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Abstract of Skill Discovery for Exploration and Planning, by Akhil Bagaria, Ph.D.,

Brown University, May 2025.

General-purpose agents must sense the world using high-dimensional sensors such as

cameras and affect the world using low-level actions such as motor torques. Such a rich

input and output space allows the same agent to solve many tasks, but complicates the

efficient search for solutions. To solve any specific problem efficiently, the agent must form

abstractions—only retain the information necessary to make good decisions in the current

task. Sequential decision-making problems permit two types of abstraction: state and

action abstractions; this thesis studies how artificial agents may autonomously acquire

both types of abstraction via interaction with an environment.

Hierarchical reinforcement learning (HRL) is our starting point for action abstraction

because it augments the agent’s action set with temporally extended actions called skills.

When a human programmer carefully designs temporally extended skills for an AI agent,

it can rapidly solve many challenging tasks. But, how can an agent automatically discover

skills that are useful for obtaining mastery over the environment? We present algorithms

that discover skills that are temporally composable, meaning that they can be reliably

executed one after the other to solve long-horizon problems.

Action abstraction, although necessary, is not sufficient for effective decision making;

it must be accompanied by state abstractions. We provide algorithms that can learn

state abstractions that complement the skills discovered by the agent so that it may

create a whole new decision problem that is easier to solve than the original one it was

faced with. Solutions in the abstract decision problem correspond to good solutions in

the original problem, providing a way for artificial agents to rapidly make high-quality

decisions. These algorithms bridge the gap between classical AI techniques that specialize

ix



in symbolic search, and deep reinforcement learning techniques that effectively deal with

high-dimensional and continuous sensorimotor spaces.

Finally, we tackle the problem of exploration in vast environments: when the agent

interacts with a large environment, what data should it collect so that it can maximize

its learning progress? Here, we present algorithms for discovering those goals that are

controllable, reachable, novel, and task-relevant as a way of guiding the curiosity of the

agent. Taken together, this thesis presents algorithmic ingredients for building agents that

explore with the intention of building plannable models of the world that are abstract in

both state and time.

x



Contents

Acknowledgments vi

1 INTRODUCTION 1

1.1 Reinforcement Learning and Abstractions . . . . . . . . . . . . . . . . . 3

1.2 Exploration in Reinforcement Learning . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 8

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Learning from Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Model-free RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Model-based RL and Exploration . . . . . . . . . . . . . . . . . . 15

2.4 General Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 The Options Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Option Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Connection between Options and GVFs . . . . . . . . . . . . . . 22

2.6 Goal-conditioned RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Goal-conditioned RL is Closely Linked to Options . . . . . . . . . 24

2.6.2 Hindsight Experience Replay . . . . . . . . . . . . . . . . . . . . . 24

xi



2.7 Related Work on Option Discovery . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Spectral Methods for Option Discovery . . . . . . . . . . . . . . . 25

2.7.2 Empowerment based Skill Discovery . . . . . . . . . . . . . . . . 27

2.7.3 Option Discovery from Extrinsic Rewards . . . . . . . . . . . . . 30

2.7.4 Discovery using Meta-Learning . . . . . . . . . . . . . . . . . . . 33

2.7.5 Option Discovery with Formal Guarantees . . . . . . . . . . . . . 35

2.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Option Discovery using Deep Skill Chaining 40

3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Intra-Option Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Policy Over Options . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Initiation Set Classifier . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.4 Generalizing to Skill Trees . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5 Optimality of Discovered Solutions . . . . . . . . . . . . . . . . . 45

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Comparative Analyses . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Interpreting Learned Skills . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Robustly Learning Composable Options in Deep Reinforcement Learn-

ing 53

4.1 Robustly Learning Composable Options . . . . . . . . . . . . . . . . . . 55

4.1.1 Dual Initiation Classifiers to Avoid Shrinkage . . . . . . . . . . . 56

4.1.2 Robust Subgoals via Goal State Selection . . . . . . . . . . . . . . 56

4.1.3 Learning Robust Option Policies . . . . . . . . . . . . . . . . . . 58

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Evaluating Robustness . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



4.2.3 Evaluating Hierarchical Optimality . . . . . . . . . . . . . . . . . 62

4.2.4 Learning Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Effectively Learning Initiation Sets in Hierarchical Reinforcement Learn-

ing 66

5.1 Effectively Learning Initiation Sets . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Initiation Value Function (IVF) . . . . . . . . . . . . . . . . . . . 69

5.1.2 Combining Classification and the Initiation Value Function . . . . 71

5.1.3 Overcoming Pessimistic Bias . . . . . . . . . . . . . . . . . . . . . 72

5.1.4 Pessimistic Bias: Connections to Non-Hierarchical MDPs . . . . . 73

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Measuring the Quality of Initiation Sets . . . . . . . . . . . . . . 75

5.2.2 Robot Manipulation: Identifying Promising Grasps . . . . . . . . 78

5.2.3 Improving Option Discovery . . . . . . . . . . . . . . . . . . . . . 79

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Skill Discovery for Exploration and Planning using Deep Skill Graphs 83

6.1 Deep Skill Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.2 Overview of the Graph Construction Algorithm . . . . . . . . . . 86

6.1.3 Graph Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.4 Graph Consolidation . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.5 Querying the Skill Graph at Test Time . . . . . . . . . . . . . . . 91

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.3 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Intrinsically Motivated Discovery of Temporally Abstract World Model

Graphs 98

7.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Intrinsically Motivated Deep Skill Graphs . . . . . . . . . . . . . . . . . 104

7.2.1 Semantics of the Skill Graph . . . . . . . . . . . . . . . . . . . . . 104

7.2.2 Graph Construction Algorithm . . . . . . . . . . . . . . . . . . . 105

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.1 Domain Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3.3 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 Scaling Goal-based Exploration via Pruning Proto-goals 123

8.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Goals and Proto-goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2.1 Example Proto-goal Spaces . . . . . . . . . . . . . . . . . . . . . 127

8.2.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2.3 Goal Recombinations . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 Proto-goal Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.1 Plausibility Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.2 Desirability Weighting . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4 Integrated RL Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4.1 Which Goal to Pursue in the Current State . . . . . . . . . . . . . 133

8.4.2 Which Goals to Learn about in Hindsight . . . . . . . . . . . . . 134

8.4.3 Mastery-based Goal Recombination . . . . . . . . . . . . . . . . . 134

8.4.4 Distributed RL Agent Implementation . . . . . . . . . . . . . . . 135

8.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiv



8.5.1 Tabular Experiment: Exploration in Taxi . . . . . . . . . . . . . 136

8.5.2 Verifying the Controllability Measure . . . . . . . . . . . . . . . . 137

8.5.3 Natural Language Proto-goals: MiniHack . . . . . . . . . . . . . 139

8.5.4 Doubly Combinatorial Puzzles: Baba Is You . . . . . . . . . . . 141

8.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 142

9 Going Beyond State-Reaching: Learning Abstractions for Intrinsically

Motivated Skill Discovery 144

9.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 146

9.1.1 Learning Subgoal Achievement Classifiers . . . . . . . . . . . . . . 146

9.1.2 Options of feature attainment . . . . . . . . . . . . . . . . . . . . 148

9.2 Method: Abstract Subgoal Discovery . . . . . . . . . . . . . . . . . . . . 148

9.2.1 Generating Exploratory Behaviors . . . . . . . . . . . . . . . . . . 150

9.2.2 Identifying Interesting Events . . . . . . . . . . . . . . . . . . . . 150

9.2.3 Feature Selection Algorithm . . . . . . . . . . . . . . . . . . . . . 151

9.2.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2.5 Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.3.1 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10 Discussion and Conclusion 158

10.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 159

10.2 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Parts of this thesis were conducted in collaboration with others and have been previously

published elsewhere.

• Chapter 3 is based on work led by myself, conducted with George Konidaris, and

published in the International Conference on Learning Representations (ICLR),

xv



2020.

• Chapter 4 is based on work led by myself, conducted with Jason Senthil, Matthew

Slivinski, and George Konidaris, and published in the International Joint Conferences

on Artificial Intelligence (IJCAI), 2021.

• Chapter 5 is based on work led by myself, conducted with Ben Abbatematteo,

Omer Gottesman, Matt Corsaro, Sreehari Rammohan, and George Konidaris, and

published in the Advances in Neural Information Processing Systems (NeurIPS),

2024.

• Chapter 6 is based on work led by myself, conducted with Jason Senthil and George

Konidaris, and published in the International Conference on Machine Learning

(ICML), 2021.

• Chapter 7 is based on work led by myself, conducted with Anita De Mello Koch,

Rafael Rodriguez, Sam Lobel, and George Konidaris, and is currently under submis-

sion at the Reinforcement Learning Conference (RLC), 2025.

• Chapter 8 is based on work led by myself, conducted with Tom Schaul, and published

in the International Joint Conferences on Artificial Intelligence (IJCAI), 2024.

• Chapter 9 is based on work led by myself, conducted with Anita De Mello Koch, and

George Konidaris, and has been accepted for presentation at the Multi-Disciplinary

Conference on Reinforcement Learning and Decision-Making (RLDM), 2025.

xvi



List of Figures

3.1 DSC learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 DSC learned initiation sets . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 DSC solution trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 The non-stationary subgoal problem . . . . . . . . . . . . . . . . . . . . . 55

4.2 Test environments for Robust DSC . . . . . . . . . . . . . . . . . . . . . 57

4.3 Evaluating robustness of skill composition . . . . . . . . . . . . . . . . . 61

4.4 Subgoal sampling in Robust DSC . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Robust initiation classifiers in Ant Reacher . . . . . . . . . . . . . . . . . 63

4.6 Learning curves for Robust DSC . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Robust DSC solution trajectory . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Challenges of learning initiation sets online . . . . . . . . . . . . . . . . . 69

5.2 Pessimistic bias of initiation set learning . . . . . . . . . . . . . . . . . . 73

5.3 Domains to test initiation learning . . . . . . . . . . . . . . . . . . . . . 75

5.4 Measuring the quality of learned initiation sets . . . . . . . . . . . . . . . 77

5.5 Learning curves for grasping tasks . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Promising grasp poses learned by IVF . . . . . . . . . . . . . . . . . . . 80

5.7 Learning curves with improved initiation sets . . . . . . . . . . . . . . . . 81

6.1 Overview of DSG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Overview of graph consolidation . . . . . . . . . . . . . . . . . . . . . . . 89

xvii



6.3 Demonstration of exploration with DSG . . . . . . . . . . . . . . . . . . 92

6.4 Incremental expansion of the skill graph . . . . . . . . . . . . . . . . . . 93

6.5 DSG learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Discovered skill graph in large Ant Maze . . . . . . . . . . . . . . . . . . 96

7.1 IM-DSG Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 IM-DSG Illustration of Abstract MDP . . . . . . . . . . . . . . . . . . . 111

7.3 Domains used to test the IM-DSG agent . . . . . . . . . . . . . . . . . . 115

7.4 Skill graph discovered by IM-DSG . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Policy execution in Sokoban . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.6 IM-DSG learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.7 IM-DSG Ablations and Multi-task Performance . . . . . . . . . . . . . . 120

8.1 Illustration of Proto-goal RL . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 Illustration of Proto-goal space in NetHack . . . . . . . . . . . . . . . . . 128

8.3 Goal space refinement in SparseTaxi . . . . . . . . . . . . . . . . . . . 135

8.4 Proto-goal learning curves in SparseTaxi . . . . . . . . . . . . . . . . . 136

8.5 Proto-goal learning curves in MiniHack . . . . . . . . . . . . . . . . . . 137

8.6 Evaluation of Controllability GVF . . . . . . . . . . . . . . . . . . . . . . 138

8.7 Proto-goals learning curves in Baba Is You . . . . . . . . . . . . . . . . 139

9.1 Illustration of abstract subgoal classifiers . . . . . . . . . . . . . . . . . . 149

9.2 Subgoal classifier feature selection . . . . . . . . . . . . . . . . . . . . . . 151

9.3 Goal achievement classifiers in MiniGrid . . . . . . . . . . . . . . . . . . 155

9.4 Factored Options Learning Curves . . . . . . . . . . . . . . . . . . . . . . 156

xviii



CHAPTER 1

INTRODUCTION

Abstraction is key to decision making. Humans and other animals form abstractions—

they perceive and act in a complex sensorimotor space, but they plan and reason using

representations that discard vast amounts of irrelevant information to focus only on what

is task-relevant (Tenenbaum et al., 2011). This ability to abstract is what allows us to

effortlessly make countless decisions in a complex, high-dimensional world (Ho et al., 2021;

Gershman, 2017). When AI agents are given a concise description of a specific problem,

they are able to outperform humans in several high-profile domains, such as Chess and

Go (Silver et al., 2017b). However, can we create general-purpose agents that acquire

powerful, problem-specific abstractions themselves?

The necessity for abstractions stems from the fact that general-purpose agents must

perceive the world via high-dimensional sensors such as cameras and IMUs and affect the

world via low-level actions like motor voltages and torques. The vastness of this input

and output space is not a luxury or a design error—it is what allows a single agent to

solve a large variety of tasks (Konidaris, 2019). For example, if the same agent has to

navigate the world, play chess, write a sonnet, program a computer, change a diaper, solve

equations, cook a tasty meal, and so on (Heinlein, 1973), its sensorimotor space must

be large enough to represent all of those tasks. Although the expansion of the agent’s
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sensorimotor space in this way affords generality, it does not permit efficient solutions.

To solve problems efficiently, we humans frame different tasks succinctly in terms of the

relevant variables. For example, when playing chess, we only need to pay attention to the

state of the game but may ignore information such as the material of the chess pieces, the

angle from which the chess board is viewed, or even the weather outside. Imagine for a

moment if that were not the case—if in addition to predicting our opponent’s moves, we

also had to predict the weather in Boston, surely we would be unable to play good moves.

But once we are able to distill all the information needed to play chess, we can use simple

heuristic search (Knuth and Moore, 1975) to play at an average human level or employ

more sophisticated neural networks to play at a super-human level (Silver et al., 2017b).

The challenge is therefore to automatically determine the abstractions needed, and then

deploying simple solution methods that best complement those abstractions.

Broadly, decision-making problems permit two types of abstractions: state and action

abstractions. Action abstraction generates discrete units of behavior, called skills, from

the set of single timestep actions (or primitive actions) initially available to an agent.

For example, a human working in an office saves a sequence of joint-level torques as

a temporally extended abstract action, or skill, called “opening a door.” After having

done so, they can treat that skill as an atomic unit and execute it without having to

specify how it operates. State abstraction retains only the relevant part of the agent’s

observation stream, while discarding details that are irrelevant for its current task. An

agent capable of constructing both types of abstractions can represent each problem of

interest as a simplified decision problem, which permits a quick, satisficing solution. This

thesis will begin by focusing on how agents may acquire their own action abstractions,

while progressing to methods that address the simultaneous acquisition of both state and

action abstractions.
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1.1 Reinforcement Learning and Abstractions

The endeavor of creating general-purpose agents that can solve a vast variety of problems

in large, complex environments is elegantly captured by the reinforcement learning (RL)

problem (Sutton and Barto, 2018). RL agents sense a part of the environment and must

act in it at every single timestep; actions are chosen with the aim of maximizing reward,

which is a real-valued number that expresses the goals and purposes of that agent (Sutton,

2004; Littman, 2017). The generality of the RL problem definition perfectly complements

our desire to create general-purpose agents: although agents are severely bounded in

memory and computation (compared to the vastness of the environment) (Simon, 1991;

Russell and Subramanian, 1994; Sutton et al., 2022), they must incrementally improve

the quality of their actions, no matter the specific characteristics of the environment or

their specific goals and purposes (Silver et al., 2021).

The generality of the RL problem definition, while necessary, poses a challenge for our

solution methods. In particular, our agents must confront the challenges of sensing and

acting in high-dimensional spaces, while dealing with potentially large time delays between

chosen actions and received rewards. Recent deep reinforcement learning algorithms

(DRL) (Mnih et al., 2015) have made significant progress on some of these problems, but

we are yet far from creating RL agents that can deal with the vastness and generality

of the real world. A crucial ingredient missing from existing solution methods is their

inability to acquire and leverage state and action abstractions.

How does the concept of learning abstractions fit into the RL framework? Hierarchical

reinforcement learning (HRL) (Barto and Mahadevan, 2003) is a natural starting point for

action abstraction because it augments the agent’s action set with temporally extended

actions called skills, which are mathematically modeled as options (Sutton et al., 1999).

An option encodes a behavior via a policy, a way of initiating and a way of stopping.

Options, unlike primitive actions, last for variable number of timesteps and can invoke

the execution of other options. An agent with temporally extended options can escape
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the “curse of horizon”, which is the problem that the quality of agent’s predictions (and

decisions) degrade rapidly the further ahead in the future it tries to look (Sutton et al.,

1999, 2011). It has been clear for a long time that options can be immensely useful, but

the core question is: where do good options come from? Can an agent discover them

autonomously while interacting with the environment? This is known as the skill discovery

problem (or equivalently, the option discovery problem), and it is the first pillar of this

thesis.

Action abstraction, although necessary, is not sufficient for effective decision making;

it must be complemented by state abstractions. Function approximation is a good

starting point for state abstraction (indeed, this is the lesson from much of deep learning

(Goodfellow et al., 2016)), but it is not enough. One reason for this is that the features

learned by function approximators are not automatically amenable to planning, which

is key to sample-efficient learning and high-quality decision-making (Tenenbaum, 2018).

So, how can we learn a state abstraction that complements the options discovered by the

agent while unlocking the capabilities of long-horizon planning (Konidaris et al., 2018)?

This is the second pillar of this thesis.

Several other works have identified the importance of state and action abstractions

(for e.g, Allen (2023); Abel (2020); Machado (2019)), but few have addressed them

simultaneously. This approach misses out on a key benefit of abstraction: when learned

jointly, the agent can create a whole new decision problem, but one that is easier to solve

than the original one that it was faced with. If this new abstract decision problem is well

“grounded” (meaning that good behaviors in the abstract problem correspond to good

behaviors in the real environment), the agent can use methods from search/planning to

make high quality decisions with relative ease. This drive to interleave the acquisition of

both types of abstraction in a single algorithm is the third pillar of this thesis.
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1.2 Exploration in Reinforcement Learning

Most machine learning paradigms are concerned with how to learn patterns in a

previously acquired dataset (Bishop and Nasrabadi, 2006). However, reinforcement

learning agents must additionally solve the problem of exploration: what data should be

collected in the first place? Of course, this problem is ubiquitous in the natural world;

for example, human babies have an extended period of play, where they seem to perform

experiments that tease out how the world around them works (Gopnik et al., 1999; Gopnik,

2020). This exploration of the world is crucial: without a drive to seek out new, interesting

data, an agent has no hope of understanding how the world works, let alone have a policy

that achieves complex goals and purposes.

Within RL, the exploration question has often either been viewed as an afterthought

(most commonly, methods follow a noisy version of their current approximation of the

optimal policy) or through the lens of novelty maximization (Schmidhuber, 2010b; Chen-

tanez et al., 2005; Brafman and Tennenholtz, 2002), wherein the reward function is

augmented with a bonus (Sutton, 1990; Täıga et al., 2019) that encourages visiting new

states. However, the number of possible states in the world is so large that an agent

trying to visit them all is unlikely to discover anything interesting. Through this thesis, I

argue that the problem of exploration is better seen as a drive to discover models of the

world that are abstract in both state and time. This approach has the additional benefit

that it frees the agent from having to learn an accurate one-step model of the world,

which is difficult due to model prediction errors compounding over time (Janner et al.,

2019; Talvitie, 2017). In particular, by discovering options and the state-abstractions that

complement those options, an agent performs exploration in a way that builds relevant

knowledge about the world (Sutton et al., 2011; Schaul and Ring, 2013), which in turn

allows it to make better decisions. This is the fourth and final pillar of this thesis.
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1.3 Contributions

This thesis makes three contributions. The first is on the question of discovering

options that can be sequentially composed with high reliability. The second contribution

is to build graph-based models of the world that achieve state and action abstraction.

The third contribution is to forego coverage, and guide option discovery in promising

subspaces of the state-space.

1. Discovering sequentially composable skills. Sequential composition of skills,

i.e, the ability to execute one skill after another with high reliability, is central to

learning skills that are useful for planning. Chapter 3 introduces deep skill chaining

(DSC), a skill discovery algorithm in the simplified setting where an agent’s task

is to reach a pre-defined set of goal states. Chapter 4 discusses the challenges of

sequential composition of skills when their subgoal regions are changing over time,

as they do during the option discovery process. Chapter 5 discusses the problem

of effectively learning initiation sets of options, which we define as the region from

which option policy execution is likely to be successful. These initiation regions

reduce the effective branching factor of the decision making problem, leading to

more sample-efficient learning and robust composition.

2. Option discovery for exploration and planning. Exploration in RL can be

viewed as a drive to learn abstract models of the world and to continually increase

the region over which that model is reliable for planning. Chapters 6 and 7 discusses

how an agent builds a graph-based abstraction of the world, called a skill graph:

nodes of the graph correspond to abstract states and edges correspond to option

policies. The skill graph incrementally expands towards the frontiers of the agent’s

experience and supports high-level planning.

3. Option discovery beyond state-reaching. Ultimately, exploration (even using

options) is intractable if its objective is coverage, i.e, a drive to model all parts
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of the world. Chapter 8 introduces the concept of “proto-goals”, the space of all

possible goals that could drive the behavior of an agent. The proto-goal RL agent

then learns subspaces that are both plausible and desirable, and hence valuable for

guiding exploration. Finally, Chapter 9 presents a skill-discovery algorithm that

learns the proto-goal space assumed in Chapter 8; the result is a set of abstract

binary classifiers that only attend to a subset of state features in high-dimensional

observation spaces.

Taken together, this thesis presents algorithmic ingredients for building agents that

explore the world with the intention of building abstract, plannable models of the world.

This is achieved by first focusing on the option discovery question, then by reasoning

about the state abstractions needed to effectively plan with discovered options, and finally,

by interleaving the acquisition of state and action abstractions in a never-ending cycle so

that the agent can continually increase its competence in the world. But, before diving

into novel contributions, we next introduce the necessary background to understand the

remainder of this thesis and situate its contributions in related work.
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CHAPTER 2

Background and Related Work

Our goal is to create artificially intelligent agents, i.e, agents that possess the “com-

putational part of the ability to achieve goals in the world” (McCarthy, 1997). We will

begin by casting this overarching ambition into the reinforcement learning framework

(Section 2.3). Then, we will focus on certain properties that an agent must likely possess

for effective reward maximization; this will include topics such as exploration, model-based

RL, hierarchical RL, option discovery and finally, ways of integrating them all together.

2.1 Reinforcement Learning

Our ambition of creating artificially intelligent agents can be summarized with the

reinforcement learning problem. The RL problem captures the challenge faced by an agent:

it must sense the environment and take actions in it so that it achieves its own goals

and purposes. The reward hypothesis in RL distills the notion of “achieving goals and

purposes” into a the maximization of a scalar signal called the reward (Sutton, 2004;

Littman, 2017). This reward maximization is subject to certain constraints: the agent is

bounded in memory and computation and must react to changes in the environment in

real-time (Silver et al., 2021; Russell and Subramanian, 1994).
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The agent in the RL problem can be represented as a policy π that maps observations

ot to actions at. The environment on the other hand, is a system that receives the

agent’s action at and returns a new observation ot+1 and reward rt back to the agent; ot+1

reflects a partial view of the new internal state st+1 of the environment and rt represents

the feedback on how effective the agent’s action at was at time t. Anything outside

the computational process that produces actions (the agent) can be thought of as the

environment. This agent-environment boundary is often counter-intuitive; for example,

the program running inside a robot’s operating system that computes the next action is

considered to be the agent, while its own body (for example, the sensors and actuators) is

part of the environment. The reward rt is a real-valued scalar that captures the “goals

and purposes” of that agent (Sutton, 2004; Littman, 2017); for example, a PhD candidate

about to graduate could get a small negative reward for every day that they do not submit

their thesis.

