state v and assigning a penalty
corresponding to the distance of the state pair d(u, v). Con-
ceptually, the cost of each state uuv in C now corresponds
to either the distance to the nearest states in F or its penalty,
d(u, v), which is connecting u to v directly without options.
Evaluating this cost over all cities uuv and uvu we get that
the cost corresponds to the total distance between all pairs
of states through primitive actions or options. This gives us
the following algorithm as in theorem 4 of Meyerson et al.:

1. Given a graph G and distance function d let F = S, the
vertices of G. Construct the set of states C by duplicating
each node u (2|S|−2) times to form uuv and uvu for each
v ∈ S. Define the distance d(i, uvu) to be d(i, u) for all
i ∈ S and uvu ∈ C and assign each uvu a penalty of
d(u, v)− 2.

2. Solve the (k+1)-MP problem given F , C, the cost func-
tion d, and penalties as defined in the previous step. Let
F be the set of k + 1 states chosen by the algorithm.

3. Select a state s in F and construct k options connecting
the states in F \ {s} to s.

Theorem 4 of Meyerson et al.. There exists a polynomial-
time (4α, 2)-approximation algorithm for ASPDM. In par-
ticular, this algorithm gives at most 2k − 1 edges yielding
cost at most 4α-times the optimum k-edge cost.

In the resulting construction, the options are connected as
a star and so any of the k states in F can be reached from
another in at most 2 steps. Connecting states u and v with an
option corresponds to paying the cost for u to be connected
to a state in F , a fixed cost of 2, and the cost for v to be
connected to a state in F . This corresponds to traveling from
u to the nearest option, taking at most 2 options, and then
traveling the remaining distance to v.



3.2 Approximation Ratio and Run-Time Analysis
Since we consider the special case of point options connect-
ing pairs of states, we can equivalently think of them as
“shortcut edges” that we add to the underlying graph. These
edges will have length δ = 1 because it takes 1 step to look
ahead or back up values through such edges during planning.
The weights wuv for each pair of states u, v ∈ S are also set
to 1 because we care about the average distance between
all states equally.1 As given by theorem 4 of Meyerson and
Tagiku (2009) we have that the construction given above is
a polynomial time (4α, 2)-approximation algorithm.

Computing the distances between all pairs of states in
the graph G with n vertices and m edges can be done in
O(n2 log(n)) time (Kumar, R, and Iyer 2009). Solving the
k-median problem exactly is known to be NP-Hard so we are
forced to use an approximation instead (Kariv and Hakimi
1979). The k-median with penalties subroutine with α < 2
can be done in O(n3) time (Jain et al. 2002) although the α
and run-time vary with choice of k-median algorithm. The
total run-time of our algorithm is O(n2 log(n) + n3).

3.3 Bound on Planning Time
We now demonstrate that d(G) bounds the number of iter-
ations necessary for convergence of VI, by considering the
specific case of a deterministic MDP with a single goal state.
This bound also extends to the multi-goal setting because
the bound for convergence over all tasks is the maximum
number of VI iterations for any single task. This bound does
hold for both the discrete domains and discretized continu-
ous domains used to evaluate option discovery methods in
the empirical results section.

For a deterministic MDP we can rewrite the VI update as

Vt+1(s) = max
a∈A

(
R(s′) + γVt(s

′)

)
with s′ = T (s, a).

(4)
We assume that the reward function R is 1 for a single

state g ∈ S and 0 everywhere else and that the state g is
absorbing. With these assumptions we can consider running
VI until convergence in a finite number of iterations and take
V (s) for some s ∈ S. By expanding the VI update equation
above we have that V (s) obtains its value from the state g
along the shortest path from g to s. The value of V (s) is
consequently γd(g,s). This also tells us that the V (s) ob-
tains this value after d(g, s) iterations and by assumption
never changes again. This means that the number of itera-
tions of VI necessary to plan to reach a certain goal g ∈ S
can be written as maxs∈S d(s, g) and the average over all
goal states is

∑
g∈S maxs∈S d(s, g). Notice that the average

steps to convergence of VI over goals is upper bounded by
the average graph distance:∑

g∈S

max
s∈S

d(s, g) < d(G) =
∑
s∈S

∑
s′∈S

d(s, s′). (5)

1We could also deal with non-uniform task distributions with
minimal changes to our approach.

Therefore, by minimizing the average distance for a given
graph we minimize the upper bound for number iterations
of VI before convergence.