Formally, the RL problem can be summarized as finding a policy π∗ that maximizes

the expected cumulative sum of rewards:

π∗ = argmax
π

Eπ

[∑
t

rt

]
. (2.1)

2.1.1 Markov Decision Processes

In this thesis, we make two simplifying assumptions about the RL problem. First, we

assume that time ticks in discrete units, even though in reality, time evolves continuously.

Second, we assume that the agent can sense the underlying state of the environment,

i.e, the current observation has all the information the agent needs to make an optimal

decision. This is a strong and unrealistic assumption: in the natural world, it would be

impossible for an agent to perceive the entire state of the world (maybe expressed as

the position and velocity of every particle). Even in many simpler problems of interest,

partial observability is ubiquitous and information that is key to good decision-making
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may be unavailable to the agent. Nevertheless, many problems in the world do afford

the agent the privilege of observing all relevant aspects of the environment, and we will

limit our discussion of abstraction discovery to such problems. As a result of the second

assumption, we will use the terms observation and state interchangeably.

A consequence of these simplifying assumptions is that we can limit space of envi-

ronments to those described as Markov Decision Processes (Puterman, 1994). An MDP

models discrete-time sequential decision-making problems composed of five quantities

M = (S,A,R, T, γ). S is the state-space, describing the possible configurations of the

world. A is the action space, the set of decisions the agent has to choose between.

R : S ×A→ R is the reward function that maps states and actions to a real-valued scalar

quantity. T : S × A→ ∆(S) is the transition function that maps states and actions to a

distribution over next states. Finally γ ∈ [0, 1] is the discount factor that encodes the

preference for near-term rewards over longer-term ones.

Central to the MDP is the Markov assumption which indicates that the transition

function and reward function both only depend on the current state and action, and not

the entire history:

T (st+1|st, at) = Pr(st+1|s0, a0, ..., st, at) = Pr(st+1|st, at),

R(st+1|s0, a0, ..., st, at) = R(st, at, st+1).

The agent interacts with the environment via its policy π : S → A, which prescribes

an action for every state in the MDP. When the policy is stochastic, the agent samples

from the probability distribution over actions a ∼ π(a|s).

The value function V π : S → R describes the expected cumulative reward when

following policy π from state s:
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V π(s) = Eπ [R(s, a) + γEs′∈S[V π(s′)]]

=
∑
a∈A

π(a|s)
∑
s′∈S

[R(s, a, s′) + γT (s′|s, a)V π(s′)] .

The action-value function Qπ : S × A→ R describes the expected cumulative reward

obtained from taking action a from state s and then following policy π thereafter:

Qπ(s, a) =
∑
s′∈S

[R(s, a, s′) + γT (s′|s, a)V π(s′)] .

We will represent the value function and the action-value function of the optimal policy

as V ∗ and Q∗ respectively:

V ∗(s) = max
a

(∑
s′

R(s, a, s′) + γT (s′|s, a)V ∗(s′)
)
.

2.2 Planning

When the transition and reward functions are known to the agent, it can use planning

to find a policy. Here we discuss planning via dynamic programming and refer readers to

other sources (for example, Ghallab et al. (2016) and Russell and Norvig (2020)) to learn

about other approaches.

Policy Evaluation. The policy evaluation problem can be described as the following

question: given a policy π, how much reward does the agent expect to accumulate from

following it from a state s? This question can be answered by iteratively applying the

Bellman Expectation Equations:
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V π
k+1(st) = Eπ[rt+1 + γVk(st+1)] =

∑
a

π(a|s)
∑
s′,r

Pr(s′, r|s, a)
[
r + γVk(s

′)
]
. (2.2)

The fixed-point of this iteration is the true value function of the policy π.

Policy Improvement. Having evaluated the value of a policy, we now turn our attention

to policy improvement, which is the process by which we can derive a new policy π′ from

an old policy π by making it greedy with respect to the value function of the old policy:

π′(s) = argmax
a∈A

∑
s′,r

Pr(s′, r|s, a)
[
r + V π(s′)

]
, (2.3)

where Pr(s′, r|s, a) is a shorthand for the combination of the next-state distribution

according to T (s′|s, a) and the reward function R(s, a, s′).

Policy Iteration. We can embed the evaluation of a policy π (Equation 2.2) and its

improvement to a new policy π′ (Equation 2.3) into a loop called the policy iteration loop,

which terminates upon finding the fixed-point, the optimal policy π∗ in the MDP.

Value Iteration. Every iteration of policy iteration fully evaluates the current policy

and then improves it to a new policy. Full policy evaluation however, might not be

necessary. Value iteration does a single iteration of policy evaluation followed by policy

improvement. Equivalently, value iteration can be thought of as turning the Bellman

optimality equation into an iterative update rule:

Vk+1(s) = max
a

E[r + γVk(st′)] = max
a

∑
s′,r

Pr(s′, r|s, a)
[
r + γVk(s

′)
]
,∀s ∈ S. (2.4)
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The sequence of value functions Vk converges to the fixed-point at the optimal value

function V ∗ (V0 can be initialized arbitrarily for this convergence).

Generalized Policy Iteration. Full sweeps of policy evaluation or improvement can

be computationally infeasible in large MDPs. Generalized Policy Iteration (GPI) refers

to the family of algorithms in which we interleave partial policy evaluation and iteration

until the value function and policy stops changing, which must happen at V ∗ and π∗

respectively. In other words, as long as we keep improving the value function and policy,

no matter how incremental, we can still arrive at the optimal quantities of interest.

2.3 Learning from Interaction

So far, we have seen how planning via dynamic programming can be used to convert

the transition and reward models into a policy. However, RL agents do not typically

have access to such models a priori ; instead they must learn how to maximize rewards

by simply interacting with the environment. This interaction produces a data stream

of the form (s0, a0, r0, s1, ..), and RL solution methods roughly fall into two categories:

model-free and model-based.

2.3.1 Model-free RL

It is possible to learn the optimal policy in an MDP without having to access to the

transition and reward functions or without even trying to approximate them. These

methods are known as model-free methods.

Temporal Difference Learning. Temporal difference (TD) learning (Sutton, 1988)

leverages observed transitions (st, at, rt, st+1) to update the value function V π of a policy

π. The TD error is defined as:
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δt = rt+1 + γV (st+1)− V (st), (2.5)

where the term rt+1 + γV (st+1) is a sample-based estimate of the full expectation in

the Bellman equation. In other words, rather than computing the expected value over all

possible next states and rewards, the agent uses the actual reward and the next state’s

value observed from the environment. The value function is then updated via:

V π(s)← V π(s) + αδt, (2.6)

where α ∈ (0, 1] is a step-size parameter.

Q-learning. TD learning can be used for off-policy control via the Q-learning algorithm

(Watkins and Dayan, 1992), which can be elegantly described using the following update

rule for the action-value function:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (2.7)

If all states and actions continue to be updated, then Q-learning recovers the opti-

mal action-value function Q∗, from which the optimal policy can be derived: π(s) =

argmaxaQ(s, a). For Q-learning to be effective, usually some exploration is needed: the

agent must occasionally pick exploratory actions, for example, by selecting an action

uniformly at random (called ϵ-greedy action-selection).

Deep Q-learning. Watkins and Dayan (1992)’s Q-learning algorithm was developed

for the tabular case. When there are too many states (and actions) to fit in a table, we

must resort to function approximation. Mnih et al. (2015) introduced the Deep Q-learning

algorithm where the agent’s Q-function is represented using a neural network θ called the

Deep Q-Network (DQN). The Q-function is updated in using transitions sampled from
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FIFO buffer (called a replay buffer (Lin, 1993)) using gradient descent on the following

loss function:

L(θ) = Eπ[(yt −Qθ(st, at)
2],

where the regression target yt can be written as:

yt = rt + γmax
at+1

Qθ′(st+1, at+1), (2.8)

where θ′ is known as a target network and it is a stale copy of θ that is updated

periodically. DQN has been augmented with several algorithmic improvements; for

example, double Q-learning (van Hasselt et al., 2016), prioritized experience replay

(Schaul et al., 2016), recurrent networks (Hausknecht and Stone, 2015; Kapturowski et al.,

2019) and distributed architectures with asynchronous acting and learning (Kapturowski

et al., 2019).

2.3.2 Model-based RL and Exploration

Model-based RL (MBRL) algorithms use the interaction data to first approximate the

transition and reward functions of the MDP, which can be done using maximum likelihood

supervised learning to yield an approximate model T̂ , R̂. This model is then turned into

a policy (and optionally a value function) using planning (possibly in combination with

model-free updates Sutton 1991). The agent can use this policy (perhaps augmented

with ϵ-greedy exploration) to pick actions, collect new data and subsequently improve its

model. This approach, while simple, suffers from some drawbacks.

The One-Step Trap and the Simulation Lemma

When a model is learned from finite data, some approximation error is unavoidable.

How does this model error relate to the quality of decisions made by the MBRL agent?

This question is answered precisely by a foundational result in MBRL, the Simulation
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Lemma (Kearns and Singh, 2002):

∀s, π : |V̂s − Vs| ≤
ϵR

1− γ
+

γϵT
(1− γ)2

,

where ϵR is error in approximating the one-step reward function and ϵT is the error in

approximating the one-step transition function. The simulation lemma captures the

challenge of doing one-step MBRL: the further we try to look ahead with our model

(as signified by a γ closer to 1), the worse our value approximation error becomes (as

γ → 1, |V̂ − V | → ∞). This result was later extended by Asadi et al. (2018) to the

function approximation case: not only does the value error depend on the timescale of the

problem, but it also depends on the expressivity of the function class used to approximate

the model. Taken together, these results tell us that the depth of planning is severely

constrained based on the one-step approximation error and the capacity of our function

approximators (Jiang et al., 2016; Talvitie, 2014). The challenge of effective one-step

MBRL is evocatively termed as the “one-step trap” by Sutton (2016).

Exploration for Model-based RL

Given that model-prediction error is unavoidable, it seems that the agent is doomed

to make exponentially bad decisions as the timescale of the problem increases. One

imperative resolution to this conundrum comes from exploration: even if the agent has

infinite capacity (“perfect” function approximators when the environment is not tabular),

it can only reduce model prediction error by collecting more data. But collecting additional

data is expensive because it involves interaction with the environment, so what data

should the agent preferentially collect so that it can maximally bound the regret it has

about its decisions?

Broadly, there are two classes of algorithms that seek to answer this question precisely:

Thompson sampling (TS) and optimism in the face of uncertainty (OFU). TS approaches

maintain a belief distribution about the model, sample from that distribution and take
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actions that are optimal under the sampled model (Thompson, 1933; Osband et al., 2013).

However, maintaining a Bayesian posterior over the space of models is intractable in large

spaces (Strens, 2000), so we do not discuss TS approaches further. OFU approaches like

E3 (Kearns and Singh, 2002), R-Max (Brafman and Tennenholtz, 2002) and MBIE-EB

(Strehl and Littman, 2008) first quantify the uncertainty about the agent’s approximate

model (T̂ and R̂) and then propose to collect data in parts of the state-action space where

that uncertainty is highest. More specifically, the agent is attracted to states in proportion

to 1√
N [s,a]

where N [s, a] is the number of times the agent has taken action a from state s

and serves as a proxy for model uncertainty. This causes the agent to preferentially visit

parts of the environment where its model is weakest; the result is that the agent can use

its one-step model to quickly recover a near-optimal policy.

Exploration in Deep RL

The techniques we discussed for model-based exploration apply only to tabular domains

or to continuous MDPs with metric structure and low dimensionality (Kakade et al., 2003).

When the observation space becomes large and complicated, tabular approaches do not

suffice. For instance, in continuous spaces, an agent may never visit the same state twice,

so count-based approaches do not scale (or are not even necessarily well-defined). However,

the notion of counts can be generalized to pseudocounts (Bellemare et al., 2016): similar

states have similar pseudocounts; so, even if the agent visits a state slightly different from

one that it has visited before, it will increase that state’s pseudocount. Bellemare et al.

(2016) introduce a custom tree-based model that estimates the probability density of a

state in Atari 2600 games with image-based observations (Bellemare et al., 2013). The

CTS model was improved upon by a neural network, Pixel CNN, which approximates

probability densities of image-based states without using the domain knowledge required

by the CTS model (Ostrovski et al., 2017). To convert probability density estimates into

pseudocounts, both papers place severe restrictions on the types of function approximators

that can be used, precluding most powerful generative models in deep learning. Recently,
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Coin Flip Networks (CFN) (Lobel et al., 2023) simplify the problem of pseudocount

estimation by obviating the need for density estimation; the resulting approach directly

approximates the novelty of a state via its pseudocount rnovelty(s) = 1/
√

Nϕ(s) and

uses that as an exploration bonus for model-free RL (Sutton, 1990; Täıga et al., 2019).

Model-based approaches for leveraging the exploration bonus also exist (e.g, Pathak et al.,

2017), but they tend to empirically under-perform model-free approaches (Burda et al.,

2019a,b; Täıga et al., 2019; Linke et al., 2019).

Challenges of Scaling Novelty Driven Exploration. The success of pure novelty

(or surprise) driven exploration (Badia et al., 2020b,a; Kapturowski et al., 2022) has been

limited to simple, simulated tasks such as video games (Berseth et al., 2021). Although

these environments have high-dimensional state and action spaces, most aspects are usually

under the agent’s control, mistakes have little to no consequence, and eventually most

states are reachable under a reasonably competent policy. However, vast domains like the

natural world are characterized by the opposite: most aspects are not directly under the

agent’s control, there are serious safety considerations, and coverage of the state-space

is intractable. To effectively explore in such environments, novelty or surprise seeking

behaviors must be carefully paired with considerations such as the bounded capacity of

the agent (Russell and Subramanian, 1994), safety (Garcia and Fernández, 2012) and, the

topic of this thesis, abstractions—the agent should parsimoniously collect data relevant

towards building task-specific representations (Tenenbaum, 2018).

2.4 General Value Functions

Value functions are predictions about the future stream of rewards from a particular

state. However, the reward is only one of many signals and by predicting them, the agent

can build rich knowledge about the world. Value functions that predict quantities other

than the reward are known as General Value Functions (GVF) and the signals that they
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predict are called cumulants.

To formally define a GVF, we need to first define the following quantities:

• A cumulant c : s→ R is a function that maps a state to a scalar and it represents a

signal in the agent’s data stream that we would like to predict.

• A termination function β : s → [0, 1] represents the probability with which the

accumulation of the prediction stops. Put another way, it represents the timescale

over which we wish for the agent to predict the cumulant c.

• A stopping function z : S → R outputs the stopping value that is added to the

accumulation of the cumulant once it terminates.

Put together, the general value function v defines the expected sum of discounted sum

of a cumulant up to termination plus a stopping value at the time of termination:

v(st) = Eπ,β

[
K−1∑
k=0

γkct+k + γKz(st+K)

]
, (2.9)

where the expectation is taken with respect to actions taken by a policy π up to a

stopping time determined by the termination function β.

General value functions have been successfully used in deep RL to shape the represen-

tations learned by the agent: by predicting signals that are part of the data stream, the

agent learns policies that earn more reward in the main task of interest (Jaderberg et al.,

2017; Lyle et al., 2021). These works typically assume that the auxiliary tasks are given

to the agent, with some rare exceptions (Veeriah et al., 2019).

2.5 The Options Framework

Time in an MDP ticks at every single step. An action at time t affects the state and

reward at time t+ 1 and there is no notion of courses of action persisting over extended,
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variable periods of time. As a result, most solution methods cannot exploit the benefits of

higher-levels of temporal abstraction such as simpler models and faster credit assignment.

Such temporal abstraction can be achieved in RL via options (Sutton et al., 1999). An

option o is a temporally extended action and can be described using a triple:

o = (Io, πo, βo),

where Io : s→ [0, 1], the initiation function, denotes the probability with which the option

can be executed at state s; βo : s → [0, 1], the termination function, is the probability

with which option execution ends in state s; finally, πo : s→ A, the option policy maps

states to primitive actions.1

When options are given to the agent, they can improve the sample-efficiency of

learning. This is mainly due to three reasons. First, an agent with options can explore

the environment with greater effectiveness; this is because exploration with primitive

actions has the disadvantage that it has a rapidly diminishing probability of deviating

from the agent’s currently best known policy. Second, options can unlock more effective

model-based RL by greatly simplifying the model-learning problem because the agent

need only learn the effects of executing options, rather than of the fine-grained details of

each low-level action. And third, options reduce the diameter of the MDP–which is the

number of steps needed to go between any pair of states–accelerating both exploration

and credit assignment.

2.5.1 Option Discovery

Well designed options are clearly useful, but poorly designed options can severely

degrade performance (Jong et al., 2008). This places onerous requirements on the

programmer to design options suited to each specific task, which is cumbersome and

unscalable. The option discovery problem is that of finding a useful set of options

1Options can also invoke other options, but we simply consider single level hierarchies.
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autonomously via interaction with the environment. The discovery problem involves

finding all three elements of the option triple, but typically begins by identifying the

subgoal that the option is supposed to achieve.

Subgoal Options

Technically, an option is simply described by a way of initiating, a way of acting,

and a way of terminating—its behaviour need not maximize any objective at all. As an

example, consider an option that initiates everywhere, terminates nowhere, and whose

policy arbitrarily maps each state to an action; this option does not optimize any useful

objective, but perfectly complies with the classical definition of an option (Sutton et al.,

1999). However, for option discovery, rather than searching for these three quantities

in their raw form, it is often more convenient to think of options as achieving subgoals.

In fact, the vast majority of the literature on option discovery can be seen as achieving

subgoals (e.g., Mcgovern, 2002; Precup, 2001; Colas et al., 2022; Sutton et al., 2024); we

refer to these options as subgoal options and define them using the following components:

1. Initiation Set. The initiation set of the option is the set of states from where the

option has a high probability of achieving its subgoal.

2. Policy. The option policy maps states to actions, and is optimized to reach the

option’s subgoal; this policy can be trained by converting the subgoal into a (pseudo-)

reward function.

3. Termination function. Option execution must terminate in those states where

the option’s subgoal is achieved.

Subgoal options are a specific type of option, i.e., all subgoal options are options, but

not all options are subgoal options.

This subgoal is used to specify the pseudo-reward function Ro (also called a subgoal

reward function, or the option reward function) and the termination function βo. This
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can be done in the same way as in the GVF formulation in Equation 2.9: the option

accumulates a pseudo-reward at every time step that it executes, and it finally terminates

with a stopping value that depends on the current state. Once this pseudo-reward function

is identified, any policy learning technique can be used to maximize it.

In the remainder of this thesis, the subgoal of the option is always encoded as a binary

function of state and the option reward function takes one of two forms. Sometimes, it

chosen to induce shortest path options, meaning that the option gets a pseudo-reward of

0 for every time step except for when it terminates in a state that achieves its subgoal,

getting a reward of 1. Other times, the option reward function is chosen to be reward

respecting : the option accumulates task rewards until it terminates, when it is given

a stopping reward based on whether the subgoal was achieved (Sutton et al., 2024).

In short, Ro(s, a, s
′) = βo(s

′) = 1 when the subgoal is achieved, and Ro(s, a, s
′) = 0

or Ro(s, a, s
′) = R(s, a, s′) and βo(s

′) = 1 − γ otherwise. In subsequent chapters, we

exclusively consider the discovery of subgoal options and overload the subgoal of the

option with its termination function.

2.5.2 Connection between Options and GVFs

We discussed GVFs as functions that predict signals other than the reward. However,

it is also possible to think of GVFs from the perspective of control : rather than simply

predicting a cumulant, the agent can learn a policy to maximize it. This policy is exactly

the option policy πo and termination function of the option is exactly the termination

function in the GVF discussion. An option is learned to achieve a subgoal, which is

described using the cumulant (and stopping function) and a timescale at which it must

be achieved using the termination function.

GVFs provide a framework to mathematically reason about signals other than reward

that the agent could aim to maximize; then tools like generalized policy iteration tell us

how to maximize such signals. But given a rich data stream, which of the many possible
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signals should the agent choose to maximize? This is the problem of option discovery in

the language of GVFs.

2.6 Goal-conditioned RL

When using function approximation, it is natural to parameterize each GVF separately,

as in the Horde architecture (Sutton et al., 2011). But in the same way that the state-

space has structure that function approximation seeks to exploit, the goal-space too has

structure. For example, the GVF for navigating to a particular target location is similar

to the GVF for reaching a different target location nearby in Euclidean distance to the

first one. Universal Value Function Approximators (UVFAs) (Schaul et al., 2015) exploit

this structure to represent all GVFs using the same function approximator; the result is a

value function and a policy that, in addition to taking in state, also accept a goal input,

i.e, Vθ : S ×G→ R and π : S ×G→ A.

A goal can be formally defined using a triple: g ∈ G = (eg, Rg, γg), where eg : S → Rd

is a goal-description vector that can for example, be used to condition a policy π(s|eg) or

a value function V (s|eg); Rg : S → R is a goal reward function that maps each state to

real-valued number and finally γg : S × A× S → [0, 1] describes the goal’s continuation

function, and hence the timescale for achieving that goal. The goal description vector can

be states that the agent wants to reach (Andrychowicz et al., 2017), target locations in

navigational problems, images describing how the agent would like the world to look (Nair

et al., 2018), latent embedding vectors that encode abstract ways of behaving (Eysenbach

et al., 2019a) or abstract binary classifiers of state that the agent is motivated to turn on

(Bagaria and Schaul, 2023). The goal reward function can be sparse (e.g., 1 when the

goal is achieved and 0 otherwise) or dense (e.g., Euclidean distance to some target state).

Continuation functions can also take many forms; a common example is when γg = 1

outside some binary subgoal region and 0 inside of it.
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2.6.1 Goal-conditioned RL is Closely Linked to Options

An option corresponds to a one-hot goal description vector eg, i.e., an index into the

agent’s option set. The goal reward function Rg is equivalent to the option’s pseudo-reward

function and the goal’s continuation function corresponds to the option’s termination

function. In the same way that the options framework often has a policy over options

that maps a state to an option (Bacon et al., 2017), a complete goal-conditioned agent

has a higher-level goal policy that maps a state to a goal. In fact, this way of looking

at goals also subsumes feudal hierarchies (Dayan and Hinton, 1993), in which managers

set goals for workers, either in the form of abstract latent vectors (eg ∈ Rd) (Vezhnevets

et al., 2017) or as states for the agent to reach (eg ∈ S) (Nachum et al., 2018; Levy et al.,

2019). In all these cases, the higher-level policy operates at a coarser timescale and each

high-level decision is followed by a policy execution.

2.6.2 Hindsight Experience Replay

Universal Value Function Approximators (UVFAs) provide a useful parameterization

of goal-conditioned value functions Vg ≈ Vθ(s, g), but do not address the problem of

sample-efficient learning of such value functions from data. Hindsight Experience Replay

(HER) (Andrychowicz et al., 2017) uses reward relabeling to do off-policy learning on goals

that are different from the one that was used to generate data. More specifically, suppose

an agent observed a trajectory τg = (s1, a1, Rg(s1), ..., sT , aT , Rg(sT )) while pursuing goal

g. Instead of only using τg to update Vg, the agent can relabel τg based on some other

goal (say g′) and use that to update Vg′ : τg′ = (s1, a1, Rg′(s1), ..., sT , aT , Rg′(sT )). A

goal-conditioned reward function is typically given to the agent as additional domain

knowledge (Schaul et al., 2015; Andrychowicz et al., 2017), with some rare exceptions

(for example, the work of Warde-Farley et al. (2019a) and Chapter 9). Any off-policy

learning algorithm can be used in conjunction with HER to learn the goal-conditioned

value function; the original paper used DQN (Mnih et al., 2015) and DDPG (Lillicrap
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et al., 2015).

HER provides a way to learn about goals other than the one used to generate the

data. But, which of the many goals should the agent learn about in hindsight? These

are typically heuristically chosen from the states visited in the trajectory τg; common

heuristics include random sampling, picking the last state in the trajectory (Andrychowicz

et al., 2017), finding a goal that maximizes learning progress proxies (Bagaria and Schaul,

2023) or using inverse RL to find a goal for which τg was optimal (Eysenbach et al., 2020).

2.7 Related Work on Option Discovery

New algorithms for option discovery are a core contribution of this thesis. As a

result, we now survey this prolific area of research by organizing it into four broad

categories: spectral methods, empowerment maximization, learning from extrinsic reward,

meta-learning and finally, methods with formal guarantees.

2.7.1 Spectral Methods for Option Discovery

An MDP can be modeled as a graph: nodes represent states and edges represent

state adjacency, i.e, two nodes are connected if there exists an action that has non-

zero probability of causing a transition between them. Several methods perform a

spectral decomposition of the Laplacian (Chung and Graham, 1997) representation of the

graph for exploration.2 Typically, an option is associated with each eigenvector of the

graph Laplacian and these options, called eigen options, demonstrate strong exploratory

properties (Machado, 2019). Importantly, each eigenvector captures different time-scales

of diffusion in the environment; eigenvectors with smaller eigenvalues correspond to larger

time-scales (Machado et al., 2023). Covering options Jinnai et al. (2019) argue that rather

than constructing an option for every eigenvector of the graph Laplacian, a single option

2Specifically, the Laplacian is defined in matrix form as L = D−1/2(D −W )D−1/2, where W is the
weight matrix of the graph and D is the diagonal matrix whose entries are the row sums of W (Machado
et al., 2018b).
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constructed based on the Fiedler vector (Chung and Graham, 1997), is sufficient. This is

because that single option minimizes the cover time of underlying MDP, which loosely

refers to how long it takes for a random policy over options to visit all states. More

data can be collected with the newly added option, the resulting adjacency matrix can

be used to learn yet another option, and so on. Klissarov and Machado (2023) recently

combined covering options and eigenoptions to propose a new skill discovery algorithm

that demonstrates impressive exploration in a variety of reinforcement learning problems.

Laplacian-based methods are closely related to successor representations, which repre-

sent the transition dynamics by quantifying the discounted state occupancy of a policy

(Dayan, 1993). Successor representations can be computed online using TD methods, can

generalize policies quickly to related tasks and can be approximated in high-dimensional

spaces using neural networks (Barreto et al., 2017; Borsa et al., 2019). Furthermore, the

Option Keyboard algorithm leverages successor representations to compose options within

time: given that an agent has options o1, ..., oK , it can select an action at the current

timestep using a mixture of its option policies. This results in a large and rich space

of behaviors; importantly, the resulting combination of policies has policy improvement

guarantees (Barreto et al., 2019a). In fact, Machado et al. (2023) provide an integrated

agent architecture in which successor representations be used for discovering options,

which can then be combined using option keyboard, which in turn results in higher quality

data for improving the agent’s successor representations, and so on.

Another interesting connection is between the successor representations and proto-

value functions (PVFs) (Mahadevan and Maggioni, 2007), which are a basis for all value

functions in an MDP; proto-value functions are also the eigenvectors of the graph Laplacian

(Machado et al., 2023), implying that (approximate) PVFs are used as intrinsic reward

functions while learning eigenoption policies. Representation learning using successor

features is an exciting frontier of research (Farebrother et al., 2023; Touati and Ollivier,

2021; Stachenfeld et al., 2017; Carvalho et al., 2022), but further discussion is beyond the
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scope of this thesis.

Successor representations and Covering Eigenoptions are closely related to the work

in Chapters 6,7, and 9 of this thesis. Instead of starting from the graph Laplacian, we

use approximate state visitation counts (Bellemare et al., 2016) as guidance for option

discovery. Formally, the norm of the successor representation are equivalent to state

visitation counts (Machado et al., 2019). Informally, eigenoption-type methods and count-

based methods both roughly capture the same intuitive idea of the agent’s frontier: both

try to identify states that are currently difficult (but possible) to reach, and then construct

options to make them easier to reach in the future. In this thesis, we rely on count-based

methods because they have been successfully scaled to large environments with impressive

results (Badia et al., 2020b,a; Kapturowski et al., 2022; Silver et al., 2017a). But, as

the approximation techniques for Laplacian-based methods improve (Wu et al., 2019;

Wang et al., 2021; Touati and Ollivier, 2021), we could imagine porting the lessons from

this thesis to those methods as well. In other words, the core ideas of this thesis (for

example, how to interleave exploration and planning in a single agent) are complementary

to successor- based option discovery methods.

2.7.2 Empowerment based Skill Discovery

Empowerment quantifies the degree of control an agent has over its environment (Volpi

and Polani, 2023). Intuitively, there are many interpretations and uses of empowerment: an

intrinsic drive to reach states that have the highest number of states reachable from them

(Klyubin et al., 2005), to maximize social influence in multi-agent settings (Jaques et al.,

2019), or to seek agreement between future states and the agent’s internal representations

(Hafner et al., 2020). Mathematically, empowerment is the mutual information between

an agent’s actions and future states (Klyubin et al., 2008). Computationally, this mutual

information can be estimated using tools from variational inference (Mohamed and

Jimenez Rezende, 2015).
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The variational approximation derived by Mohamed and Jimenez Rezende (2015)

searched for an open-loop K-step sequence of actions that maximized empowerment.

Since then, methods have been proposed to discover closed-loop policies, i.e., skills or

options. Different skills are parameterized via context vectors z drawn3 either from a

fixed, simple distribution such as a Gaussian distribution G or from a learned distribution

pψ(z) (Levy et al., 2023). Then, the following functions are learned: a skill-conditioned

policy πθ(: |s, z) that produces trajectories τ , a classifier qϕ that predicts which skill was

executed given τ and a distribution over skills pψ(z). The training objective J , which is

analogous (Achiam et al., 2018) to β-VAEs (Higgins et al., 2017), seeks to maximize the

entropy of skill policies while encouraging different skills to lead to diverse trajectories:

J(θ, ϕ) = max
θ,ϕ,ψ

Ez∼pψ(z),s∼pθ(s|z)
[
Eτ∼πθ,z[log qϕ(z|τ)] + βH(πθ|z)

]
, (2.10)

where the entropy term, H(πθ|z), encourages the policy to be as close to the uniform

distribution as possible, much like the entropy term in VAEs (Kingma and Welling, 2014).

Strouse et al. (2022) noticed that the discriminator, qϕ(z|τ) is pessimistic in new states; to

address this pessimism, their algorithm, DISDAIN, augments skill learning with a novelty

bonus. CIC (Laskin et al., 2022) improves the optimization of the mutual information

objective (Equation 2.10) using contrastive learning.

Variational Intrinsic Control (VIC) (Gregor et al., 2017; Kwon, 2020) can be obtained

by setting β = 0 and approximating qϕ(z|τ) with qϕ(z|sT ), where sT is the final state in

trajectory τ . Similarly, DIAYN (Eysenbach et al., 2019a) can be obtained by approx-

imating log(qϕ(z|τ)) as the sum of per-timestep log probabilities along the trajectory∑T
t=1 log(qϕ(z|τ)). Instead of the sum-based decomposition of the trajectory (which treats

each transition as being independent from the others), VALOR approximates qϕ(z|τ)
3Each context vector z corresponds to an skill, but we use the z notation to be consistent with the

empowerment literature. Furthermore, z is usually a continuous vector in Rn, while skills are typically
described as a discrete set.
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using an LSTM architecture (Achiam et al., 2018). Relative VIC (Baumli et al., 2021)

departs from this view slightly by introducing a new term to the optimization: rather

than requiring that trajectories be distinguishable from the observed trajectory, they

additionally require that the trajectory not be distinguishable from the final state alone,

thereby encouraging options to cause characteristic changes in state, rather than taking

the agent to different parts of the state-space alone.

Skill-discovery via empowerment maximization usually proceeds in two stages: a pre-

training stage, in which skills are learned by maximizing the objective in Equation 2.10

and an evaluation phase in which learned skills are composed to solve new tasks. Some

algorithms explicitly learn skills that have easily predictable effects (Sharma et al., 2020b,a)

and cover the state-space (Campos Camúñez et al., 2020) so that they can be composed

easily using search-based procedures (Deng, 2006; Williams et al., 2016) at test-time. The

VISR algorithm (Hansen et al., 2020) uses successor features (Dayan, 1993; Borsa et al.,

2019; Barreto et al., 2019b) to quickly adapt learned skills to new tasks using a process

similar to Option Keyboard (Barreto et al., 2019a).

Connection to goal-based exploration. When the variational distribution in Equa-

tion 2.10 is normal and fixed, empowerment objectives reduce to goal-based exploration

in RL (Choi et al., 2021), by which we mean methods that propose random target goal

states and use a goal-conditioned policy (Schaul et al., 2015) to reach them; for exam-

ple, Hindsight Experience Replay (Andrychowicz et al., 2017) and Go-Explore (Ecoffet

et al., 2019). In fact, it is possible to think of goal-based exploration and variational

empowerment as lying on a spectrum: the more expressive the variational distribution,

the more powerful, albeit non-stationary, the associated representation learning problem

(Choi et al., 2021). Furthermore, DISCERN advocates for taking a mutual information

maximization approach to goal-conditioned reward functions (Warde-Farley et al., 2019b),

and MEGA argues that empowerment maximization is roughly equivalent to maximiz-

ing the size of the set of goals that can be achieved by the agent’s policy (Pitis et al.,
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2020c); these findings further blur the lines between goal-based exploration in RL and

empowerment maximization. Seen this way, it is possible to consider the some of the

exploration algorithms (Chapters 6,7, and 8) in this thesis as approximate empowerment

maximization as well.

Open Challenges. Despite significant progress in online mutual information estima-

tion, Equation 2.10 remains challenging to estimate and optimize (Achiam et al., 2018).

Furthermore, the policy over options in most empowerment driven skill discovery papers

are fixed (for example, a random policy), with some rare exceptions: HIDIO (Zhang

et al., 2021a) uses model-free RL and DADS (Zhang et al., 2021a) uses the cross-entropy

technique, but these methods do not do explicit state abstraction, and do not propose

an integrated architecture for model-based RL. Nevertheless, empowerment maximiza-

tion remains a promising objective for skill discovery in large open worlds that demand

significant exploration (Du et al., 2023).

2.7.3 Option Discovery from Extrinsic Rewards

Most option discovery techniques are driven by auxilliary objectives, which are some-

times at odds with the agent’s overall objective of reward maximization. For example,

methods that identify bottleneck states are useful for solving many tasks (Mcgovern,

2002), but are counterproductive in others. Similarly, novelty maximization is useful in

some tasks but not others (Täıga et al., 2019). Is there a way to build agents that still

maximize reward but have a minimal inductive bias towards temporal abstraction? In

other words, rather than specifying a heuristic that should drive the discovery of these

options, what if the agent flexibly determined its own auxilliary tasks in a manner that

improved its ability to maximize rewards in a complex environment? Indeed, this can

be considered a key insight from Reward is Enough (Silver et al., 2021): the right type

of subtasks will automatically emerge if we build scalable agents that attempt reward
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maximization in complex environments.4 This desire to learn options from task rewards

has led to several families of techniques: option-critic, feudal networks and meta-gradient

driven discovery.

Option Critic Methods

Option-critic methods search for options that maximize overall reward by using the

policy gradient theorem (Bacon et al., 2017). The hope behind this approach is that

skills would emerge naturally by interacting with the environment, without the need to

manually specify what objective should be used to learn them. Arguably, such skills would

lead to high performance as they are directly defined in terms of maximizing the expected

return.

An issue observed with Option Critic algorithms is that the resulting options tend

to degenerate into primitive actions. Harb et al. (2018) derive a regularization term to

the objective function that discourages option interruption, i.e, a preference over options

that last longer than others. Several contributions to the Option Critic algorithm include

learning safe policies (Jain et al., 2018), using second order update rules (Tiwari and

Thomas, 2019), learning all options simultaneously (Klissarov and Precup, 2021), using

multiple discount factors (Harutyunyan et al., 2019), learning initiation sets (Khetarpal

and Precup, 2019), learning option interruptions in an off-policy manner (Harutyunyan

et al., 2019) or dealing with continuous action spaces (Klissarov et al., 2017).

These several contributions have significantly improved the Option-Critic algorithm,

making it more generally applicable with better performance. The end-to-end nature of

Option Critic makes it scale gracefully to large problems with high-dimensional observation

spaces. But, since all learning stems from the extrinsic reward function, option-critic

methods do not result in sample-efficient learning in sparse reward problems. Furthermore,

the problem of how to prevent options from collapsing to primitive actions, although

4Of course, it is possible that we do not need to explicitly program a bias towards temporal abstractions,
and that itself could be an emergent property of reward maximization.
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mitigated, has not been entirely resolved; neither has the related problem of finding

solutions with Option Critic that are composed entirely of a single option execution.

Finally, how resulting options can be used for planning or be transferred across contexts

remains unclear.

Feudal Approaches to Skill Discovery

In feudal reinforcement learning (Dayan and Hinton, 1993), the agent’s policy is

decomposed hierarchically into managers and workers : managers set subgoals for workers

to achieve and workers use flat RL to achieve those subgoals. In this way, goal-setting is

decoupled from goal-achievement; each level in the hierarchy communicates to the level

below it what must be achieved, but does not specify how to do so. This is a form of

temporal abstraction in which higher levels of the hierarchy make decisions at a lower

temporal resolution than lower levels.

Feudal RL was extended to deep RL by Feudal Networks (FuN) (Vezhnevets et al.,

2017). FuN learns a two-level hierarchy in which the higher level manager outputs a

latent vector that specifies the direction in which the lower level worker should modify the

agent’s current state. The manager policy is trained using policy gradients on the task

reward function, while the worker policy is trained only using its intrinsic subgoal/pseudo

reward function. As with most skill discovery methods, the high-level policy is trained at

the same time as the low-level policy; as the low-level policy changes during learning, a

data from a high-level action taken in the past may not yield the same low-level behavior

in the future (Nachum et al., 2018). This non-stationarity was noticed and addressed

using relabeling tricks and off-policy learning in the HIRO algorithm (Nachum et al.,

2018). Later, Hierarchical Actor Critic (Levy et al., 2019) improved upon HIRO by

removing the need for dense reward functions, by instead using hindsight experience

replay (Andrychowicz et al., 2017) and stably training multi-level hierarchies (Li et al.,

2019). Like Option-Critic, these methods relied on extrinsic rewards to drive the learning
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of the high-level policy; if the high-level policy is poorly trained, it outputs goals that

fail to drive the learning progress of the lower-level policy. To address the exploration

challenge, recent methods like HAC-Explore incorporate an novelty-based intrinsic rewards

(McClinton et al., 2021; Röder et al., 2020) or demonstrations (Gupta et al., 2019) to

solve longer horizon tasks. HIRO and HAC demonstrated stronger empirical performance

on continuous control tasks, but they made assumptions that limited their applicability

to feature-based observation spaces (as opposed to more generic observations like images,

which could be dealt with by FuN).

Another challenge faced by feudal methods such as HIRO and HAC is that the action-

space of the higher-level policy is the entire state-space of the environment. The larger

action-space further complicates the learning of the high-level policy. As a result, several

papers constrain the output space of the high-level policy using domain knowledge (for

example, the coordinates of the center of mass in robot navigation). This problem has since

been formally studied through the lens of information theory: can we find a representation

of state that can be used as the goal-space, but results in bounded value loss? Nachum

et al. (2019) use mutual information estimation using contrastive predictive coding (van

den Oord et al., 2018) to find such a representation space. On the other hand, DISCERN

(Warde-Farley et al., 2019a) uses the mutual information between the subgoal state and

the state reached after policy execution as the reward function for training the low-level

policy. These approaches blur the lines between reward-driven option discovery and

empowerment techniques, that also maximize the mutual information between a skill

policy and the state that results from its execution.

2.7.4 Discovery using Meta-Learning

A major benefit of learning options is that of reuse: options learned in one part of the

state-space could speed up learning in another (Taylor and Stone, 2009; Konidaris and

Barto, 2007). For example, the ability to walk, once acquired, can be transferred to many
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different contexts. Some methods have tried to discover transferable options using meta

learning. MLSH (Frans et al., 2018) discovers a set of policies and trains them in a way that

will make them reusable across a pre-specified task distribution (Nam et al., 2022; Gupta

et al., 2018; Fu et al., 2023). MODAC (Veeriah et al., 2021) uses meta-gradients (?Oh

et al., 2020) to do the same: an outer loop learns option pseudo-reward and termination

functions that an inner loop maximizes using traditional RL methods like policy gradients;

the outer-loop of the optimization proceeds based on reward maximization.

Meta-learning approaches have also sought to address the exploration question in

non-stationary and multi-task settings. When the agent finds itself in a new environment,

can it leverage its past experiences to targetedly explore this new environment? This

problem is called meta-exploration in Beck et al. (2023). For example, when someone

is in a new house and they have to look for utensils, they begin their search from the

kitchen; similarly, we would like to create RL agents that can direct their exploration for

quick adaptation in new environments (Gupta et al., 2018). This is the motivation of

the Adaptive Agent (AdA) (Bauer et al., 2023) that uses meta-learning to train a policy

capable of quick adaptation in a massive task space (OEL Team et al., 2021). In AdA, a

higher-level policy uses curriculum learning approaches (such as prioritized level replay

(Jiang et al., 2021)) to pick tasks for a lower-level policy to achieve. Each sampled task,

which is equivalent to an option, is attempted by the lower-level policy for several trials,

until a new task is sampled by the high-level policy. A sequence-based model is used

to meta-learn across all the trials in that task; when a new task is sampled, the agent’s

memory is reset. The result is a policy that learns how to explore in partially observable

environments: given a new, unseen task, the policy explores the uncertain parts of the

environment in earlier trials to exploit in later ones. AdA, and similar methods, do not

strictly “discover” the task/option space themselves: the space of possible tasks/options

is defined in the XLand simulator (OEL Team et al., 2021); however, this space has 1040

tasks, and if the agent randomly sampled tasks from that space, it would be unlikely
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to result in any learning progress. So, even though curriculum learning in such a vast

task/option space does not strictly satisfy the definition of discovery, it provides important

lessons for scaling option discovery to vast environments that benefit from open-ended

learning.

Open Challenges. Meta-learning approaches have demonstrated abilities of transfer,

adaptation and meta-exploration—abilities that have been challenging to acquire using

other techniques. Furthermore, meta-learning via in-context learning (Dong et al., 2022;

Bauer et al., 2023; Raparthy et al., 2023) provides a scalable, and potentially simpler

way, to acquire these crucial capabilities. Existing meta-learning approaches rely on a

specialized multi-task formulation, with clear task boundaries and episodes. Methods

that lift these assumptions will be able to bring these capabilities to the more generic

single-task formulation: the environment is described as a single decision process, and the

agent flexibly proposes and solves subtasks so that it may maximize rewards—neither

requiring explicit task boundaries (Humplik et al., 2019) nor a re-settable simulator (Xu

et al., 2020).

2.7.5 Option Discovery with Formal Guarantees

Many of the option discovery methods that we have discussed so far rely on proxy

objectives; these objectives include finding bottleneck states, empowerment maximization,

more reliable composability, and so on. The intuition is that if the agent had options that

maximized these proxy objectives, it would unlock agent-level capabilities such as effective

exploration, credit assignment, or transfer. Indeed, these methods often show empirical

success in some scenarios, but the formal connection between these proxy objectives

and the overall objectives of the agent is unclear (Solway et al., 2014). For example,

options that target “bottleneck” states are empirically useful in some navigation tasks, but

what kind of performance can we expect from the same technique in an entirely different

problem? In fact, several papers have shown that not all skills are created equal—that
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is, options that are perfectly suited for a particular task, might severely hurt agent-level

objectives in other tasks (Jong et al., 2008; Solway et al., 2014). To address this gap,

a class of methods—initiated by Solway et al. (2014)—has sought to discover options

with precise guarantees on agent-level objectives. These methods explicitly state the

performance criterion of the agent and then derive an algorithm that discovers options

with bounded loss on that criterion.

Planning. In the context of planning, the performance criterion of the agent can be

stated as minimizing planning time, which is the number of iterations of a planning

algorithm (like value iteration) needed to converge to the optimal value function. The

goal of option discovery in planning can be seen as finding a set of options that minimizes

planning time. Jinnai et al. (2018) prove that this problem is NP-hard, even for deter-

ministic MDPs. They provide approximation algorithms with bounded suboptimality,

but these are only valid for tabular MDPs with “point options”, which are options that

initiate and terminate in a single state respectively. While Jinnai et al. (2018) provides

options that bound the worst-case planing time in single-task settings, Average Options

(Ivanov et al., 2024) minimize the planning time averaged over a distribution of tasks.

More precisely, they consider tasks that differ only in terms of their start and goal states

and seek to find options that reduce the expected cost of going between any two states in

the MDP. Unsurprisingly, they find that this problem is also NP-hard but by drawing

connections to the k-medians with penalties problem from graph-theory, they introduce

approximation algorithms for discovering options that provably minimize planning time in

multi-goal MDPs. Planning can also be sped up using options in the single-task setting:

Wan and Sutton (2022) present an option discovery algorithm that seeks options that

maximize reward–similar to option-critic (Harb et al., 2018)–but reduces the number of

options available at different states to reduce planning time.
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Exploration. In the context of exploration, Jinnai et al. (2019) formalize the perfor-

mance criterion of the agent as minimizing the number of steps needed for a policy to visit

every state (as a proxy for discovering some unknown reward). They show that this perfor-

mance criterion is related to the graph-theoretic property of cover-time, which measures

the number of steps needed by a random walk to visit every edge in a graph. Although

finding edges that minimize cover-time in a graph is NP-Hard, Jinnai et al. (2019) provide

an approximation algorithm that minimizes an upper-bound on the expected cover-time;

they do this by leveraging the graph Laplacian of the state transition matrix. This method

was later extended to continuous environments using deep learning-based approximations

of the graph Laplacian, further suggesting deep connections to the eigenoptions literature

(Machado et al., 2017, 2023; Klissarov and Machado, 2023).

Credit assignment. The problem of evaluating a policy can also be aided using options.

Bacon and Precup (2016) formally state this problem as that of finding the set of options

that can achieve the fixed-point of the Bellman expectation equations in as few iterations

as possible. They find that the problem of discovering options that speed up policy

evaluation is equivalent to the problem of finding a pre-conditioning matrix for solving

large systems of linear equations; in the same way that good pre-conditioning matrices

transform optimization problems into simpler ones, options transform MDPs into those

that have dynamics that permit faster policy evaluation. While they do not provide a

new option discovery algorithm, all methods that have been proposed for discovering a

good preconditioning matrix can be applied to discovering options that aid faster policy

evaluation.