3.4 Stochastic MDPs
We now generalize our algorithm to the case of stochas-
tic communicating MDPs (actions are not necessarily in-
vertible). An MDP is said to be communicating, if for any
pair of states s, s′ ∈ S there exists a sequence of ac-
tions a0, a1, . . . an with non-zero probability of reaching s′

from s, P (sn = s′|s0 = s, a0, a1, . . . an) ̸= 0. If the
MDP is communicating then the directed graph represent-
ing the MDP is strongly connected. We redefine the dis-
tance d(s, s′) for the stochastic communicating MDP M to
be the expected number of steps to reach s′ using the op-
timal policy π∗

s′ starting from state s. Note that d(s, s′) is
not necessarily equal to d(s′, s). We now define D(s, s′) =
d(s, s′) + d(s′, s) and show that it is a distance metric satis-
fying symmetry and the triangle inequality.

D(s, s′) = d(s, s′) + d(s′, s) =

d(s′, s) + d(s, s′) = D(s′, s)

D(s, s′′) = d(s, s′′) + d(s′′, s) <

d(s, s′) + d(s′, s′′) + d(s′′, s′) + d(s′, s)

= D(s, s′) +D(s′, s′′), for states s, s′, s′′ ∈ S.

As in the discrete case, we define the average distance D for
a graph as D(G) =

∑
s,s′∈S D(s, s′) = 2∗

∑
s,s′∈S d(s, s′).

Importantly, minimizing D(G) is equivalent to minimizing∑
s,s′∈S d(s, s′). Because D is symmetric and satisfies the

triangle inequality, we know that the k-MP algorithm is still
admissible and so the proposed algorithm can be extended
to stochastic communicating MDPs using this new distance
function. Furthermore, the reasoning for the approximation
ratio remains the same: we can connect the endpoints of the
optimal set of options O∗ as a star to get Ô with D(G+Ô) <
2D(G+O∗) using at most twice as many options. The k-MP
subroutine pays at most 2D(u, v) for each pair u, v ∈ S, so
it has cost less than 2αD(G + Ô). For a solution O to the
k-MP subroutine we have that:

D(G+O) ≤ 2αD(G+ Ô) < 4αD(G+O∗). (6)

Therefore, our algorithm still finds a (4α, 2)-approximation
for the optimal set of options O∗.

3.5 Fast Average Options
Average options minimizes the average distance between
states with bounded suboptimality, but it is resource inten-
sive and impractical in large domains. The time and space
complexity of Average Options can be significantly reduced
by replacing the k-MP subroutine with a related problem,
k-medians2. We call this amended algorithm Fast Average

2For a graph G, k-medians aims to find a set of states F ,
|F | = k, such that the sum of the distances from any state to the
nearest state in F is minimized. For k = 1 this is equivalent to find-
ing the centroid of G (Pozanco et al. 2019; Karpas 2022; Pozanco,
Torralba, and Borrajo 2024).



Average Options Covering Options Eigen Options

Average Options Covering Options Eigen Options

Figure 1: Visualization of options generated in discrete domains. Shaded grid squares denote walls, lines are the generated
options, and the red points are option initiation and termination states. On small domains like these, Fast Average Options
generates very similar options to Average Options and is omitted.

Options. Fast Average Options no longer has the same bound
on suboptimality but performs similarly empirically and pro-
vides a significant improvement on run time.

3.6 Average Options in Continuous Domains
To use our method in continuous domains, we first discretize
the state-space using a set covering (Lobel et al. 2022) gen-
erated by iterating over all the states and adding states to
the set cover when they are a distance greater than ρ to all
other states in the set cover. Then we build a graph on the
set covering by joining states within distance ϵ of each other
or if they are k-nearest neighbors (Tenenbaum, de Silva, and
Langford 2000). Finally, we run our algorithm on the result-
ing discretized graph of the domain. The radius of the ϵ-balls
used for the set cover is the discretization factor, ρ.

In continuous domains, we can no longer use point op-
tions because the probability of the agent being in a single
state approaches zero. We therefore extend the initiation set
of a point option to be a small ϵ-ball around the initiation
state.

4 Empirical Results
Discrete Domains. First, we qualitatively evaluate our al-
gorithms on two discrete grid-world domains: 9x9 grid and
Four-Rooms (Sutton, Precup, and Singh 1999). Figure 1
shows a qualitative comparison between Average Options,
Covering Options (Jinnai et al. 2019b) and Eigen Options
(Machado et al. 2018). Covering Options and Eigen Options
connected the corners of the 9×9 grid (top row) and the Four

Rooms (bottom row). On the other hand, Average Options
connects more central states in 9× 9 grid and the centers of
the four rooms—by connecting the centers of the different
rooms, the agent learns options that minimize graph distance
on average over all goal states.