Transfer. In the context of transfer, Solway et al. (2014) define the optimal set of options

as those that maximize the efficiency with which an agent can learn the optimal policy

for other, possibly unseen, set of tasks. They show that in this setting, optimal options

are those that maximize Bayesian model evidence under the distribution of tasks that the
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agent is expected to solve. Specifically, a hierarchy that maximizes model evidence, also

provably minimizes the geometric mean of number samples needed to find the optimal

policy for any task in the given task distribution. Brunskill and Li (2014) consider a

similar formulation of the option transfer problem: given interaction data from a set of

tasks, how can an agent learn options that minimize the sample complexity of learning

in a future stream of tasks? They find that this problem is at least as hard as the set

cover problem in Operations Research, and is thus also NP-Hard. They use a greedy

approximation algorithm for option discovery and evaluate it empirically in a tabular

MDP.

In summary, bringing formal guarantees into the option discovery pursuit is an impor-

tant direction of research, but one that is in the early stages of development and which

has not yet resulted in many scalable methods. One could imagine integrating several

such algorithms into a single agent so that it possesses different options that specialize in

planning, exploration and credit assignment. This is different from the approach taken in

this thesis, which de-emphasizes theoretical guarantees in favor of empirical scalability,

focusing on discovering options that are sequentially composable, useful for exploration

and amenable to planning.

2.8 Summary and Conclusions

The RL problem captures our overarching ambition of creating general-purpose agents

that can learn to achieve their goals and purposes via interaction with the environment.

Model-free RL provides a scalable way to learn behaviors in environments with complex

dynamics, but is sample inefficient. By contrast, model-based RL algorithms make better

use of data because they leverage the power of planning. However, most model-based

algorithms attempt to learn a one-step model of the environment, which is untenable

because of the problem of errors compounding over time. Options (and other GVFs)

provide a way out of this problem, but useful options are not known a priori and the
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agent has to discover them via interaction. While the option discovery question has often

been studied separately from the exploration question in RL, I view them as two sides of

the same coin: exploration must be in service of learning an abstract model of the world.

Subsequent chapters will shed further light on how options can be discovered in a way

that encourages exploration and enables effective planning via model-based RL.
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CHAPTER 3

Option Discovery using Deep Skill

Chaining

How can agents autonomously construct useful skills via interaction with the environ-

ment? While a large body of work has sought to answer this question in small discrete

domains, skill discovery in high-dimensional continuous spaces remains an open problem.

An early approach to skill discovery in continuous-state environments was skill chaining

(Konidaris and Barto, 2009b), where an agent constructs a sequence of options that target

a salient event in the MDP (for example, the goal state). The skills are constructed so

that successful execution of each option in the chain allows the agent to execute another

option, which brings it closer still to its eventual goal. While skill chaining was capable

of discovering skills in continuous state spaces, it could only be applied to relatively

low-dimensional state-spaces with discrete actions.

We introduce a new algorithm that combines the core insights of skill chaining with

recent advances in using non-linear function approximation in reinforcement learning. The

new algorithm, deep skill chaining, scales to high-dimensional problems with continuous

state and action spaces. Through a series of experiments on five challenging domains in

the MuJoCo physics simulator (Todorov et al., 2012), we show that deep skill chaining
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can solve tasks that otherwise cannot be solved by non-hierarchical agents in a reasonable

amount of time. Furthermore, the new algorithm outperforms state-of-the-art deep skill

discovery algorithms (Bacon et al., 2017; Levy et al., 2019) in these tasks.

3.1 Method

Deep skill chaining (DSC) is based on the intuition that it is easier to solve a long-

horizon task from states in the local neighborhood of the goal. This intuition informs the

first step of the algorithm: create an option that initiates near the goal and reliably takes

the agent to the goal. Once such an option is learned, we create another option whose

goal is to take the agent to a state from which it can successfully execute the first option.

Skills are chained backward in this fashion until the start state of the MDP lies inside the

initiation set of some option. The inductive bias of creating sequentially executable skills

guarantees that as long as the agent successfully executes each skill in its chain, it will

solve the original task. More formally, skill chaining amounts to learning options such

that the termination condition βoi(st) of an option oi is the initiation condition Ioi−1
(st)

of the option that precedes it in its chain.

Our algorithm proceeds as follows: at time t, the policy over options πO : st ∈ S −→

o ∈ O determines which option to execute (Section 3.1.2). Control is then handed over to

the selected option oi’s internal policy πoi : s ∈ S −→ at ∈ R|A|. πoi outputs joint torques

until it either reaches its goal (βoi := Ioi−1
) or times out at its predetermined budget T

(Section 3.1.1). At this point, πO chooses another option to execute. If at any point the

agent reaches the goal state of the MDP or the initiation condition of a previously learned

option, it creates a new option to target such a salient event. The machinery for learning

the initiation condition of this new option is described in Section 3.1.3. We now detail

the components of our architecture and how they are learned.
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3.1.1 Intra-Option Policy

Each option o maintains its own policy πo : s −→ at ∈ R|A|, which is parameterized by

its own neural networks θo. To train πo(s; θo), we must define o’s internal reward function.

In sparse reward problems, o is given a subgoal reward when it triggers βo; otherwise it is

given a step penalty. In the dense reward setting, we can compute the distance to the

parent option’s initiation set classifier and use that to define o’s internal reward function.

We can now treat learning the intra-option policy (πo) as a standard RL problem and

use an off-the-shelf algorithm to learn this policy. Since in this work we solve tasks with

continuous action spaces, we use Deep Deterministic Policy Gradient (DDPG) (Lillicrap

et al., 2015) to learn option policies over real-valued actions.

3.1.2 Policy Over Options

Initially, the policy over options (πO) only possesses one option that operates over a

single time step (T = 1). We call this option the global option (oG) since its initiation

condition is true everywhere in the state space and its termination condition is true only

at the goal state of the MDP (i.e, IoG(s) = 1∀s and βoG = 1g). Using oG, πO can select

primitive actions. At first the agent continually calls upon oG, which uses its internal

option policy πoG to output exactly one primitive action. Once oG triggers the MDP’s

goal state N times, DSC creates its first temporally extended option, the goal option (og),

whose termination condition is also set to be the goal state of the MDP, i.e, βog = 1g.

As the agent discovers new skills, it adds them to its option repertoire and relies on πO

to determine which option (including oG) it must execute at each state. Unlike oG, learned

options will be temporally extended, i.e, they will operate over T > 1 time steps. If in

state st the agent chooses to execute option oi, then oi will execute its own closed-loop

control policy (for τ steps) until its termination condition is met (τ < T ) or it has timed

out at τ = T time steps. At this point, control is handed back to πO, which must now

choose a new option at state st+τ .
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Option selection: To select an option in state st, πO first constructs a set of admissible

options given by Equation 3.1. πO then chooses the admissible option that maximizes

its option-value function, as shown in Equation 3.2. Since the agent must choose from a

discrete set of options at any time, we learn its option-value function using Deep Q-learning

(DQN) (Mnih et al., 2015).

O′(st) = {oi|Ioi(st) = 1 ∩ βoi(st) = 0, ∀oi ∈ O} (3.1)

ot = argmax
oiϵO′(st)

Qϕ(st, oi). (3.2)

Learning the option-value function: Given an SMDP transition (st, ot, rt:t+τ , st+τ ),

we update the value of taking option ot in state st according to SMDP Q-learning update

(Bradtke and Duff, 1995). Since the agent learns Q-values for different state-option pairs,

it may choose to ignore learned options in favor of primitive actions in certain parts of the

state-space (in the interest of maximizing its expected future sum of discounted rewards).

The Q-value target for learning the weights ϕ of the DQN is given by:

yt =
τ∑
t′=t

γt
′−trt′ + γτ−tQϕ′(st+τ , argmax

o′ϵO′(st+τ )

Qϕ(st+τ , o
′)). (3.3)

Adding new options to the policy over options: Equations 3.1, 3.2 and 3.3 show

how we can learn the option-value function and use it for selecting options. However, we

must still incrementally add new skills to the network during the agent’s lifetime. After

the agent has learned a new option o’s initiation set classifier Io (we will discuss how this

happens in Section 3.1.3), it performs the following steps before it can add o to its option

repertoire:

• To initialize o’s internal policy πo, the parameters of its DDPG (θo) are set to the

parameters of the global agent’s DDPG (θoG). Subsequently, their neural networks

are trained independently. This provides a good starting point for optimizing πo,
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while allowing it to learn sub-problem specific abstractions.

• To begin predicting Q-values for o, we add a new output node to final layer of the

DQN parameterizing πO.

• We must assign appropriate initial values to Qϕ(s, o). We follow Konidaris and

Barto (2009b) and collect all the transitions that triggered βo and use the max

over these Q-values to optimistically initialize the new output node of our DQN.1

This is done by setting the bias of this new node, which ensures that the Q-value

predictions corresponding to the other options remain unchanged.

3.1.3 Initiation Set Classifier

Central to the idea of learning skills is the ability to learn the set of states from which

they can be executed. First, we must learn the initiation set classifier for og, the option

used to trigger the MDP’s goal state. While acting in the environment, the agent’s global

DDPG will trigger the goal state N times (also referred to as the gestation period of the

option by Konidaris and Barto (2009b) and Niekum and Barto (2011)). We collect these

N successful trajectories, segment the last K states from each trajectory and learn a

one-class classifier around the segmented states. Once initialized, it may be necessary to

refine the option’s initiation set based on its policy. We do so by executing the option

and collecting data to train a two-class classifier. States from which option execution was

successful are labeled as positive examples. States from which option execution timed

out are labeled as negative examples. We continue this process of refining the option’s

initiation set classifier for a fixed number of episodes, which we call the initiation period

of the option.

At the end of the initiation period, we fix the option’s initiation set classifier and add it

to the list of salient events in the MDP. We then construct a new option whose termination

1Using the mean Q-value is equivalent to performing Monte Carlo rollouts. Instead, we follow the
principle of optimism under uncertainty (Brafman and Tennenholtz, 2002) to select the max over the
Q-values.
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condition is the initiation classifier of the option we just learned. We continue adding to

our chain of options in this fashion until a learned initiation set classifier contains the

start state of the MDP.

3.1.4 Generalizing to Skill Trees

Our discussion so far has been focused on learning skill chains that extend from the

goal to the start state of the MDP. However, such a chain is not sufficient if the agent

has multiple start states or if we want the agent to learn multiple ways of solving the

same problem. To permit such behavior, our algorithm can be used to learn skills that

organize more generally in the form of trees (Konidaris and Barto, 2009b; Konidaris et al.,

2012). To demonstrate skill trees (and their usefulness), we consider a maze navigation

task, E-Maze, with distinct start states in Section 3.2.

3.1.5 Optimality of Discovered Solutions

Each option o’s internal policy πo is is given a subgoal reward only when it triggers

its termination condition βo. As a result, πo is trained to find the optimal trajectory for

entering its own goal region. Naively executing learned skills would thus yield a recursively

optimal solution to the MDP (Barto and Mahadevan, 2003). However, since the policy

over options πO does not see subgoal rewards and is trained using extrinsic rewards only,

it can combine learned skills and primitive actions to discover a flat optimal solution π∗

to the MDP (Barto and Mahadevan, 2003). Indeed, our algorithm allows πO to employ

discovered skills to quickly and reliably find feasible paths to the goal, which over time

can be refined into optimal solutions. It is worth noting that our ability to recover π∗ in

the limit is in contrast to feudal methods such as HAC (Levy et al., 2019) in which higher

levels of the hierarchy are rewarded for choosing feasible subgoals, not optimal ones.

To summarize, our algorithm proceeds as follows: (1) Collect trajectories that trigger

new option ok’s termination condition βok . (2) Train ok’s option policy πok . (3) Learn ok’s
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initiation set classifier Iok . (4) Add ok to the agent’s option repertoire. (5) Create a new

option ok+1 such that βok+1
= Iok . (6) Train policy over options πO. Steps 1, 3, 4 and 5

continue until the MDP’s start state is inside some option’s initiation set. Continue steps

2 and 6 indefinitely.

3.2 Experiments

We test our algorithm in five tasks that exhibit a strong hierarchical structure: (1) Point-

Maze (Duan et al., 2016), (2) Four Rooms with Lock and Key, (3) Reacher (Brockman

et al., 2016), (4) Point E-Maze and (5) Ant-Maze (Duan et al., 2016; Brockman et al.,

2016).

Four Rooms with Lock and Key: In this task, a point agent (Duan et al., 2016) is

placed in the Four Rooms environment (Sutton et al., 1999). It must pick up the key (blue

sphere in the top-right room in Figure 3.1(c), row 2) and then navigate to the lock (red

sphere in the top-left room). The agent’s state space consists of its position, orientation,

linear velocity, rotational velocity and a has key indicator variable. If it reaches the lock

with the key in its possession, its episode terminates with a sparse reward of 0; otherwise

it gets a step penalty of −1. If we wish to autonomously discover the importance of the

key, (i.e, without any corresponding extrinsic rewards) a distance-based dense reward

such as that used in related work (Nachum et al., 2018) would be infeasible.

Point E-Maze: This task extends the benchmark U-shaped Point-Maze task (Duan

et al., 2016) so that the agent has two possible start locations - on the top and bottom rungs

of the E-shaped maze respectively. We include this task to demonstrate our algorithm’s

ability to construct skill trees.
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(a) (b) (c)

Figure 3.1: (a) Learning curves comparing deep skill chaining (DSC), a flat agent (DDPG)
and Option-Critic. (b) Comparison with Hierarchical Actor Critic (HAC). (c) the con-
tinuous control tasks corresponding to the learning curves in (a) and (b). Solid lines
represent median reward per episode, with error bands denoting one standard deviation.
Our algorithm remains the same between (a) and (b). All curves are averaged over 20
runs, except for Ant Maze which was averaged over 5 runs.
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(a) (b) (c) (d)

Figure 3.2: Initiation sets of options learned in the Lock and Key task. Blue sphere in
top-right room represents the key, red sphere in top-left room represents the lock. Red
regions represent states inside the initiation classifier of learned skills, whereas blue/gray
regions represent states outside of it. Each column represents an option - the top row
corresponding to the initiation set when has key is false and the bottom row corresponding
to the initiation set when has key is true.

3.2.1 Comparative Analyses

We compared the performance of our algorithm to DDPG, Option-Critic and Hierar-

chical Actor-Critic (HAC), in the conditions most similar to those in which they were

originally evaluated. For instance, in the Ant-Maze task we compare against Option-Critic

under a dense-reward formulation of the problem while comparing to HAC under a

sparse-reward version of the same task. As a result, we show the learning curves compar-

ing against them on different plots (columns (a) and (b) in Figure 3.1 respectively) to

emphasize the difference between the algorithms, the settings in which they are applicable,

and the way they are evaluated.

Comparison with DDPG and Option-Critic: Figure 3.1(a) shows the results of

comparing our proposed algorithm (DSC) with a flat RL agent (DDPG) and the version

of Option-Critic designed for continuous action spaces (PPOC).2 Deep skill chaining

comfortably outperforms both baselines. Both DSC and DDPG use the same exploration

2PPOC author’s implementation: https://github.com/mklissa/PPOC
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strategy in which at = πθ(st) + ηt where ηt ∼ N(0, ϵt). Option-Critic, on the other

hand, learns a stochastic policy πθ(at|st) and thus has baked-in exploration (Sutton

and Barto, 2018, Ch. 13), precluding the need for additive noise during action selection.

We hypothesize that this difference in exploration strategies is the reason Option-Critic

initially performs better than both DDPG and DSC in the Reacher and Point E-Maze

tasks.

Comparison with Hierarchical Actor-Critic: We compare our algorithm to

Hierarchical Actor-Critic (HAC) (Levy et al., 2019), which has recently outperformed

other hierarchical reinforcement learning methods (Nachum et al., 2018; Vezhnevets et al.,

2017) on a wide variety of tasks. 3 A noteworthy property of the HAC agent is that it

may prematurely terminate its training episodes to prevent flooding its replay buffer with

uninformative transitions. The length of each training episode in DSC however, is fixed

and determined by the test environment. Unless the agent reaches the goal state, its

episode lasts for the entirety of its episodic budget (e.g, this would be 1000 timesteps in

the Point-Maze environment). Thus, to compare the two algorithms, we perform periodic

test rollouts wherein all networks are frozen and both algorithms have the same time

budget to solve the given task. Furthermore, since both DSC and HAC learn deterministic

policies, we set ϵt = 0 during these test rollouts. When comparing to HAC, we perform 1

test rollout after each training episode in all tasks except for Ant-Maze, where we average

performance over 5 test rollouts every 10 episodes.

Figure 3.1(b) shows that DSC outperforms HAC in all environments except for Four

Rooms with a Lock and Key, where their performance is similar, even though DSC does

not use Hindsight Experience Replay (Andrychowicz et al., 2017) to deal with the sparse

reward nature of this task.

3HAC author’s implementation: https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
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3.2.2 Interpreting Learned Skills

Figure 3.2 visualizes the initiation set classifiers of options discovered by DSC in Four

Rooms with a Lock and Key. Despite not getting any extrinsic reward for picking up the

key, DSC discovers the following skill chain: the options shown in Figure 3.2 columns (c)

and (d) bring the agent to the room with the key. The option shown in column (b) then

picks up the key (top row) and then takes the agent to the room with the lock (bottom

row). Finally, the option in column (a) solves the overall problem by navigating to the

lock with the key.

Figure 3.3 shows that DSC is able to learn options that induce simple, efficient policies

along different segments of the state-space. Furthermore, it illustrates that in some states,

the policy over options prefers primitive actions (shown in black) over learned skills. This

suggests that DSC is robust to situations in which it constructs poor options or is unable

to learn a good option policy in certain portions of the state-space. In particular, Figure

3.3 (d) shows how DSC constructs a skill tree to solve a problem with two distinct start

states. It learns a common option near the goal (shown in blue), which then branches off

into two different chains leading to its two different start states respectively.

3.3 Discussion and Conclusion

Deep skill chaining breaks complex long-horizon problems into a series of sub-problems

and learns policies that solve those sub-problems. By doing so, it provides a significant

performance boost when compared to a flat learning agent in all of the tasks considered

in Section 3.2.

We show superior performance when compared to Option-Critic, the leading framework

for option discovery in continuous domains. A significant drawback of Option-Critic

is that it assumes that all options are executable from everywhere in the state-space.

By contrast, deep skill chaining explicitly learns initiation set classifiers. As a result,
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(a) Point-Maze (b) Four-Rooms (c) Ant-Maze (d)
E-Maze

Figure 3.3: Solution trajectories found by deep skill chaining. Sub-figure (d) shows two
trajectories corresponding to the two possible initial locations in this task. Black points
denote states in which πO chose primitive actions, other colors denote temporally extended
option executions.

learned skills specialize in different regions of the state-space and do not have to bear the

burden of learning representations for states that lie far outside of their initiation region.

Furthermore, each option in the Option-Critic architecture leverages the same state-

abstraction to learn option-specific value functions and policies, while deep skill chaining

permits each skill to construct its own skill-specific state-abstraction (Konidaris and

Barto, 2009a). An advantage of using Option-Critic over DSC is that it is not confined to

goal-oriented tasks and can work in tasks which require continually maximizing non-sparse

rewards.

Section 3.2 also shows that deep skill chaining outperforms HAC in four out of five

domains, while achieving comparable performance in one. We note that even though HAC

was designed to work in the multi-goal setting, we test it here in the more constrained

single-goal setting. Consequently, we argue that in problems which permit a stationary

set of target events (like the ones considered here), deep skill chaining provides a favorable

alternative to HAC. Furthermore, HAC depends on Hindsight Experience Replay (HER)

to train the different layers of their hierarchy. Deep skill chaining shows the benefits of

using hierarchies even in the absence of such data augmentation techniques but including

them should yield additional performance benefits in sparse-reward tasks.
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A drawback of deep skill chaining is that, because it builds skills backward from the goal,

its performance in large state-spaces is dependent on a good exploration algorithm. We

used the naive exploration strategy of adding Gaussian noise to chosen actions (Lillicrap

et al., 2015; Fujimoto et al., 2018) since the exploration question is orthogonal to the

ideas presented here. The lack of a sophisticated exploration algorithm also explains the

higher variance in performance in the Point-Maze task in Figure 3.1. Combining effective

exploration (Machado et al., 2018c; Jinnai et al., 2020) with DSC’s high reliability of

triggering target events is a promising avenue for future work.

We presented a new skill discovery algorithm that can solve high-dimensional goal-

oriented tasks far more reliably than flat RL agents and other popular hierarchical methods.

To our knowledge, DSC is the first deep option discovery algorithm that does not treat

the number of options as a fixed and costly hyperparameter. Furthermore, where other

deep option discovery techniques have struggled to show consistent improvements over

flat agents in the single task setting (Zhang and Whiteson, 2019; Smith et al., 7 15; Harb

et al., 2018; Klissarov et al., 2017), we show the benefits of hierarchies for solving such

challenging problems.
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CHAPTER 4

Robustly Learning Composable

Options in Deep Reinforcement

Learning

Hierarchical approaches succeed by allowing the agent to sequentially execute high-level

actions. This intuition has led to several skill-discovery algorithms that explicitly satisfy

the composability objective: executing one skill takes the agent to a state where it can

execute another. Such algorithms are widespread in the literature; from control-theory

(Lyapunov, 1992; Burridge et al., 1999; Tedrake, 2009), to robotics (Lozano-Perez et al.,

1984; Kaelbling and Lozano-Pérez, 2017), to the online (Randløv et al., 2000; Konidaris

and Barto, 2009b; Shoeleh and Asadpour, 2017; Bagaria and Konidaris, 2020b) and batch

RL (Singh et al., 2020) settings.

Even when skills are not explicitly constructed to be sequentially executable, they

must eventually be sequenced to solve goal-directed tasks (Sharma et al., 2020c; Frans

et al., 2018). Additionally, skills that can be reliably sequenced can support abstract,

high-level planning (Konidaris et al., 2018).
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The core difficulty that arises when discovering composable skills is that of non-

stationary subgoals. Skill-discovery algorithms that explicitly optimize for composability

must learn the regions (called initiation sets (Sutton et al., 1999)) from which each skill

can be successfully executed. To construct sequentially executable skills, the initiation

set of one skill becomes the subgoal of a new skill (Konidaris and Barto, 2009b). These

initiation sets are constantly changing as the agent learns, causing the target (and therefore

reward function) of successive skills to also change over time, destabilizing composability

and complicating learning.

We propose three methods to combat this problem. First, we propose to stabilize learned

initiation sets using a dual-classifier approach. An optimistic classifier determines when

the agent can execute the skill, which encourages exploration. Meanwhile, a pessimistic

classifier is used as a subgoal target, which is likely to grow but unlikely to shrink, leading

to stable chains. Next, to create skill policies that are robust to non-stationary subgoals,

we propose to use goal-conditioned policies (Schaul et al., 2015) for each skill. Such

policies are robust to subgoal changes because they can always be re-targeted towards a

state in the new subgoal region. Finally, while the majority of skill-discovery work has

been model-free, we show that using model-based RL to learn skill policies leads to a

substantially more robust skills.

To evaluate our proposed changes, we consider four sparse-reward continuous control

problems in MuJoCo (Todorov et al., 2012). Compared to a flat model-free solution

(Fujimoto et al., 2018; Andrychowicz et al., 2017), our agent achieves at least two orders

of magnitude better sample efficiency. While a flat model-based solution (Nagabandi

et al., 2018) is unable to solve any of the problems considered in this paper, our model-

based hierarchy solves them with relative ease. Finally, our agent achieves at least a 5×

improvement in sample-efficiency over a state-of-the-art skill-discovery algorithm (Bagaria

and Konidaris, 2020b).
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4.1 Robustly Learning Composable Options

Figure 4.1: The non-stationary subgoal problem: (a) an agent has two options o1, o2 such
that o2 targets Io1 and o1 targets goal g; Eo2 is the next state distribution of πo2 . (b) If
Io1 shrinks, executing o2 no longer allows the agent to execute o1 (since Eo2 ̸⊆ Io1). (c)
This causes βo2 to shift forward, which invalidates the previous policy πo2 , which in turn
causes Io2 to shrink.

The core difficulty in learning composable options is that, during learning, all three

components (Io, βo, πo) of every option are simultaneously in flux. This difficulty is

compounded by the relationship between the initiation region of one option and the

subgoal region of another—changes to one option’s initiation region changes another’s

subgoal, in turn changing its own policy and initiation region. These changes cascade to

downstream options, propagating instability and causing chains of composable options to

become unreliable or even break. This situation—which can happen whenever composable

options are being learned simultaneously—is illustrated in Figure 4.1.

To ameliorate this difficulty, which we call nonstationary subgoals, we propose to

robustify the learning process of all three option components. First, we propose a two-

classifier representation of the initiation region that provides a stable subgoal target while

encouraging exploration. Second, we use hindsight-experience replay to learn a generalized

policy that enables us to target subgoal states that maximize the probability of being

able to execute the successor option. Finally, to manage the difficulty of learning so many

functions in parallel, we leverage the higher stability of model-based RL methods to learn

more robust option policies.
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4.1.1 Dual Initiation Classifiers to Avoid Shrinkage

Previous approaches learned a single binary classifier to represent Io for each option o

in the skill chain. If the option execution succeeds (i.e, the agent reaches βo), it adds a

new positive example for further refining Io. Since the positive example is from a region

already inside the classifier, a successful execution leaves the classifier’s decision boundary

largely unchanged. Alternatively, if the option execution fails to reach βo, the agent gets a

negative example for the next training iteration of Io. Since this negative example comes

from a region inside the classifier, it often shrinks the initiation region over time, with no

opportunity to expand.

To avoid this issue, we propose a dual-classifier parameterization of Io—representing

it using both optimistic and pessimistic classifiers. The pessimistic classifier represents

the states from which we are highly confident that option execution will succeed, and

so is a stable region for other options to target. However, if the agent could only ever

choose to execute the option from inside this classifier, exploration would be hindered

because the option would be prevented from expanding to new regions. To encourage

exploration outside the pessimistic region, we also use an optimistic classifier to represent

states where the agent can choose to execute the option. Eventually, the two classifiers

should converge to approximate the “true” initiation region of the option.

Many techniques could be used to learn these two classifiers; we learn the optimistic

classifier using a two-class SVM (Cortes and Vapnik, 1995) and the pessimistic classifier

using a one-class SVM (Tax and Duin, 1999).

4.1.2 Robust Subgoals via Goal State Selection

We next turn to termination regions. The “chainability” of options oi and oj implies

that the subgoal region βoi is a subset of the initiation region Ioj . As Ioj is refined

over time, the subgoal region βoi also changes, and consequently, so does the option’s

terminating reward. Since learning is highly sensitive to even small changes in the reward
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Ant-Reacher Ant U-Maze Ant Four-Rooms Ant Large-Maze

Figure 4.2: Maze navigation problems used to test our algorithm. These tasks require
that the agent simultaneously learn good gait policies that stabilize the “ant” robot and
navigate to a distant goal in the presence of unknown obstacles.

function (Packer et al., 2018), this creates instability in learning πoi . DSC (Bagaria and

Konidaris, 2020b) mitigates this issue by freezing Ioj after a fixed number of learning

iterations, which can lead to the agent being stuck with poor estimates of Ioj that hinder

reliable skill composition.

Nevertheless, an option’s subgoal region will unavoidably change continually as its

target option refines its initiation classifier. To be robust to changes in βo, we propose to

make each option policy more flexible: rather than a fixed policy πo, each option learns a

goal-conditioned policy πo(s|g) using hindsight experience replay (HER). By conditioning

the option policy πo on goals sampled from βo, and postponing selecting g until option

execution time, the agent learns a policy robust to non-stationarity in βo.

The goal-conditioned option policy strategy necessitates a strategy for sampling subgoal

states from βo. We propose optimizing two objectives for choosing subgoal states: (a)

robustness and (b) hierarchical optimality.

Selecting Subgoal States for Robustness

Each option policy is rewarded for reaching its termination region; from its own

perspective, all states in its termination region are equally rewarding. However, for a

subsequent option o, some start states are better than others. How can we pick a subgoal

for one option so that we increase the probability that a successive option execution will

succeed?
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One way is to evaluate the probability of every positive example of o succeeding (by

querying the probabilistic classifier representing Io), but that becomes computationally

very expensive as the agent gathers experience. Instead, we use the simple heuristic that,

over time, the agent will learn to execute the option from reliable start states, and simply

sample from the set of positive examples used to train Io.

Selecting Subgoal States for Hierarchical Optimality

The method above results in feasible trajectories that are, at best, recursively optimal

(Barto and Mahadevan, 2003). We would prefer to pick subgoals for each option in the

skill-chain so that the overall solution trajectory is approximately hierarchically optimal

(Barto and Mahadevan, 2003).

To select such subgoals, we first store the states β̂o in which each option o triggered

βo. Then, we use dynamic programming (DP) to distribute the value of reaching the

MDP’s goal g to all the β̂os along the skill chain. This results in a value table Q̃ :

S × S → R that can be used to pick a subgoal sg for the current option ot from state

st: sg = argmaxs∈β̂ot
Q̃(st, s). The quality of the resulting sub-goals depends on how

well β̂o approximates βo. If it is a perfect approximation, this DP algorithm yields the

hierarchically optimal solution; otherwise, it yields a near-optimal solution.

4.1.3 Learning Robust Option Policies

Finally, we consider the third component of an option: its policy. Given the number of

components simultaneously being learned in hierarchical algorithms, policy learning must

be highly stable for the agent to succeed. Although model-free methods are commonplace

for learning option policies, model-based methods are often more stable and sample-efficient

(Deisenroth and Rasmussen, 2011).

We therefore propose learning option policies using model-based RL. We follow Naga-

bandi et al. (2018) to learn a dynamics model fξ. However, Equation their search method is
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insufficient for good action-selection in sparse reward problems. So, we solve the following

infinite-horizon optimization problem and then execute the first action (Lowrey et al.,

2019):

π(s|g) = argmax
a∈U |A|

H∑
t=1

γt−1R(st, g) + γHVϕ(sH |g). (4.1)

We follow the same procedure as the model-free variant of our algorithm to learn the

terminal value function Vϕ.

4.2 Experiments

Our experiments aim to answer the following questions: 1) do the proposed improve-

ments increase the probability with which a sequence of options can be successfully

composed? 2) Does the subgoal selection algorithm approximate hierarchically opti-

mal trajectories? 3) How does the proposed algorithm compare to flat RL and other

skill-discovery algorithms?

To answer these questions, we use a test-bed comprising four continuous-control maze-

navigation tasks (shown in Figure 5.3) involving an “ant” robot simulated using MuJoCo

(Todorov et al., 2012; Duan et al., 2016; Fu et al., 2020).

Sparse vs Dense Rewards. Dense reward functions, although commonplace in RL,

are often problematic because they demand cumbersome engineering (Yu et al., 2020),

can lead to sub-optimal solutions (Ng et al., 1999) or reduce the problem so much that

simple search might outperform RL (Mania et al., 2018). Since hierarchies are a promising

way to address the challenges of sparse rewards, we evaluate all algorithms in the sparse

reward setting.
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4.2.1 Implementation Details

We use TD3 (Fujimoto et al., 2018) and HER to learn goal-conditioned value functions

in all our experiments. Transitions seen by all options were used to train a single dynamics

model fξ, critic Vϕ, and actor πζ . Vϕ and πζ were used for selecting actions in the model-

free case. Only Vϕ from TD3 was used in the model-based case, where we approximately

solved Equation 4.1 for action-selection.

4.2.2 Evaluating Robustness

We first evaluate whether the proposed changes increase the composability of discovered

options, by measuring the robustness of skill-chains constructed in Ant U-Maze. We

measure the robustness of a sequence of options as the probability that executing each

option would take the agent to a state from which it could successfully execute the next

option (until it finally reaches the goal). We call this the chaining probability :

pchain(o1, ..., oN) =
N∏
i=1

p(si ∼ βoi−1
∈ Ioi), (4.2)

where p(si ∼ βoi−1
∈ Ioi) represents the open-loop probability that the agent will be able

to execute oi after executing option oi−1. We approximate each probability term by the

empirical “success rate” of the option:

p(si ∼ βoi−1
∈ Ioi) ≈

#successes(oi−1)

#executions(oi−1)
,

where #successes(oi−1) is the number of times option πoi−1
was able to reach its subgoal

βoi−1
.

We ablate our proposals by comparing the robustness of the following versions of our

algorithm:

1. Baseline DSC: The deep skill chaining algorithm from Bagaria and Konidaris (2020b)
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Figure 4.3: Comparing the robustness of skill chains discovered in the Ant U-Maze domain.
For a description of the “chain probability” metric, please refer to Section 4.2.2. Vertical
axis in log-scale; curves are averaged over 5 runs; shaded regions denote standard error.

that we aim to improve.

2. Dual Classifiers: We add the dual classifier approach from Section 4.1.1 to the

baseline DSC.

3. MF-Robust-DSC: We add goal-conditioned policies to (2); this is the model-free

version of the algorithm from Section 4.1.2.

4. MB-Robust-DSC: We add model-based policies to (3); this is the version of the

algorithm from Section 4.1.3.

Results. Figure 4.3 shows that each of our proposals successively increases the robustness

of the discovered skill-chain. The shape of the curves warrants discussion: as the agent

discovers new options, its chain probability, at first, decreases. This is for two reasons: (a)

more terms between 0 and 1 are included in the product of Equation 4.2 and (b) when

initialized, option policies are not strong enough to reach their subgoals. Over time, two

factors are responsible for the increasing trend: (a) the agent has discovered as many

options as it needs to solve the problem, at which point no more terms are added to
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Figure 4.4: DSC trajectories (only the coordinates of the CoM are visualized) in Ant-
Reacher when selecting subgoals (left) for robustness and (middle) using our dynamic
programming algorithm. (right) When using DP, the agent scores better average reward
(averaged over 5 runs; bars represent standard error; higher is better).

the product and (b) each option’s policy improves. Finally, the small absolute values

on the vertical axis is due to the metric being an open-loop probability—we report the

closed-loop success rate of the algorithm later in Section 4.2.4.

4.2.3 Evaluating Hierarchical Optimality

To compare the two subgoal selection strategies outlined in section 4.1.2, we ran

the model-based variant of our algorithm on the Ant-Reacher domain. The goal state

corresponds to the center of mass (CoM) of the ant being at (0, 0); the starting position of

the ant is sampled uniformly from (−10, 10). The learned initiation classifiers tended to

lie in approximately concentric circles around the goal state (shown in Figure 4.5). After

both algorithm variants were trained for 1000 episodes, they were evaluated on how many

steps it would take them to reach the goal when starting in the four corners of the domain

{(±9,±9)}.

Results. Robust subgoal selection often yielded subgoal states on the “other side” of

the goal—if the robot was on the bottom-left of the domain, it could pick a subgoal closer

to the top-right. This led to the sub-optimal trajectories shown in Figure 4.4a, where the

ant would often over-shoot the goal. By contrast, the dynamic programming procedure

picked subgoal states that were always between the agent’s current state and the overall
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Episode 10 Episode 100 Episode 1000

Figure 4.5: Initiation regions learned for the option that drives the agent to the goal
state (visualized as a star in the center of each plot) in Ant-Reacher. The horizontal and
vertical axes represent the x, y positions of the ant’s CoM. The top row visualizes the
classifiers learned by the baseline DSC algorithm; the bottom row corresponds to the
Robust DSC algorithm. In the bottom row, the optimistic classifier is visualized in dark
red, the pessimistic classifier as the black contour lines. The Robust DSC agent learns a
bigger initiation region, which implies larger goal regions for successive options, thereby
making their policy learning process easier.

goal—leading to much more sensible, and approximately hierarchically optimal, solution

trajectories (Figure 4.4b). Figure 4.4c shows that the agent using our DP algorithm for

picking subgoals collected higher average rewards, further suggesting smoother overall

trajectories to the goal.

4.2.4 Learning Curves

Our final experiment compares the following algorithms on ant U-maze, large-maze

and four-rooms:

1. Flat model-free baseline: we used TD3+HER (Fujimoto et al., 2018; Andrychowicz

et al., 2017) as a flat model-free baseline, since it is a state-of-the-art method for

continuous control (we used the same algorithm to learn our model-free option

policies).

2. Flat finite-horizon model-based baseline: we used the model-based algorithm from
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Figure 4.6: Average success rate in sparse-reward ant-navigation problems. Shaded regions
denote standard error (averaged over 5 runs). The black dashed line in the leftmost subplot
is the success rate of the flat model-free baseline after 12, 000 episodes of training. In the
middle and rightmost subplots, the green line is hidden below the red one.

Nagabandi et al. (2018) as our flat model-based baseline (we used the same algorithm

to learn our model-based option policies).

3. Flat infinite-horizon model-based baseline: given that our problems are sparse-

reward, we augment the model-based baseline with TD3, which is used to learn a

value function that informs action-selection (Equation 4.1).

4. Deep skill chaining (DSC): DSC is our HRL baseline, because we extend DSC and

it outperformed other skill-discovery methods (Bagaria and Konidaris, 2020b).

5. Model-Free DSC++ (ours): the model-free variant of our algorithm described in

Section 4.1.2.

6. Model-based DSC++ (ours): the model-based variant of our algorithm described in

Section 4.1.3.

We report the “average success rate” metric from Andrychowicz et al. (2017). Every 10

episodes, we ran the algorithm from a fixed start position (0, 0), checking if it could reach

the goal within 1000 steps. Due to its simplicity, we use the robust subgoal selection

algorithm from Section 4.1.3 for rolling out our goal-conditioned option policies.
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Figure 4.7: A learned solution to a long-horizon, sparse reward task that requires executing
approximately 665 low-level steps (different colors denote discovered skills).

Results. Figure 4.6 shows the average success rate of competing methods averaged over

5 random seeds. Both versions of the flat model-based baseline were unable to achieve a

> 0% success rate; so we leave them out of the learning curves in Figure 4.6. Ant U-Maze

was the only sparse-reward problem that TD3 and the baseline DSC were able to achieve

a > 0% (but TD3 had to be trained for far more episodes). The proposed algorithm

(shown with blue and orange curves) were easily able to outperform all baselines including

DSC. A successful trajectory is visualized in Figure 4.7.

4.3 Conclusion

The success of skill discovery in goal-directed tasks depends on learning options that

can be sequentially composed. However, robust composition is challenging because of

non-stationary subgoals. We proposed methods that address all three components of

option learning—initiation function, termination function, and policies—to learn reli-

ably composable options. We showed that our augmentations measurably improve the

robustness of discovered skills and eventually allow us to solve more challenging problems.
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CHAPTER 5

Effectively Learning Initiation Sets in

Hierarchical Reinforcement Learning

General purpose agents must possess many such options to solve a wide variety of

tasks (White, 2017), but increasing the size of the action set raises both the complexity of

learning and the branching factor of search (Littman et al., 1995). This necessitates a

mechanism for locally pruning irrelevant options: most options do not apply in a given

state and the agent can lower its effective branching factor by ignoring them (Precup

et al., 1998; Wen et al., 2020). Fortunately, the options framework includes the concept

of initiation sets which captures the idea of local applicability: an option can only be

executed from states inside the initiation set.

It is natural to view an initiation set as the set of states from which option execution

is likely to succeed; in that case, learning it is straightforward when the option’s policy is

fixed : run the option from different states, record the outcome, and learn a classifier that

predicts whether option execution will succeed at a given state (Konidaris and Barto, 2009b;

Kaelbling and Lozano-Pérez, 2017). However, this is complicated by non-stationarity

during learning: as the option policy changes, previously recorded outcome labels become

invalid. How should the initiation classifier change in response? Another challenge is that
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initiation set learning suffers from a pessimistic bias : the option policy mostly improves

for states inside the initiation set because option execution only occurs from such states.

Therefore, if a state is excluded from the initiation set early during learning, it will likely

remain excluded even as the policy improves over time. This pessimistic bias causes

initiation sets to mostly shrink and rarely expand (Bagaria et al., 2021a), even in the

face of policy improvement; this is potentially catastrophic for learning since the agent

prematurely gives up on options in favor of primitive actions (Harb et al., 2018).

To address the issue of non-stationarity, we introduce the Initiation Value Function

(IVF), a general value function (GVF) (Sutton et al., 2011; White, 2015) that predicts

the probability that option execution will succeed from a given state. Since the IVF is

purely predictive, it can be learned using tools from off-policy policy evaluation (OPE)

(Voloshin et al., 2021) and does not interfere with the option’s main task of maximizing

its internal pseudo-reward function. Unlike the classification approach described above,

the IVF adapts to a changing policy: as the policy improves over time, so does the IVF’s

estimates of its probability of success. We show how the IVF can be used as a direct

estimate of the option’s initiation set or as input to a weighted classifier that accounts for

changes in the option policy.

To address the pessimistic bias of learning initiation sets, we expand the criterion for

including a state in the option’s initiation set: in addition to states from which option

execution is likely to succeed, we also include states for which the option policy is most

likely to improve. By identifying and adding these states to the initiation set, we mitigate

the pessimistic bias and prevent initiation sets from collapsing as the option is learned.

For evaluation, we first measure how accurately we can deduce an option’s initiation

set in MiniGrid-FourRooms and the first screen of Montezuma’s Revenge. Then,

we demonstrate that our proposed methods can effectively identify promising grasps in

challenging robot manipulation problems in Robosuite. Finally, by integrating our

method for learning initiation sets into an existing option discovery algorithm, we solve a
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maze navigation problem in MuJoCo that baseline agents are unable to.

5.1 Effectively Learning Initiation Sets

The problem of learning initiation sets can be naturally framed as training a classifier

where states on trajectories that achieve the subgoal are labeled as positive examples, and

states on trajectories that fail to achieve the subgoal are labeled as negative examples.

A probabilistic classifier trained on this data will predict the probability that an option

will succeed from a given state, which is exactly the desired semantics of an initiation set.

However, when initiation sets and policies have to be learned together, such a classifier is

no longer a good estimator, for three reasons:

Data non-stationarity. The first reason is data non-stationarity, which refers to

the phenomenon that previously collected training examples become invalid during the

course of learning, but continue to impact classifier training. Consider a trajectory τ0

obtained by rolling out an option policy πt0o at time t0. If the policy is in the early stages

of training, πt0o will likely fail to reach the subgoal region βo and τ0 will be labeled as a

negative example (Y (s) = 0,∀s ∈ τ0). At some future time t1, the policy might improve,

but the states along τ0 will continue to have a negative label, which means that they will

continue to be outside the initiation set. As a result, we will fail to capture the growing

competence/reachability of πt>t0o . A näıve solution to this problem would be to discard

old training examples, but not only would that be sample-inefficient, it is also unclear at

what point a training example is “old enough” to be discarded.

Pessimistic bias. The second reason, pessimism, refers to the fact that once states

are deemed to be outside the initiation set, they are unlikely to switch labels because the

option has low probability of being executed from them, and so policy improvement from

these states is unlikely (Figure 5.1 (right)).

Temporal Structure. The third reason is that classification (or equivalently, Monte
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Figure 5.1: Learning an initiation set for an option targeting subgoal βo (star). (left)
Temporal structure in initiation set learning: even though τ1 (black) fails to reach the
goal, states along it should get credit because of the portion shared with the successful
trajectory τ2 (red); this does not happen using a simple classification approach. (middle)
the initiation value function (IVF) Vo (Sec 5.1.1) is shown in green: darker the shade,
higher the value; classification examples should be re-weighted to account for a changing
policy. (right) Pessimistic bias causes initiation sets to shrink (blue → red) over time.

Carlo learning (Sutton and Barto, 2018)) does not exploit the temporal structure in the

initiation set learning problem. Figure 5.1 (left) shows two trajectories sampled from

the same option’s policy: τ1 reaches the goal and τ2 does not. Any form of Monte Carlo

estimation using this data would assign an initiation probability of 0 to most states in

trajectory τ1. However, this does not assign enough credit to most of the good decisions

made along τ1—the only way to achieve that would be via temporal bootstrapping. This

form of generalization is not possible when using classification.

To address non-stationarity and to exploit temporal structure, we formulate a new

general value function, the Initiation Value Function (IVF; Section 5.1.1), learned using

temporal difference (TD) methods (Sutton, 1988). To address pessimism, we augment

the initiation set with states from which the option policy is most likely to improve

(Section 5.1.3).

5.1.1 Initiation Value Function (IVF)

An option o’s initiation set Io is the set of states from which the option policy πo can

succeed with high probability: Io = {s : P(s′ ∈ βo|S = s, A = o) > T} (T is a predefined

threshold). Treating the success condition of the option as a cumulant co : s→ {0, 1} and
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setting the timescale γco := 1, the corresponding GVF:

Vπo(st) = Eπo
[ t=Ho∑

t=0

co(st+1)|st+1 ∼ T (st, πo(st))
]
= P(co = 1|S = st, O = o)

represents the initiation probability at state st (Ho is the option horizon). Note that

Vπo is different from Vo, the value function used by the option policy for control; this is

because πo maximizes an arbitrary reward function Ro and so the resulting value function

Vo, which approximates the value of the optimal option policy V π∗
o , cannot be interpreted

as an initiation probability.

Using the IVF as an initiation set. To directly use the IVF as the initiation set, we

need to pick a threshold T above which a state is deemed to be in the option’s initiation

set. Previous work (Kumar et al., 2018) reused the option value function Vo as the IVF,

but had to develop heuristic schemes to pick a threshold. But since Vπoϕ outputs an

interpretable number between 0 and 1 (we use a sigmoid layer at the end of ϕ to enforce

this), it is easy to threshold, regardless of Ro.

Learning the IVF. Computing the probability of success of a given policy πto is

equivalent to the problem of off-policy policy evaluation. Our approach to policy evaluation

must be sample-efficient—if it is not, the option policy will change before we are able

to sufficiently evaluate it (Sutton et al., 2007). Furthermore, the initiation cumulant co

is a sparse binary function, which makes learning with the Monte Carlo estimator high

variance and sample inefficient. This once again underscores the importance of exploiting

temporal structure of the problem using TD-learning (we use TD(0)) to estimate Vπoϕ ,

which unlike a classifier, is able to propagate value from partial trajectories (as illustrated

in Figure 5.1 (left)). In this view, using a classifier is equivalent to using a Monte Carlo

estimate of the IVF: high-variance, sample inefficient, and unable to bootstrap.
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5.1.2 Combining Classification and the Initiation Value Function

In Section 5.1.1 we connected the initiation set to a GVF, which allows us to use all

the tools of value-based RL (Sutton and Barto, 2018) to learn the initiation set. However,

the classification approach mentioned earlier has some attractive qualities: specifically,

classification is easier than regression (Bishop and Nasrabadi, 2006) and the supervised

learning community has developed powerful tools for learning classifiers using neural

networks and cross-entropy loss (Goodfellow et al., 2016). To get the best of both worlds,

we propose an additional method that combines value estimation and classification.

Recall that binary classification can be described as the process of finding parameters

θ that minimize the cross-entropy loss L(θ) in the training data D = {(si, Yi)}|D|
i=0 where

si are the inputs (states in our case) and Yi are the classification labels (whether option

execution was successful from s). To deal with non-stationarity, we instead use the weighted

binary cross-entropy loss Lw(θ) which minimizes loss over a dataset D = {si, Yi, wt(si)}

where wt(si), a state-dependent weight, represents the desired contribution of the training

example to the classification loss (Natarajan et al., 2013).