We quantitatively compare all methods on four discrete
domains: 9x9 grid, Two-Rooms, Four-Rooms and Towers of
Hanoi; these domains are taken without modification from
Jinnai et al. (2019c). For Average Options we use a k-
median with penalties subroutine with an approximation ra-
tio of α = 5 for improved run-time (Arya et al. 2001).

For each method, we generate a set of n options O and
then run VI for every goal g ∈ S in the graph G + O. For
each run of VI, we make g an absorbing state with reward 1
and give all other states a reward of 0. We run VI until con-
vergence and record the number of iterations taken. We then
average the number of iterations over all goals. Average op-
tions consistently performs better across the tested domains
(Figure 2). Fast Average Options has variable performance
but tends to outperform Covering Options and Eigen Op-
tions as the environment gets larger.

Continuous Domains. We compare Fast Average Options
to Covering Options and Eigen Options on Ant U-maze (Fu
et al. 2020) and Fetch-Reach (Plappert et al. 2018). In Ant
U-maze, we have to control a quadrupedal robot in a U-
shaped maze (Fu et al. 2020) and in Fetch-Reach, we have to
manipulate a robotic arm to reach specific points in 3D space
(Plappert et al. 2018). Domain parameters are in Appendix
A.4.



(a) 9x9 grid (b) Towers of Hanoi

(c) Two Room (d) four-room

Figure 2: Comparison of the average number of steps for convergence of VI on 9x9 gird, fourroom, Hanoi, and tworoom
environments; error bands denote standard error over all possible goals; lower is better.

Figure 3: Discretized graph on Ant U-Maze with ρ = 6.5,
ϵ = 0.5, k = 10. The state-space has 29 dimensions, but
only the (x, y) location of the Ant is visualized here.

To generate options for continuous domains, we construct
a discretized graph as described in Section 3.6. For each
method, 4, 8, and 16 options are constructed using the dis-
cretized graph and planning time is averaged over a collec-
tion of start-goal pairs. Details on start and goal state selec-
tion are in Appendix A.4.

Figure 4 shows the options discovered by Average Op-
tions in Ant U-Maze; qualitatively speaking, these options
effectively navigate the ant to different regions of the maze.
To quantitatively evaluating all methods in continuous do-
mains, we use “Random Shooting” (Tedrake 2022) for plan-
ning, a simple trajectory optimization algorithm, where the
planner samples 400 trajectories composed of primitive ac-
tions and learned options, then executes the trajectory that
minimizes the Euclidean distance to the goal. Trajectory
optimization is repeated until the goal state is reached or
10, 000 actions are sampled. The number of sampled actions
is averaged over start-goal pairs to compute average plan-
ning time. Detailed description of the planning algorithm
and experimental setup are in Appendix A.4.

In Figures 5 and 6, we see that Fast Average Options out-
performs both Covering Options and Eigen Options. We also
note that Average Options provides a greater improvement



Figure 4: Options discovered in Ant U-Maze. Initiation sets are shown as sampled ant poses; the termination state is shown as
one ant.

Ant U-Maze Environment

(a) ρ = 6.5

(b) ρ = 8

Figure 5: Mean planning time as a function of the number of
discovered options in Ant U-Maze; error bands are standard
error over 156 start-goal pairs; lower is better.

to planning time than Fast Average Options, although this
comes at the cost of greater computation time.

5 Conclusion
We presented a formal objective for discovering options that
are useful for planning in a multi-goal setting. We derived an
exact algorithm, Average Options, that provably minimizes
planning time and bounded the algorithm’s sub-optimality.
In addition to this exact algorithm, we also presented Fast

Fetch-Reach Environment

(a) ρ = 0.1

(b) Option generated in Fetch-Reach Environment

Figure 6: Mean planning time vs the number of discovered
options in Fetch-Reach (top); error bands are standard error
over 81 start-goal pairs; lower is better. Visualization of an
option discovered by Fast Average Options in Fetch-Reach
(bottom).

Average Options, with improved run-time and compara-
ble empirical results to Average Options. Empirically, we
demonstrated that our algorithms consistently outperform
competing methods in challenging control problems.
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