How should we set the weights wt(s) of a training example (si, Yi) in a way that

reflects the evolving competence of the option policy? Since the IVF evaluates the success

probability of the current option policy πto, we can heuristically use it as a reflection of our

certainty in the training example (si, Yi)—positively (negatively) labeled states contribute

more to Lw when the IVF prediction is high (low). Specifically, the weighting function is

defined via the following simple equation:

wt(s) = YsV(s) + (1− Ys)(1− V(s)). (5.1)

As the IVF estimates that the option policy is becoming more competent at state s,

the classifier’s uncertainty about a negative example at s will increase, thereby causing

that negative example to contribute less to the classifier’s decision boundary. Similarly,
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if the policy degrades at s, then the contribution of a positive label at s to Lw will go

down. By weighing training examples in this way, a binary classifier is able to adapt to

data non-stationarity that results from a changing option policy.

At the end of every option execution, we therefore recompute weights using Equation 5.1

and re-train option initiation classifiers using a weighted cross-entropy loss Lw.

Policy Improvement Prior. We can use the fact that policies in RL usually improve

over time to guide classifier training. To do this, we set the weight of positive examples

wt(s) as 1 throughout training. The idea is that a state which leads to success once is

likely to do so again with an even better policy. The weights of negative examples are

allowed to vary with the IVF as in Eq 5.1.

5.1.3 Overcoming Pessimistic Bias

Unsuccessful option trajectories cause the initiation set to shrink. When a state is

outside the initiation set, the option can no longer be executed from there. So even if the

option could succeed from that state in the future, it remains outside the initiation set

and the option ends up with a smaller region of competence than it needs to. This issue,

which we call the pessimistic bias of learning initiation sets, can prevent the learning of

useful options and lowers the effectiveness of hierarchical RL agents1.

To mitigate this pessimistic bias, we expand the initiation set to also include states

from which policy improvement is most likely:

Io = {s : Vo(s) + B(s) > T, s ∈ S}.

Effectively identifying such states in high-dimensional spaces is the topic of bonus-based

exploration in deep RL (Täıga et al., 2019). We propose two simple approaches:

1This issue is analogous to non-stationary dynamics in flat MDPs; see Section 5.1.4.
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1. Competence progress attempts to capture regions where a policy is either im-

proving or regressing (Şimşek and Barto, 2006; Stout and Barto, 2010; Baranes

and Oudeyer, 2013). This can be computed as changes in the IVF over time:

B1(s) =
∣∣∣V to(s)− V t−Ko (s)

∣∣∣, where V to is the current IVF and V t−Ko is the IVF esti-

mate K timesteps ago (obtained using the target network).

2. Count-based bonus approach keeps track of the number of times N(s, o) option o

has been executed from state s. This is then converted into an uncertainty measure:

B2(s) = c/
√

N(s, o), where c is a scalar hyperparameter (Strehl and Littman, 2008).

We use count-based bonuses in problems where tabular counts are readily available;

otherwise, we use competence progress.

5.1.4 Pessimistic Bias: Connections to Non-Hierarchical MDPs

MDPs with actions that have non-stationary effects mirror hierarchical MDPs in which

the option policies are being learned online. Figure 5.2 shows such an MDP—there are

three states: s1, s2, s3, two actions a and ot, and discount factor γ < 1. Action a takes

the agent one state to the right, state s3 yields a terminating reward of 1, reseting the

state to s1. Action ot has a non-stationary effect: it either leaves the agent at state s1, or

takes the agent to s3. The probability with which ot takes the agent to s3 evolves over

Figure 5.2: Illustration of the pessimistic bias in a tabular MDP. Action ot has non-
stationary effects, just like an option in HRL. As ot executed more, the probability of
landing in s3 increases, otherwise it leaves the agent in s1.
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time—the more it is executed, the more consistently it takes the agent to s3, similar to an

option in HRL whose policy improves with execution.

A Q-learning agent quickly learns Q(s1, a) = γ and Q(s1, ot) < γ leading to greedy

policy π(s1) = a. But if the agent executes ot enough times, it will get higher return

Q(s1, ot) = 1 > Q(s1, a) = γ leading to the greedy policy π(s1) = ot. Vanilla Q-learning

alone would not discover the higher value solution because it does not account for non-

stationary effect of ot; some form of exploration is needed for that.

5.2 Experiments

We aim to evaluate whether our methods can improve hierarchical RL. First, we

evaluate whether they result in better, more efficiently learned initiation sets. Second,

we test if better initiation set learning improves option learning as a whole. Finally, we

incorporate our changes into a state-of-the-art skill discovery method and check if resulting

agent is able to outperform the baseline in a sparse-reward continuous control problem.

Implementation Details. Option policies are learned using Rainbow (Hessel et al.,

2018) when the action-space is discrete and TD3 (Fujimoto et al., 2018) when it is

continuous. Following Bagaria et al. (2021a), all options share the same UVFA (Schaul

et al., 2015) but condition it using their own subgoals. The IVF is learned using Fitted

Q-Evaluation (Le et al., 6 15), prioritized experience replay (Schaul et al., 2016) and

target networks (Mnih et al., 2015). The IVF Q-function and initiation classifier are

parameterized using neural networks that have the same architecture as the Rainbow/TD3.

Each option has a “gestation period” of 5 (Konidaris and Barto, 2009b), which means

that before the option sees 5 successful trajectories, its initiation set is optimistically

initialized to be true everywhere. Since the training data for classification can be severely

imbalanced, we use the standard technique of upweighting the minority class (Japkowicz

and Stephen, 2002).
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Figure 5.3: Domains used for our experiments in Section 8.5. Enumerating left to right
from the top-left: first screen of Montezuma’s Revenge, MiniGrid FourRooms, Ant Medium
Maze, Robosuite Door, Robosuite Lever, and Robosuite Slide.

5.2.1 Measuring the Quality of Initiation Sets

Before comparing different methods based on task performance, we specifically test the

quality of initiation sets learned in MiniGrid-FourRooms (Chevalier-Boisvert et al.,

2023) and the first screen of Montezuma’s Revenge (Bellemare et al., 2013). In

both domains, observations are 84 × 84 images and the action-space is discrete. For

this experiment, we design start states S0 in each domain—in MiniGrid-FourRooms,

S0 is the set of all states (since this is a small tabular domain) and in Montezuma’s

Revenge, S0 is a series of 100 states scattered across the first screen. For the purpose of

evaluating our initiation set learning algorithms, at every episode, we sweep through states

s ∈ S0 and reset the simulator to s. Option termination conditions are also hand-defined:

in FourRooms, we create options that target the center of each room; in Montezuma’s

Revenge, we define five options: those that navigate the player to each of the two doors,

one that navigates the player to the bottom-right and one to the bottom-left of the first
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screen and finally an option that attempts to get the key.

Initiation Set Accuracy. At each state s ∈ S0, we record the initiation decision made

by the learning algorithm as Îo(s; θ) ∈ {0, 1}. We then execute the option policy πo

from that state and record whether or not the agent reached the option’s subgoal as

Ys ∈ {0, 1}. Accuracy at state s, for option o is then given by 1(Îo(s; θ) = Ys). This

process is repeated several times for all options o ∈ O and start states s ∈ S0. To be

faithful to how options are learned in the online RL setting, we only use the trajectory

obtained by running the option for updating the initiation classifier and the option policy

if the learned classifier returned true at the start state, i.e, Îo(s; θ) = 1 (in which case πo

is updated using Rainbow Hessel et al. 2018).

Initiation Set Size. Although accuracy is a natural evaluation metric, it does not fully

capture the quality of the learned initiation set. For example, if the predicted initiation

function returns false everywhere (i.e, if Io(s; θ) = 0,∀s ∈ S0), then the option policy

would not get new data to improve. If the policy never improves, its true initiation set

could also collapse; while such an initiation learner would register high accuracy, the

option would not be useful. As a result, we additionally measure the normalized size

of the “true” initiation set |Ys|: this is the fraction of start states S0 from which Monte

Carlo rollouts of the policy succeeds. A well-learned initiation set is not only accurate, it

is also as large as possible,2 reflecting a large region of option policy competence.

Competing methods. We compare the accuracy and size of the initiation sets learned

by:

• Baseline binary. Binary classifier used to learn the initiation set. This is what is

used in essentially all prior work and is the only baseline method in this experiment.

• IVF. Threshold the Initiation Value Function as discussed in Section 5.1.1.

2This is similar to the considerations of precision/recall in supervised learning.
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Figure 5.4: Measuring the quality of initiation sets in MiniGrid-FourRooms (left) and
the first screen of Montezuma’s Revenge (right). Solid lines denote mean accuracy and
initiation set size, shaded regions denote standard error. All curves are averaged over all
state-option pairs and 5 random seeds.

• Weighted. This is a weighted binary classifier discussed in Section 5.1.2.

Both the IVF and Weighted approaches use the competence progress exploration

bonus described in Section 5.1.3.

Discussion of results. Figure 5.4 shows that our proposed methods significantly

outperform the baseline binary classification approach, which learns classifiers that are

less accurate and smaller than those learned using other techniques. Furthermore, the

accuracy of the baseline binary classifier falls over time; this is because even though

the policy improves (and hence the size of the true initiation set increases), the learned

initiation set remains small and unable to adapt to an improving policy. By modifying the

binary classifier using the weighting scheme described in Section 5.1.2, we are able to learn

more accurate initiation sets that reflect highly competent option policies. Interestingly,

the optimistic version of the IVF is necessary to learn good initiation sets in Montezuma’s

Revenge, but it underperforms compared to the plain IVF in FourRooms; we hypothesize

that this is because FourRooms is a small and simple enough domain that an exploration

bonus is not strictly necessary.
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5.2.2 Robot Manipulation: Identifying Promising Grasps

In the previous section, we showed that our methods can lead to higher quality

initiation sets; now we evaluate whether that can in turn improve option learning as

a whole. We adopt robot manipulation as a testbed because it is a natural problem

setting for evaluating initiation set learning algorithms. For example, consider a robot

manipulating a hammer: not only should it choose a feasible, stable grasp on the hammer,

but it should also choose one that would allow it to subsequently drive a nail. This

problem, referred to as task-specific grasping in robotics, and has been studied extensively

for a fixed policy (Kokic et al., 2020; Fang et al., 2020; Zhao et al., 2021; Wen et al.,

2022; Schiavi et al., 2022); here we use RL to deduce which grasps are most likely to

afford success while simultaneously learning the skill policies. Furthermore, dense reward

functions are often necessary to train RL policies in robot manipulation domains (Gu

et al., 2017); this section highlights that initiation probabilities can be learned even when

the reward function used to train πo is not sparse like the initiation cumulant.

We use three constrained manipulation tasks in robosuite (Zhu et al., 2020): opening

a door, flipping a lever, and manipulating a sliding mechanism. Each task is modeled

as a single option and the policy and initiation set are learned simultaneously. Each

environment has 250 possible start states S0. At the start of each episode, a configuration

is sampled from the initiation set learner:

s0 ∼
Io(s)∑

s′∈S0
Io(s′)

,∀s ∈ S0;

the manipulator is then reset to s0. The continuous observation space is 52-dimensional,

the continuous action space is 13-dimensional; we use TD3 for policy learning (Fujimoto

et al., 2018).

Our algorithms are compared against two baselines: Random, which selects an arm
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Figure 5.5: Task success rate for manipulation domains aggregated over 4 random seeds.

configuration at random at the start of each episode3, and Binary which treats initiation

learning as vanilla binary classification. Our algorithms, IVF and Weighted, employ the

optimistic bias discussed in Section 5.1.3 by adding a count-based bonus to the predicted

initiation probability.

Task success rates are shown in Figure 5.5. The Door task is the simplest: most of

the grasp candidates afford task success. As a result, the Random and Binary baselines

are competitive with our algorithms. The Lever and Slide tasks are more challenging as

the number of promising grasps is significantly lower. In these domains, only the Weighted

variant is able to consistently recover a policy with success rate above 50%.

Figure 5.6 shows that our methods can identify good grasp poses without task-specific

engineering or human demonstrations. This is impressive given that human data (Mandikal

and Grauman, 2021, 2022) or heuristics like image segmentation (Kokic et al., 2017; Rosen

et al., 2022) are typically required to learn these affordances efficiently, even in the case of

a fixed policy.

5.2.3 Improving Option Discovery

Finally, to evaluate whether better option learning can improve option discovery, we

integrate our approach into an existing state-of-the-art algorithm: deep skill chaining

3This baseline is equivalent to an initiation set that is uniformly true everywhere.
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Figure 5.6: Examples of promising grasp poses (top row) in Door (left), Lever (middle)
and Slide (right): these are high probability samples from our initiation function;
contrasted with bad grasp poses (bottom row), which are low probability samples and are
ruled out by the initiation function.

(DSC) (Chapter 3). DSC learns a collection of options so that the subgoal region βoi of

an option oi is the initiation region Ioj of another option oj; by learning options that

funnel into each other’s initiation sets, DSC learns how to sequentially compose options

to reliably achieve a goal. It does so by first learning an option that reaches the task

goal, then another option that targets the first option’s initiation set and so on, until

the start-state is inside the initiation set of some option; for more details, please refer

Chapter 3. We chose to integrate our techniques with DSC because of its focus on learning

initiation sets jointly with options in an online and incremental reinforcement learning

setting and because the quality of initiation sets is crucial to its performance and stability

(Bagaria et al., 2021a).

80



Figure 5.7: (left) Comparing the performance of baseline DSC (Bagaria et al., 2021a) to
versions of DSC with our initiation learning techniques. Solid lines denote average success
rate over 5 random seeds, shaded regions denote standard error. (right) A visualization
of initiation sets learned in Ant Medium-Maze, where the ant robot has to navigate
from the bottom-right to the top-left. Each color denotes the initiation set of a different
option; although the plot only shows the location of the ant in the maze, the initiation set
is learned using the full 30-dimensional state.

Experimental setup. We compare baseline DSC to versions that modify the way in

which option initiation sets are learned. We use the Ant Medium Maze environment

where the agent gets a sparse terminating reward of 0 for reaching the goal and −1 every

other step; each episode lasts a maximum of 1000 steps (Fu et al., 2020; Todorov et al.,

2012). This is a challenging problem that cannot be solved with flat RL algorithms in

a reasonable amount of time. Baseline DSC was able to solve this problem by learning

initiation sets defined over a subset of the state (x, y location of the ant) (Bagaria et al.,

2021a), but here, we do not assume access to such privileged information—all methods

learn initiation sets using a dense neural network that maps the full 30-dimensional

continuous state to an initiation probability.

We used the author implementation (Bagaria et al., 2021a) where option policies are

parameterized using goal-conditioned value functions (Schaul et al., 2015). When using

the IVF directly as the initiation set, we mimic the structure of main agent and use a
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goal-conditioned value function to represent the IVF; the final initiation set is defined as

Io =
{
s : max

g∈βo
Vθ(s, g) > T, ∀s ∈ S

}
.

Figure 5.7 (left) shows that baseline DSC is unable to solve Medium Ant-Maze; but

by changing the way options learn their initiation sets, we are able to solve the problem

quickly and reliably. The weighted classifier slightly underperforms the pure IVF approach

in terms of mean return, but it has lower variance across runs. Figure 5.7 (right) visualizes

the initiation sets learned by the weighted classification approach; the figure makes it

clear that different learned options specialize in different parts of the maze.

5.3 Conclusion

Learning initiation sets is a critical component of skill discovery, but treating it as

binary classification misses key characteristics of the problem. Specifically, it does not

address the non-stationarity that results from a continually changing policy, the pessimistic

bias of learning initiation sets online, or the temporal structure in the problem. To address

these challenges, we proposed the Initiation Value Function (IVF), a general value function

tailored specifically to learning initiation sets. We used the IVF directly via thresholding

and also via a weighted binary classifier which adapts to changing option policies. Through

our experiments, we showed that our proposals lead to higher quality initiation sets, can

lead to faster learning of a single option and boost the performance of an existing skill

discovery algorithm.

A limitation of the IVF cumulant proposed in Section 5.1.1 is that it only works for

goal-reaching options. While this covers many cases, it cannot handle tasks without

specific targets, such as maximizing a robot’s velocity. Developing cumulants for more

general option subtasks remains an open challenge.
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CHAPTER 6

Skill Discovery for Exploration and

Planning using Deep Skill Graphs

The skill discovery problem has been studied in many different contexts—multi-task

learning (Frans et al., 2018; Veeriah et al., 2021), exploration (Machado et al., 2023; Jinnai

et al., 2019), and planning(Wan and Sutton, 2022; Jinnai et al., 2018)—but how these

settings culminate in a single algorithm remains unclear. We propose an algorithm that

discovers skills that aid exploration, and which are subsequently useful for planning in a

multi-task context. Our algorithm learns a collection of skills that form a graph, where

the nodes are subgoals and the edges are the policies that navigate between them. To

construct this graph, we first discover subgoal regions that optimize for coverage of the

state-space, using techniques inspired by the robot motion-planning literature (LaValle,

1998) that causes the graph to grow towards large unexplored regions. These regions

are subsequently connected using Deep Skill Chaining (Bagaria and Konidaris, 2020a;

Bagaria et al., 2021a), resulting in a collection of skills that enable the agent to reliably

move between subgoals. The chainability of the discovered skills, i.e, the property that

successful execution of one permits the execution of another, allows the agent to build

a graph that is suitable for deterministic planning (Konidaris et al., 2018). Finally, our
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Figure 6.1: Given a goal (red) outside the graph, the agent uses the graph to plan to
reach the node closest to that goal (green). It then expands the graph by constructing a
skill chain connecting the goal to the graph.

algorithm operates in the multi-task setting (Taylor and Stone, 2009) because it discovers

a multi-query graph (Kavraki et al., 1996) that it can use to plan between arbitrary

start-goal pairs at test time. At test time, if a goal state lies inside the skill-graph, the

agent can reach it without any further learning; if not, the agent plans to the nearest

subgoal and then switches to learning a new skill chain that extends the graph to reach

its new goal.

We test our algorithm on four maze-navigation tasks in MuJoCo (Todorov et al., 2012),

where it outperforms flat model-free RL (Andrychowicz et al., 2017), model-based RL

(Nagabandi et al., 2018) and state-of-the-art skill-discovery algorithms (Levy et al., 2019;

Sharma et al., 2020c).

6.1 Deep Skill Graphs

To solve goal-reaching tasks, options must be sequentially composable: the agent

must be able to successfully execute one option after another until it reaches the goal.

Sequential composition is possible if and only if successful execution of one option leads

the agent to a state that permits the execution of another.

When the agent need only ever navigate from a single given start state to a single given

goal state, it must therefore learn options that form a chain connecting those two states.
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In the more general case where the agent is given a single goal that must be reachable

from any start state, it must instead build a tree of options, enabling it to follow a chain

from any state to the goal. In the most general case, the agent may be asked to reach

any goal state from any start state; since that requires a chain of options connecting any

possible start-goal pair, the agent’s options must necessarily be organized into a graph.

We therefore propose to explicitly construct options so that they form such a graph.

6.1.1 Definitions

Before describing how the skill graph is constructed and used, we first define its key

components:

Discovered goal regions. The DSG agent proposes its own goals during an unsuper-

vised training phase. For each proposed goal state g, we define a goal region ϵg : S → {0, 1}

as an ϵ-ball centered around g. B = {ϵg1 , .., ϵgn} is the set of all such goal regions. To

unify notation with options, we additionally define Iϵg = ϵg, and Eϵg as the set of states in

which goal region ϵg was actually reached.

Skill graph. A skill graph is a weighted, directed graph G = (V , E,W). Each vertex

i ∈ V either corresponds to an option or a goal region. Edge ei→j exists between vertices i

and j if and only if the effect set of i is inside the initiation set of j, i.e, Ei ⊆ Ij (Konidaris

et al., 2018). The edge weight wi,j ∈ W is the reward accumulated by going from vertex i

to j.

Mapping states to vertices. Given agent state s, V(s) denotes the set of vertices

in the skill graph that s maps to. First, we find the set of options in the graph that the

agent can execute at s:

O(s) = {o | Io(s) = 1, ∀o ∈ O}. (6.1)
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Then, we enumerate the set of goal regions that s satisfies:

B(s) = {ϵg | ϵg(s) = 1,∀ϵg ∈ B}. (6.2)

Finally, the set of vertices that s maps to is given by:

V(s) = O(s) ∪ B(s). (6.3)

The descendants D(v) of vertex v is the set of vertices reachable from v. The ancestors

A(v) of v are the vertices from which v is reachable via G:

D(v) = {v′ | G.has-path(v, v′), ∀v′ ∈ V}, (6.4)

A(v) = {v′ | G.has-path(v′, v), ∀v′ ∈ V}. (6.5)

6.1.2 Overview of the Graph Construction Algorithm

During training, the agent alternates between (a) expanding the graph into unexplored

regions and (b) increasing the connectivity of the existing graph. The high-level algorithm

for both cases is similar; its three steps are illustrated in Figure 6.1.

The details of how each step is performed differs based on whether the agent is trying

to expand the graph or consolidate it. During graph expansion, the agent generates new

goals outside the graph (Section 6.1.3), navigates to its nearest neighbor in the graph

(Section 6.1.3) and then moves K steps in the direction of the goal (Section 6.1.3).

During graph consolidation, the agent instead picks a node from the closest unconnected

sub-graph as the goal (Section 6.1.4), navigates to its nearest neighbor in the current

sub-graph (Section 6.1.4) and then learns an option chain that connects the sub-graphs

(Section 6.1.4).
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6.1.3 Graph Expansion

Every few episodes, the agent expands the skill-graph to new regions of the state-space.

Generate New Goals

Regions covered by the graph represent places where the agent has already achieved

mastery (Kaelbling, 1993; Veeriah et al., 2018) because the agent can plan using learned

skills to reliably reach arbitrary states inside the graph. To increase the portion of the

world over which it has achieved mastery, the skill-graph should expand into largely

unexplored regions of the state-space.

In other words, given the current graph G, the agent should generate a goal state

g such that G grows towards the largest region it has not yet covered. As Lindemann

and LaValle (2004) (somewhat surprisingly) showed in the context of motion planning,

randomly sampling g from the state-space does exactly that. So, we set g = srand ∼ S.1

Identify the Nearest Neighbor

Given a randomly sampled goal state srand that lies outside the graph, the agent

identifies its nearest neighbor in the graph vnn. To find vnn, it first uses Equation 6.4 to

instantiate the set of vertices reachable from the current state: D(st) = {D(v)|v ∈ V(st)}.

Then, it finds the vertex in D(st) closest to srand and sets vnn to it:

vnn = argmin
v∈D(st)

||srand − v||2

= argmin
v∈D(st)

[
max
s∈Ev
||srand − s||2

]
.

Note that, in the equation above: (a) we define the distance between vertex v and state

srand as the maximum distance between any of the states in the effect set of v and srand

1This assumes that we can sample states from the environment. In MuJoCo, where the observation
space is factored and bounded, this is straightforward. Sampling from pixel-based observation spaces is
more involved, and is the subject of active research (Nair et al., 2018; Pong et al., 2019).
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and (b) we use the Euclidean metric and leave discovering more sophisticated metrics

(Mahadevan and Maggioni, 2007; Hartikainen et al., 2020; Pitis et al., 2020a) for future

work.

Navigate to the Nearest Neighbor

Given that the agent is at state st and wants to reach vertex vnn, it must decide which

option to execute. There are two possible cases: (a) if there is a path from V(st) to vnn

in G, the agent uses Equation 6.1 to find O(st), the set of options available in st. Then,

it uses graph search (Dijkstra, 1959) to find a plan from each o ∈ O(st) to vnn, selects

the least-cost plan, and executes its first option. Having landed in a new state st+τ , it

re-plans to go from st+τ to vnn. This process continues until it reaches vnn. (b) If there is

no such path on the graph, the agent uses DSC’s model-free policy over options πO to

select options (or primitive actions). Since DSC trains this policy using SMDP Q-learning,

it is not as effective as using the planner for option selection.

Extend the Graph

Having reached vnn, the agent attempts to extend the graph towards srand. However,

srand may be unreachable from vnn either because it is inside an obstacle or because of

the limits of the agent’s current policy. As a result, srand itself cannot be used as a goal

state. In RRT, this issue is resolved by using the given dynamics model to move K steps

in the direction of srand. Since a dynamics model is not typically known a priori in the RL

setting, we learn one from the data collected during training and use the learned model in

conjunction with Model Predictive Control (MPC) (Garcia et al., 1989) to move in the

direction of srand. The state that the model-based controller ends up in, sMPC , becomes

a new goal state and ϵsMPC
is added to the list of goal regions B. An example of this

process is shown in Figure 6.3c.
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Figure 6.2: When an agent aims to consolidate the graph at training time and is in graph
vertex v0, it targets sub-graph 2 because it is closer than sub-graph 3. Then it identifies
the closest descendant-ancestor pair (vd, va). It uses its planner to traverse v0 → vd and
va → vg. Since it does not have skills between vd and va, it uses DSC to learn a chain of
skills connecting sub-graphs 1 and 2.

6.1.4 Graph Consolidation

For training episodes in which the agent is not expanding the graph, it improves the

graph’s connectivity by selecting an existing node and attempting to reach it.

Goal Identification

To inform the decision about which node to target, the agent identifies parts of the

graph it currently has difficulty reaching. To do this, it first enumerates the vertices

to which there is no path from its current state st. To pick a specific one to target, it

uses a simple greedy heuristic: target the nearest unconnected sub-graph to greedily

maximize the connectivity of the overall graph (Kuffner and LaValle, 2000). This process

is illustrated in Figure 6.2.
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Identify the Nearest Neighbor

Having selected a goal vertex vg, DSG identifies its current sub-graph (the set of

descendants D(st)), and the sub-graph from which it can reach the goal vertex vg (the set

of ancestors A(vg)). Finally, it identifies the pair of nodes from D(st) and A(vg) closest

to each other:

vd, va = argmin
vd∈D(st),
va∈A(vg)

||vd − va||2

= argmin
vd,va

 max
sd∈Evd ,
sa∈Eva

||sd − sa||2
 .

Extend the Graph

The agent uses its planner to reach vd (using the procedure described in Section 6.1.3),

DSC to reach va from vd, and the planner again to finally reach vg. This procedure

minimizes the number of new skills required to connect the two sub-graphs. Once these

skills have been learned, there is a path in G from s0 to vg, and the agent can henceforth

plan to target vg.

Adding Edges to the Graph. For deterministic plans in the skill-graph to correspond

to feasible solutions in the ground MDP, Konidaris et al. (2018) showed that any two

options o1, o2 can have an edge e1,2 between them if and only if there is a guarantee that

successful execution of o1 will allow the agent to execute o2, i.e, e1,2 exists iff Eo1 ⊆ Io2 .

To implement this rule, we store all the states in which o1 successfully terminated and

check if all of them lie inside Io2 . Similar logic can be applied to creating edges between

options and goal regions in the graph.
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6.1.5 Querying the Skill Graph at Test Time

Given a task expressed as a start state s0 and a goal region ϵg at test time, the agent

can use the graph as follows:

• if ϵg completely contains the effect set of an option, reaching that effect set implies

reaching ϵg, so the agent plans to reach g without any additional learning.

• if the goal outside the graph, DSG extends the graph just as it did during training:

it plans to the nearest node and then uses DSC to build a chain of options from the

graph to reach g.

• If the start state s0 itself lies outside the graph, DSG additionally creates a skill

chain from s0 to its nearest node in the graph.

6.2 Experiments

We tested DSG on the continuous control tasks shown in Figure 6.5. These tasks are

adapted from the “Datasets for RL” benchmark (Fu et al., 2020)2 and are challenging for

non-hierarchical methods, which make little-to-no learning progress (Duan et al., 2016).

Since we already assume a Euclidean distance metric in Section 6.1.3, we use the dense

reward version of these tasks, i.e, R(s, g) = −||s− g||. Video and code can be found on

our website.

6.2.1 Implementation Details

We follow Nagabandi et al. (2018) to learn a model-based controller to use as option

policies πo,∀o ∈ O. Specifically, transitions seen by all options are used to train a neural

dynamics model fξ, which is then used to select actions by approximately solving the

2We use the mazes from this suite, not the demonstration data.
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Figure 6.3: (a) States visited under a random walk and (b) using DSG. (c) model-based
extrapolation for discovering goals during unsupervised training: the stars represent
randomly sampled states; trajectories of the same color target the respective goals using
MPC. All data is collected in Ant U-Maze, where the agent starts at the bottom-left of
the maze.

following H-horizon optimization problem:

πo(s|g) = argmax
a∈U |A|(−1,1)

H∑
t=1

γt−1R(st, g), (6.6)

such that st+1 = fξ(st, a). The solution to Equation 6.6 is a sequence of actions; rather

than executing this sequence open-loop, we use MPC to execute the first action and

re-plan at the next time-step (Nagabandi et al., 2018). Before executing option policy πo,

we randomly sample from the option’s subgoal region, i.e, g ∼ βo via the option’s effect

set.

6.2.2 Qualitative Evaluation

Exploration Property of DSG. We compare the states visited by the DSG agent and

those visited under a random walk. Figure 6.3 shows that in the Ant U-Maze environment,

skills can lead to temporally extended exploration as opposed to the dithering behavior of

random walks, even in the absence of an extrinsic reward function.

Incremental Graph Expansion. Figure 6.4 provides some intuition on why DSG

can effectively explore large regions of the state-space—the skill-graph begins at the start
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Figure 6.4: Incremental expansion of the skill graph towards unexplored regions in the
large ant-maze. Although the skill-graph is directed, we visualize it as un-directed for
simplicity. To visualize option nodes, we plot the median state of its effect set.

state and incrementally expands into unexplored regions of the state-space. By planning

and executing learned skills inside the graph, the agent can reliably get back to the frontier

of its knowledge (as represented by the outermost vertices in the graph). Exploration

from the frontier in turn allows it to amass the experiences it needs to further expand the

graph. By interleaving planning and chaining in this way, the DSG agent incrementally

achieves coverage of ever increasing portions of the state-space

6.2.3 Quantitative Evaluation

Experimental Setup. The agent discovers skills during an unsupervised training phase

(which lasts for 1000 episodes in Reacher and U-Maze, 1500 episodes in Medium-Maze

and 2000 episodes in the Large-Maze). During this period, its start-state is fixed to be at

the bottom-left of every maze. At test time, we generate 20 random start-goal pairs from

the maze and record the average success rate (Andrychowicz et al., 2017) of the agent

over 50 trials per start-goal pair (Sharma et al., 2020c). All competing methods are tested

on the same set of states.

Comparisons. We compare DSG to the following

1. Flat model-free baselines: HER (Andrychowicz et al., 2017) learns policies that

generalize across goals by taking the goal state as an additional input during training.

Because of their widespread use, we use them as a representative non-hierarchical
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Figure 6.5: Test-time success rates averaged over 20 randomly sampled start-goal pairs
and 50 trials; error bars denote standard deviation. All algorithms were trained for the
same number of episodes prior to being tested—their training performance is not shown
here.
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baseline. Since HER does not have an explicit mechanism for exploration, we

additionally favorably expand its start-state distribution during training to include

all valid locations in the maze—we call this baseline HER*. HER policies are

learned using TD3 (Fujimoto et al., 2018).

2. Flat model-based baselines: Since we use the model-based (MB) controller from

Nagabandi et al. (2018) as option policies, we include it as our model-based baseline.

Similar to HER*, we include a version MB* which also gets favorable access to a

wide start-state distribution.

3. Feudal HRL baseline: HAC (Levy et al., 2019) is a hierarchical extension of HER,

and has achieved state-of-the-art performance on similar tasks.

HER, HER*, MB, MB* and HAC sample goals uniformly from the free-space in the

maze during training.

4. Empowerment HRL baseline: To compare against DADS, we trained the skill-

primitives in the Ant-Reacher environment and used them at test-time in the different

mazes. This strategy outperformed that of discovering skills in each specific maze

environment, since there was no space for the DADS agent to learn diverse skills.

6.3 Results

Figure 6.5 shows that DSG comfortably outperforms all baselines. Our results confirm

that while in principle flat goal-conditioned RL can solve the kind of goal-reaching tasks

we consider, they require orders of magnitude more data and struggle to generalize to

distant goals.

Both HAC and DADS were able to achieve comparable (and good) results in Ant-

Reacher (which was the task that they were evaluated on in their respective papers).

However, unlike DSG, they struggled to maintain that level of performance as the problem
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Figure 6.6: Discovered graph-based abstraction (right) of a high-dimensional continuous
control problem (left) during an unsupervised training phase. When given test-time goals
(stars), the agent finds the high-level solution trajectories on the graph, which are shown
in red, green and blue (right). Then the high-level solutions are translated to joint torques
using discovered skills, which are shown as different colors (left).

got harder with larger, more complicated mazes. HAC implicitly assumes that the space

of subgoals is smooth—which is violated in our mazes because several subgoal proposals

made by the manager correspond to states that are inside obstacles, and hence unreachable

by the workers. DADS discovers maximally diverse skills, but solving mazes requires

sequencing a very specific sequence of actions (e.g., “go right until you can go left”)—a

property not captured by their diversity objective. Compared to DSG, an advantage of

DADS is that their skills are portable (Konidaris and Barto, 2007), meaning that the same

skill can be transferred to different regions of the state-space.

Upon examining the goal states that DSG failed to reach at test-time, we found that

these failures could be attributed to our reliance on dense rewards. Specifically, if the goal

state lay on the other side of an obstacle from its nearest node in the graph, DSG would

be unable to extend the graph towards this goal. It is well known that dense reward

functions can lead to sub-optimal policies (Randløv and Alstrøm, 1998; Mataric, 1994),

and extending our algorithm to the sparse-reward setting should mitigate these failures.
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6.4 Conclusion

We introduced an algorithm that builds a graph abstraction of large continuous MDPs.

Like all RL agents, DSG starts by exploring the environment since it does not know

enough about it to plan. Then, it proposes its own goals and learns skills to reliably reach

those goals. Together, proposed goals and skills enable high-level planning.

We showed that skill graphs grow outward from the start-state towards large unexplored

regions, reflecting mastery over ever increasing portions of the state-space. Finally, we

tested our algorithm on a series of maze navigation tasks and showed that DSG can be used

to reach novel goals at test-time in a small number of trials. We compared the zero-shot

generalization capability of our algorithm to that of popular flat and state-of-the-art

hierarchical alternatives and showed that DSG significantly outperforms them.
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CHAPTER 7

Intrinsically Motivated Discovery of

Temporally Abstract World Model

Graphs

A recurring theme of this thesis has been the desire for learning plannable models of the

world that are abstract in both state and time. In Chapter 6, we discussed the Deep Skill

Graphs (DSG) algorithm and how it builds a graph-based abstraction of large continuous

environments—nodes in the graph represent abstract states and edges represent skill

policies. The usefulness of the skill graph stems primarily from its expansion property : over

time, the graph expands outward from the start-state towards unexplored regions (LaValle,

1998), allowing the agent to gradually increase mastery over its environment (Veeriah

et al., 2018). Graph expansion in DSG is achieved via random sampling from the state-

space and nearest-neighbor search: operations that are intractable in environments with

high-dimensional observations (e.g, images). Furthermore, the DSG algorithm attempts to

increase the probability of all edges (by repeatedly executing the corresponding skills) so

that the resulting graph is robust and reliable everywhere. However, when the environment

is much larger than the agent, exhaustive coverage is intractable (Sutton et al., 2022),
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Figure 7.1: (a) In the original DSG algorithm, a state is sampled uniformly at random
(blue star) from the state-space S and the graph is pulled towards it via its nearest
neighbor node (green). (b) In the new algorithm, IM-DSG, we identify a node to expand
using an exploration value function Vexplore. (c) Once the agent reaches the expansion
node, it executes the exploration policy πexplore, and the most salient state in the resulting
trajectory τ is identified as a target for a new skill.

and the agent should prioritize practising skills that are more likely to result in higher

reward (Sutton et al., 2024).

How can we incrementally build the skill graph so that it retains its expansion property,

but does not require a state-sampler or nearest-neighbor search to do so? Instead of

generating a random state and pulling the graph towards it (see Figure 7.1(a)), we use

ideas from intrinsic motivation (Barto, 2013; Schmidhuber, 2010b) to identify an existing

node for expansion and push the graph outward from it (Figure 7.1(b); Lindemann and

LaValle 2004). The agent plans with its existing skills to reach the expansion node, and

then executes a low-level exploration policy trained using RL to maximize a novelty-based

intrinsic reward (Sutton, 1990; Täıga et al., 2019). Since the intrinsic reward is likely to

be higher in states that are outside the graph, executing the exploration policy will result

in a trajectory that will tend to move away from the existing graph, i.e., towards those
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states where the agent does not yet have a reliable abstract model (Figure 7.1(c)). The

agent then identifies the most interesting state (Chentanez et al., 2005) in that trajectory

and builds a new skill to target it (Şimşek and Barto, 2004). Over time, the agent refines

the skill that reaches this new node in the graph, and in doing so, converts this once novel

region into an area over which it has gained mastery via its abstract model (Veeriah et al.,

2018). We call this algorithm Intrinsically Motivated Deep Skill Graphs (IM-DSG).

We test IM-DSG in a series of exploration problems with image-based observation

spaces, to which DSG cannot be applied. Our qualitative results show that IM-DSG

discovers options that achieve intuitively meaningful subgoals in the environment and that

the acquired skill graph incrementally expands outward from the start state. Quantitatively,

we show that our method outperforms pure novelty-maximization techniques (Täıga et al.,

2019) as well as baseline model-free RL (Kapturowski et al., 2019) in MiniGrid (Chevalier-

Boisvert et al., 2023), Visual Taxi (Dietterich, 2000; Diuk et al., 2008; Allen et al.,

2021), and Sokoban (Schrader, 2018); finally we show that the learned abstract model is

useful in a multi-task context to achieve held-out goals in a zero-shot fashion in Visual

Pinball (Konidaris and Barto, 2009b; ?).

7.1 Background and Related Work

We model the interaction of the agent with its environment as a Markov Decision

Process M = (S,A,R, T, γ) (Sutton and Barto, 2018). To aid in reward maximization,

our agent will discover options o ∈ O = (Io, πo, βo) (Sutton et al., 1999), where Io(s) is the

probability of initiating option o in state s, πo is a policy which outputs primitive actions

and βo : s→ {0, 1} denotes the termination region of the option, which we overload with

the subgoal of the option. Additionally, each option has a maximum horizon of H steps

and has en effect set Eff(o), which denotes the set of states in which the option triggered

its subgoal condition βo (Konidaris et al., 2018).
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Universal Value Function Approximators (UVFAs) (Schaul et al., 2015) provide

a scalable way to learn goal-conditioned value functions Vg : S → R, Qg : S × A → R

and their corresponding goal-conditioned policies πg : S → A (Kaelbling, 1993) using

function approximation. We use UVFAs to parameterize option value functions and

policies: instead of representing each option’s policy separately (Sutton et al., 2011), all

options can condition the same function approximator on its own subgoals (Bagaria et al.,

2021a): πo(s) = argmaxaQg(s, a) = argmaxaQβo(s, a).

Exploration in RL. Exploration is a fundamental problem in RL. In the multi-armed

bandit setting, the agent can pick actions that maximize the upper-confidence bound

(UCB) of the action-value function: π(a) = argmaxa∈A

[
Q(a)+ c√

N [a]

]
to optimally trade-

off exploration and exploitation (Lattimore and Szepesvári, 2020). In tabular RL, the

agent’s uncertainty about its transition and reward function (together called a “model”)

can once again be captured using the proxy of visitation counts over the state-action

space: as long as the bonus reward (Sutton, 1990) for trying action a from state s decays

as 1√
N [s,a]

, the agent can rapidly learn the optimal policy π∗ (Strehl and Littman, 2008).

When the environment is too big to permit tabular counting, the notion of counts can be

generalized to “pseudocounts“ N (s) (Bellemare et al., 2016): states that are similar to

one another have similar pseudocounts. Coin Flip Networks (CFN) (Lobel et al., 2023) is

a simple, principled and state-of-the-art technique which uses neural networks ϕ to predict

pseudocounts in high-dimensional state-action spaces. Predicted pseudocounts are turned

into an intrinsic reward function rint(s) = 1√
Nϕ(s)

and a policy is learned using off-the

shelf model-free RL algorithms to maximize the sum of intrinsic and extrinsic rewards

(Täıga et al., 2019). Novelty seeking agents exhibit impressive performance in Atari games

(Kapturowski et al., 2022; Ecoffet et al., 2019), but they do not learn a model suitable

for high-level planning. In this chapter, we propose an algorithm that combines novelty

maximization objectives (which we refer to as “low-level exploration”) with a drive to

learn an abstract, plannable model of the world (“high-level exploration”).

101



Model-based RL. The IM-DSG algorithm introduced in this chapter is closely related

to several classic model-based RL algorithms. Chief among them is the E3 algorithm,

which divides the state-space into 3 sets: known, unknown but visited, and unvisited.

Conceptually, the known states are those in which the agent has a strong model over; this

is exactly what the skill-graph also represents. The states that are “unknown but visited”

are analogous to the leaves of the skill graph (from the perspective of the start-state), which

serve as expansion nodes. Finally, the expansion of the skill graph is designed so that more

states from the unvisited region are eventually moved into the known region. As we will

see in Section 7.2, we take inspiration from algorithms that exploit the idea of optimism

under uncertainty such as R-Max (Brafman and Tennenholtz, 2002), UCRL2 (Auer et al.,

2008) and MBIE-EB (Strehl and Littman, 2008) to carefully balance exploration and

exploitation. Unlike those algorithms, we do not simply take random actions in the

unvisited region, but instead follow a policy that demonstrates deep exploration (Osband

et al., 2016a) because it might not be trivial to reach interesting states (for example, refer

to the “narrow passage” problem in motion planning (Kavraki et al., 1996)).

Deep Model-based RL. Dreamer (Hafner et al., 2018) and MuZero (Schrittwieser

et al., 2021) family of algorithms learn a physics-based model of that environment for

planning. These algorithms have demonstrated impressive results in a variety of domains

(Hafner et al., 2023). However, all learning (even in LEXA (Mendonca et al., 2021)

and Director (Hafner et al., 2022), which learn temporal abstractions) is predicated on

accurately approximating one-step transition and reward models in the agent’s native

state-action space. One-step models suffer from the curse of the horizon (Sutton et al.,

1999): model prediction errors compound over-time and complicate exploration and

credit assignment (Talvitie, 2017). Our work seeks to bypass the challenges of model-

learning in the raw state-action space: model-free policies are learned in the low-level and

temporally-extended models are learned and used in the high-level.
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Go-Explore shares a similar motivation to our algorithm: exploration is more effective

when initiated from the frontiers of the agent’s experience. The initial version of Go-

Explore relied on simulator resets, which is a limiting assumption (Ecoffet et al., 2019).

More recent versions do not rely on resets, but require a pre-specified “cell” representation

and exploit the near-determinism of Atari domains (Machado et al., 2018a) by using

imitation learning to return to the frontier. Crucially, Go-Explore does not address the

challenges of learning a world model and planning with it while doing exploration, which

is the focus of our work.

Graph-based HRL methods. Since DSG (Bagaria et al., 2021b), some papers (Lee

et al., 2022; Lo et al., 2022; Roice et al., 2024) have also built graph-based abstractions of

the environment, but the methods do not generalize to image-based observation spaces.

Some papers provide ways to learn abstract models (Konidaris et al., 2018; Lo et al., 2022;

Mann et al., 2015; Sutton et al., 2024), but they assume that options are given to the agent.

Other methods (Eysenbach et al., 2019b; Huang et al., 2019; Campos Camúñez et al.,

2020; Nasiriany et al., 2019; Sharma et al., 2020c) decompose the agent’s training into a

pre-training stage and a planning phase: a goal-conditioned value function is learned over

the entire domain and then planning is done to improve the effectiveness of the pre-trained

value functions; this approach is insufficient in the continual learning setup (Ring, 1994)

where the agent may never visit all parts of the environment, especially without using a

planner in the loop. Another common assumption made by existing graph-based HRL

methods is that of uniform resets: the agent is randomly reset to a new location at the

beginning of every episode (Eysenbach et al., 2019b; Huang et al., 2019; Zhang et al.,

2021b); this bypasses the exploration problem, which is a key motivation for our work.
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7.2 Intrinsically Motivated Deep Skill Graphs

Exploration and planning are deeply intertwined. Exploration aids planning by prefer-

entially seeking out data from regions where the model is currently too weak to support

effective planning. But, planning also supports effective exploration: the agent can plan

with its abstract model so that it can reach interesting areas reliably, and then conduct

local exploration in a more targeted fashion. The Intrinsically Motivated Deep Skill

Graphs (IM-DSG) agent interleaves exploration and planning in this way. To support

planning, it builds a graph-based model of the environment. Exploration proceeds both

inside the graph (to strengthen the existing model) and outside it (to increase the region

over which the agent can plan). Inside the graph, the agent refines skills that are currently

weak and could lead to high reward; outside the graph, the agent uses a novelty and

reward maximizing policy to search for new salient regions that can be reached reliably in

the future using its model.

7.2.1 Semantics of the Skill Graph

Before discussing our algorithm for discovering options and planning with them, we

first outline the major components of the skill graph:

Nodes and Edges. The skill graph is a weighted and directed graph G = (N , E,W ).

Each node n ∈ N represents the terminating states of an option on—i.e., its subgoal—

determined by the termination condition βon : s → {0, 1}. For each node n, we can

measure the extent to which a state s belongs to n by considering the effect of executing

option on from any state in the state space:

n(s) := Eff(on)(s) = P(s | on); (7.1)

that is, the distribution of states after executing on. Moving forward, we slightly abuse

notation by taking expectations with respect to the states of a node, Es∼n[·] to mean
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expectations taken with respect to the effect distribution Es∼Eff(on)[·].

An edge eni→nj ∈ E exists between nodes ni and nj if executing the option policy

πonj from states in node ni is likely to reach node nj (Konidaris et al., 2018). The weight

of an edge is the probability of successfully traversing it in a single option execution,

which is equivalent to the initiation probability of option oj from states inside node ni:

wni→nj = Es∼ni
[
Ionj (s)

]
(Bagaria et al., 2023).

Mapping from states to nodes and back. Given a state s, N (s) denotes the set of

nodes that s maps to:

N (s) = {n ∈ N | βon(s) = 1}. (7.2)

Of course, it is possible that a state does not satisfy any option’s termination condition;

so, we augment the nodes in the graph with a null vertex φ such that N (s) = {φ} for

such states; informally, φ represents “falling off the graph”.

The descendants D(n) of a node n is the set of nodes that can be reached from n with

nonzero probability, while staying inside the graph:

D(n) = {n′ ∈ N | G.has-path(n, n′)}, (7.3)

where G.has-path(n, n′) is a sub-routine implemented using breadth-first search on the

adjacency matrix representation of the graph G. By combining Equations 7.2 and 7.3, we

can enumerate the nodes reachable from the current state st as D(st) = ∪n∈N (st)D(n).

7.2.2 Graph Construction Algorithm

At a high-level, the graph construction algorithm proceeds as follows: the IM-DSG

agent first identifies which node in the graph to expand (Section 7.2.2.1), then it constructs

(Section 7.2.2.4) and solves an abstract MDP (Section 7.2.2.5), which yields a policy

over options that guides the agent to the expansion node. After following this abstract
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policy and reaching the expansion node, the agent executes a low-level exploration policy

(Section 7.2.2.6), and finally extracts a new node from the resulting trajectory to add it

to the skill graph (Section 7.2.2.7).

7.2.2.1 Identifying the Expansion Node

To select an expansion node, we need to quantify how much each node would contribute

to graph expansion: nodes that cause the graph to extend further should have a higher

probability of being selected for expansion. To capture this idea, we first construct an

intrinsic reward function that is higher the further away a state is from the graph. But

rather than relying on distance functions, which are usually unavailable in high-dimensional

observation spaces, we use pseudocounts (Bellemare et al., 2016): the further away a state

is from the graph, the fewer times it has likely been visited. We use Coin Flip Networks

(CFN) (Lobel et al., 2023) to estimate pseudocounts and use it as our intrinsic reward:

rnovelty(s) =
1√
Nϕ(s)

,

where Nϕ(s) is the pseudocount of state s as approximated using CFN parameters ϕ.

We now have an intrinsic reward function rnovelty that is higher along the frontiers of

the graph, where the agent has less experience. To turn this into an expansion probability,

we ask: if the agent executes a novelty-maximizing policy πnovelty starting from each

graph node, how much intrinsic reward can it expect to accumulate? Fortunately, this

concept is well captured by the exploration value function Vnovelty. But, solely using

novelty will result in graph expansion in all possible directions; to forego exhaustive

coverage and prioritize high reward regions, we add the intrinsic and extrinsic rewards

together while learning Vnovelty. Concretely, we define the utility of expanding a node n as

U(n) = Es∼n
[
Vnovelty(s)

]
= Es∼n

[∑∞
t=1 R(st, at) + b · rnovelty(st) | s0 = s

]
; we use b = 0.01

in all our experiments.
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Finally, we restrict the choice of expansion node to the set of nodes that are reachable

from the current state, i.e, the descendants of the nodes that map to the current state of

the agent st. Therefore, we define the probability of expanding a node n as follows:

nexpansion ∼ Pn =
U(n)∑

n′∈D(st)
U(n′)

=
Es∼n

[
Vnovelty(s)

]
∑

n′∈D(st)
Es′∼n′

[
Vnovelty(s′)

] ,∀n ∈ D(st). (7.4)

7.2.2.2 Estimating Edge Probabilities

Every edge in the skill graph has a weight pni→nj , which represents the probability

with which an option onj initiating from states in node ni will successfully terminate in

node nj. As pointed out earlier, this is equivalent to the expected initiation probability

of option onj , where the expectation is taken with respect to states inside the node ni.

Following Bagaria et al. (2023), we interpret the agent’s goal-conditioned value function

(UVFA) (Schaul et al., 2015) as an initiation probability:

pni→nj = Es∼ni
[
Ioj(s)

]
≈ Es∼ni

[
Vnj(s)

]
:= vni→nj . (7.5)

It is possible to infer the edge probabilities from the UVFA because the goal-conditioned

reward function that is used to train it is Ro(s) = βo(s), i.e., it is +1 for states inside the

option’s subgoal region and 0 otherwise. However, naively using the UVFA prediction as

edge probability can hinder learning because:

1. vni→nj for an edge can be low if traversing it is actually unlikely in a single option

execution (even under an optimal policy) or because the agent does not yet have

enough data, and,

2. when we add new nodes to the graph, the probability of reaching them will initially

be low. To increase these edge probabilities, the agent must continually practice the

options that target them, but this is unlikely to happen owing to their low starting
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probabilities.

Therefore, to address these issues, we are optimistic about the value of the edge

probabilities:

p+ni→nj
:= vni→nj + U(ni, nj) ≈ vni→nj +

c√
N [ni, nj] + 1

, (7.6)

where U(ni, nj) represents the uncertainty about our value prediction vni→nj , which we

obtain using N [ni, nj] (Brafman and Tennenholtz, 2002; Strehl and Littman, 2008), the

number of times the agent has executed option onj starting from states in node ni (c ∈ [0, 1]

is a hyperparameter).1 When N [ni, nj] is low, the agent is optimistic about traversing

that edge, and so it is encouraged to practice the corresponding option policy. But, as the

agent attempts to traverse edge eni→nj , the count N [ni, nj] increases, and the optimistic

bias decays; eventually, the edge probability approaches the goal-conditioned value, which

we expect to become more accurate with more data. By incorporating an optimistic bias

via the edge probabilities, we ensure that the policies computed by the planner achieve a

form of exploration within the graph, which prioritizes paths that reach the expansion

node while improving newly added skills.

7.2.2.3 Deciding when there is an edge between two nodes

Using Equation 7.6, we can determine the probability of traversing an edge in a single

option execution. Näıvely, this would result in a dense, fully-connected graph, which

would be problematic: suppose there is an existing node n1 and we just added a new node

n2 that is far away (even under an optimal policy) from n1. The agent’s initial desire

to connect them would be high (because N [n1, n2] will be low). As a result, the agent

will spend a lot of time realizing that n1 and n2 should actually have a low probability of

being directly connected to one another. Not only is this sample-inefficient, it also results

1Since the counts are over discrete states of the AMDP, we simply maintain tabular counts in a
|S̄| × |S̄| matrix.
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in graph construction slowing down over time: for every new node added to the graph,

the agent must determine how the new node relates to every other existing node. To

mitigate this issue, we use the following heuristics to determine when two nodes n1 and

n2 should have an edge connecting them:

• Observed multi-step transition. When we observe a transition between two

nodes n1 → n2 within H steps (the maximum horizon of an option), we connect

them with an edge.

• High goal-conditioned value. We connect nodes n1 → n2 with an edge when

the goal-conditioned value between them, Es∼n1

[
Vn2(s)

]
, is high enough. To ensure

that the resulting model is amenable to planning, we add edges only when we are

highly confident that execution of one option will allow for the execution of another

(Konidaris et al., 2018). We instantiate this principle via an adaptive threshold that

is high to begin with, and tapers to a fixed hyperparameter τ ∈ [0, 1] when more

experience is gained:

en1→n2 = I

[
Es∼n1

[
Vn2(s)

]
− c√

min {N [n1], N [n2]}
> τ

]
, (7.7)

where I is the indicator function and N [n] is the number of times the agent has

visited node n. The inverse square root term acts as an uncertainty penalty that

diminishes as more data is collected.

7.2.2.4 Constructing the Abstract MDP

After the agent identifies the expansion node nexpansion, it needs to compute a plan

that will guide it from its current state st to nexpansion. Our graph has two properties that

will inform an appropriate choice of planning algorithm:

1. Probabilistic transitions. The skill graph has probabilistic edges because (a)

the environment’s transition function and the agent’s option policies are stochastic,
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and (b) the option policies are being learned online, causing the abstract transition

function to also appear stochastic and nonstationary (Nachum et al., 2018; Levy et al.,

2019; Bagaria et al., 2021a). We represent these dynamics with a transition matrix,

T̄ , where each entry T̄ij is the probability that executing the option targeting node

nj from node ni successfully leads to node nj . When option execution is unsuccessful,

we assume the agent “falls off” the graph, modeling it by assigning the remaining

probability (1− T̄ij) to an absorbing failure state φ.

2. Incorporating extrinsic reward. Given two paths from st that both reach

nexpansion, we would prefer one that collects extrinsic rewards along the way. This

allows us to form a reward-respecting abstract model (Sutton et al., 2024), and

prioritizes skill refinement in parts of the graph that are likely to result in higher

reward. To incorporate this, we define a reward matrix, R̄, where each entry

R̄ij is the sum of extrinsic rewards collected during the execution of the option

and an intrinsic reward that is high at the expansion node. Formally, we write:

R̄ij = κR̄ext
ij + R̄int

j , where κ ∈ R scales the extrinsic reward, and R̄int
j equals 1 if

node nj is the expansion node, and 0 otherwise.

We also define an abstract discount factor, γ̄, which reflects the probability of staying

within the graph during an option execution. Putting these elements together, our AMDP

is defined as: M̄ = (S̄, Ā, R̄, T̄ , γ̄), where S̄ and Ā represent the set of nodes in the skill

graph. Planning on this abstract MDP is a Stochastic Shortest Path (SSP) problem

(Bertsekas and Tsitsiklis, 1991). We solve this SSP using value iteration (Bellman, 1966),

which yields a deterministic abstract policy π̄. This abstract policy maps each node

(abstract state) to an option, guiding the agent toward the expansion node while balancing

the collection of extrinsic rewards and exploration of uncertain edges. An illustrative

example of this AMDP construction is provided in Figure 7.2.
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Figure 7.2: Summary illustration of a toy abstract MDP (AMDP) with 3 nodes. i and j
are two ordinary nodes, ne is the expansion node and the skull node shows a fictitious
node that represents “falling off the graph”. The transition probabilities T̄i→j are obtained
using the UVFA Vθ and edge-traversal counts N [i, j]; the reward R̄i→j and discount models
γ̄ are obtained via monte carlo estimation from option executions.

7.2.2.5 Navigating to the Expansion Node

The abstract policy π̄ tells the agent which options to execute to reach the expansion

node. While following π̄, if the agent finds itself in a state that is not in the graph

(st ∈ φ), it targets the closest node in the graph: ot = argmaxo Vβo(st),∀o ∈ O. Each

option execution corresponds to rolling out the corresponding option policy πo(s), which

is trained using recurrent deep Q-learning (Kapturowski et al., 2019) to maximize the

pseudo reward function Ro(s) = βo(s). In practice, all option policies are parameterized

using the same goal-conditioned policy π(s|g; θ) (Schaul et al., 2015) and each option

conditions the policy with goal states sampled from its own termination region (Bagaria

et al., 2021a). To improve the sample-efficiency of learning effective option policies, we

use hindsight experience replay (Andrychowicz et al., 2017).

7.2.2.6 Generating Behavior Outside the Graph

After reaching the expansion node, the IM-DSG agent attempts to extend the graph.

It does so by executing the low-level exploration policy πCFN, which is trained to maximize
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the weighted sum of intrinsic and extrinsic rewards:

RCFN(s, a) = R(s, a) + b · rnovelty(s),

where rnovelty(s) = 1/
√

Nϕ(s), b ∈ [0, 1] controls the exploration-exploitation trade-off

(we use b = 0.01) and Nϕ(s) is the CFN visitation count prediction for state s. We use

recurrent deep Q-learning (Kapturowski et al., 2019) to learn Vnovelty and πnovelty. The

result of this policy execution is a trajectory τnovelty, which is likely to move outward,

toward regions where the agent’s abstract model is more uncertain; this is a way of doing

exploration outside the graph.

7.2.2.7 Adding a New Node to the Graph

Having generated a low-level exploration trajectory τnovelty in the frontier of the graph,

the agent must now identify a new node to add to the graph. Again, we take inspiration

from intrinsic motivation methods (Şimşek and Barto, 2004): the agent identifies the state

in τnovelty with the highest predicted novelty; if the novelty of that state is higher than

the running mean of the novelty-based rewards, then we flag it as a new target and add it

to the skill graph:

starget = argmax
s∈τnovelty

[
rnovelty(s)

]
if max

s

[
rnovelty(s)

]
> µt + kσt, else φ, (7.8)

where µt is the running mean and σt is the running standard deviation of rnovelty, computed

incrementally over the lifetime of the agent (?); k ∈ R+ is a hyperpameter (we use k = 1).

Equation 7.8 identifies a target state, which we need to convert to a termination classifier

so that it can serve as a node in the skill graph. We could use domain knowledge (for

example, the “cell” representations of Ecoffet et al. (2021)), pixel-wise equality (Veeriah

et al., 2018), or a temporal distance based classifier (Savinov et al., 2018); we opt for

simplicity and use an off-the-shelf template matching algorithm, which is a simple call to
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OpenCV’s matchTemplate(s, g) (Bradski, 2000):

nnew = βonew(s) = matchTemplate(s, starget). (7.9)

7.2.2.8 Summary of Graph Discovery Algorithm

Algorithm 1 Intrinsic Motivation Directed Skill Graph (IM-DSG)

Initialize:
Initialize CFN to learn pseudocounts Nϕ, value function Vnovelty, and policy πnovelty.
Initialize goal-conditioned R2D2 to learn value function Vg and policy πg.
Initialize graph G with null node {φ} and no edges.
while True do
Sample expansion node using Equation 7.4.
Construct AMDP using procedure described in Section 7.2.2.4.
Solve AMDP using value iteration to get abstract policy π̄.
Follow abstract policy until agent reaches expansion node or episode terminates.
if agent reaches expansion node then
Roll out exploration policy πnovelty to get trajectory τ .

end if
Potentially add a new node from τ to the graph using Equation 7.8.
Update Vg and πg using Hindsight Experience Replay (HER).
Update πnovelty to maximize the sum of intrinsic and extrinsic rewards.
Update the edge traversal N [i, j] and node visitation counts N [i].
Update the edge probabilities in G using Vg (Sections 7.2.2.2 and 7.2.2.3).

end while

Algorithm 1 summarizes IM-DSG. The agent maintains two value functions Vg, Vnovelty

and two policies πg, πnovelty; R2D2 (Kapturowski et al., 2019) is used to learn both sets of

policies and value functions. The agent first chooses an expansion node using Equation

7.4. Which option is executed is then determined by solving the resulting Abstract MDP

using value iteration. New nodes are added to the graph by executing πnovelty from the

expansion node. Finally, graph edges are updated based on Vg and edge traversal counts

N [i, j]. The choice of expansion node and subsequent low-level exploration encourage the

skill graph to expand along directions that jointly maximize novelty and extrinsic reward.
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7.3 Experiments

We evaluate the IM-DSG agent on five challenging exploration problems, all of which

have image-based observations and discrete actions (details in Section 7.3.1). We chose the

MiniGrid (Chevalier-Boisvert et al., 2023) environments because they were identified as

being challenging for existing RL algorithms by the survey of Colas et al. (2022). We chose

Sokoban (Schrader, 2018) because the survey of Hamrick et al. (2020) identified it as

being a problem in which both learning and planning are important for good performance.

Finally, we chose VisualTaxi and VisualPinball because non-image versions of these

domains have been used extensively to evaluate state abstraction and option discovery

algorithms in isolation (for example, Lo et al., 2024; Konidaris and Barto, 2009b; Dietterich,

2000).

7.3.1 Domain Descriptions

1. MiniGrid-DoorKey: To reach the goal, the agent must first pick up a key and

then use that key to unlock a door. There is no intermediate reward for picking up

the key, only a sparse terminating reward for reaching the goal. Each episode lasts

a maximum of 200 steps.

2. MiniGrid-KeyCorridor: This domain also has a key and a locked door, but

additionally has other doors that can be open and closed. The goal is to pick up

the purple ball that is placed in locked room (center-right room in Figure 7.3(c)).

Each episode lasts a maximum of 1000 steps.

3. Sokoban: In this classic puzzle, the agent must place 3 boxes into their target

locations (red border squares in Figure 7.3). The environment provides intermediate

rewards for putting each box into its place and a terminating reward for correctly

placing the final box. Each episode lasts a maximum of 200 steps.

4. VisualTaxi: this is an image-based version of the classic Taxi problem (Dietterich,
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Figure 7.3: Domains used to test the IM-DSG agent. From top-left in left to right
order: MiniGrid-DoorKey, MiniGrid-KeyCorridor, Sokoban, VisualTaxi, and
VisualPinball.

2000). A passenger awaits in one of four depots and must be dropped off at a

destination depot. Successful completion of the full task yeilds a sparse terminating

reward of +1. Each episode lasts a maximum of 50 steps.

5. VisualPinball: image-based version of the under-actuated Pinball domain (Konidaris

and Barto, 2009b; Bacon et al., 2017) in which the agent provides acceleration to the

ball in one of 4 directions (or no-op), causing the velocity of the ball to change over

time. We pick the hardest configuration from Konidaris and Barto (2009b) during

training, and sample goal locations at random during testing. Test-time goals are

communicated to the agent as images of the pinball in the desired location. Each

episode lasts a maximum of 1000 steps.
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7.3.2 Qualitative Evaluation

To build intuition, we first qualitatively evaluate the IM-DSG agent. Specifically, we

want to understand what the skill-graph looks like, what parts of it the agent uses most

frequently, and whether the skill graph aids more effective exploration.

7.3.2.1 Visualizing the Skill Graph in MiniGrid

Figure 7.4 is a visualization of the skill graph at the end of training in MiniGrid-

KeyCorridor. To visualize each node in the graph, we randomly sample a state in which

that termination condition was triggered; only the location and inventory is visualized here

for simplicity. Each node is colored based on its probability of serving as the expansion

node. Furthermore, the transparency αn of a node is its average abstract value:

αn = max
{
Ene

[
V̄ne(n)

]
, 0.05

}
,

where the expectation is over the node expansion probability distribution Pn (Equation 7.4),

V̄g(n) is the abstract value of node n when targeting node g (obtained via Value Iteration

on the AMDP; Section 7.2.2.4). The transparency of an edge is the average transparency

of the nodes that it connects.

Understanding Figure 7.4. Nodes in the top-right room have a higher expansion

probability. This is because (a) navigating to the top-right room is novel as it requires

unlocking the red door with the red key, and (b) once the agent enters the top-right

room, it can solve the remainder of the task easily. These two facts result in high Vnovelty

and hence high expansion probabilities, which is why the graph in the bottom-left and

top-right rooms have high abstract value. Nodes in the central corridor also have high

abstract value because the agent must navigate through them for the majority of its target

expansion nodes. This demonstrates that the agent focuses on parts of the graph that are

either important for expansion by themselves, or those subgraphs that serve as hubs, i.e.,
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Figure 7.4: Discovered skill graph in MiniGrid-KeyCorridor. The domain is shown
in the bottom-right inset: it involves picking up a key in the bottom-left room, opening a
locked door and then picking up a ball in the top-right room. The left subplot shows the
subgraph where the agent does not have a key in its possession. The nodes and edges
of the graph are shaded based on their expected abstract value E[V̄ (n)]. Although we
visualize the location and inventory, the agent itself only observes images. The graphs
show that, when the agent lacks the key, it aims to explore down the corridor and in the
rooms at the bottom of the maze, but when it does have the key, interesting options are
on the path to the goal.

they lead to other sub-graphs that are important for expansion (Şimşek et al., 2005; Shah

and Srivastava, 2024).

7.3.2.2 Exploration in Sokoban

Figure 7.5 shows IM-DSG’s high-level policy when it encounters the task-goal for the

first time: the expansion node is chosen to be a state that corresponds to placing two out

of the three boxes in their correct locations. The agent plans with its learned options to

reach this state. Subsequent novelty-driven exploration is more targeted as it only seeks

to explore those states in which most of the task has already been solved, increasing the

probability that random exploration would find the proverbial “needle in a haystack”.
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Figure 7.5: Example of hierarchical policy execution in Sokoban: (left) start state in
which no box (boxes shown in yellow) is in its desired location (target locations are shown
in red). (Middle) selected expansion node which has 2 out of 3 boxes placed in their
desired locations; the agent uses planning to get to this state. (Right) After reaching the
expansion node, the agent explores locally using πnovelty, which reaches the task goal.

7.3.3 Quantitative Evaluation

First, we seek to understand whether the IM-DSG agent can solve challenging ex-

ploration problems in a more sample-efficient manner than our baselines. Second, even

though the graph construction is prioritized along directions where the agent expects to

gather extrinsic reward, we want to understand whether the graph can still be used in

a multi-task context to solve goal-reaching problems that were not encountered during

training.

7.3.3.1 Sample Efficient Exploration in Single Task MDPs

We compare the IM-DSG agent to the following baselines:

• Flat model-free RL. R2D2 is a distributed variant of DQN that uses a recurrent

neural network to represent the value function (Kapturowski et al., 2019). Since the

IM-DSG agent uses R2D2 to learn policies, we include it as our model-free baseline.

• Novelty driven exploration. We use CFN to explore outside the graph, and

it is a state-of-the-art technique for novelty-driven RL; so, we include it as our

exploration baseline.

Figure 7.6 shows our quantitative results: we find that the IM-DSG agent consistently
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Figure 7.6: Comparing the performance of our proposed algorithm, IM-DSG (blue),
novelty-based CFN (orange) and vanilla model-free R2D2 (green). Each curve represents
the mean reward and the shaded area represents the standard deviation over 5 random
seeds.

outperforms R2D2 and CFN in our domains. This suggests that although novelty-

maximizing exploration is in principle sufficient to solve these problems, the discovery and

use of the model for planning leads to a more sample-efficient agent in these domains.

Model-based planning ablation. Figure 7.7 (left) shows that when we disable plan-

ning, the IM-DSG agent is unable to solve the MiniGrid-KeyCorridor problem. This

indicates that high-level planning with the learned skill graph is essential–simply combin-

ing CFN with HER is not enough to solve this task in the allotted training budget. This

ablation also serves a rough comparison to algorithms like Skew-Fit (Pong et al., 2019)

and Omega (Pitis et al., 2020c) that combine HER with novelty-based exploration, but

do not do model-based planning.

7.3.3.2 Generalization to New Goals in VisualPinball

In this section, we test whether the skill graph discovered during exploration can be

used to solve other, unseen tasks at test-time. In particular, we train our agent to solve

the VisualPinball problem, which requires guiding the ball to the big red circle at the

bottom of the maze. After training, we present the agent with 10k randomly sampled

held-out goals and test its ability to reach these goals. We compare our agent against

Hindsight Experience Replay (HER; Andrychowicz et al., 2017), which in principle can

also generalize to unseen goals at test-time.
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Figure 7.7: Ablation and graph usefulness in a multi-task context. (left) Ablating
the use of planning in IM-DSG in MiniGrid-KeyCorridor: bars represent the average
per-episode reward during training. (middle) Evaluation performance in VisualPinball
on 10k randomly sampled goal states not used during training: comparison against HER
in terms of test-time rewards, train-time rewards, and coverage, which is the fraction of
the maze explored during training. All error bars represent standard deviation over 5
random seeds. (right) Solution trajectories found by the IM-DSG agent for 4 randomly
sampled test-time goals (shown using black stars); the blue dot in the top-left of the maze
is the start state, the big red ball in the bottom is the train-time goal. Note that, unlike
in the original, this version of pinball uses images as observations.

Both the IM-DSG agent and the Hindsight Experience Replay (HER) agent get the

same training budget of 50M frames. During evaluation, both algorithms are tested on

the same set of 10k goals and are given a budget of 10M frames to achieve them. Each

episode lasts for at most for 1k steps. Error bars are computed over 5 training runs of the

respective agents.

To compute the coverage metric shown in Figure 7.7 (right), we first need to compute

the maximum possible coverage in the maze. This is done by first discretizing the (x, y)

plane into 100× 100 squares, and then subtracting the approximate area occupied by the

obstacles in the maze. To compute the coverage achieved by the two agents, we consider

what fraction of the free space is occupied by all the states visited by the two agents.

Test-time modifications for VisualPinball. During training, IM-DSG picks the

expansion node based on Vnovelty. At test-time, this would not be a good strategy because

there is no reason that Vnovelty would guide the agent to the test-time goal. So instead, we
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pick the expansion node to be the one that is closest to the test-time goal gtest:

ntest
expansion = argmax

n
Es∼n

[
Vgtest(s)

]
(7.10)

Once the agent reaches ntest
expansion, it then executes its goal-conditioned policy π(s, gtest)

to reach the test-time goal gtest.

Figure 7.7 shows that IM-DSG outperforms HER at test-time. To understand why, we

compare their train-time performances and find that HER is unable to explore the maze

as extensively as IM-DSG, as a result of which, it is unable to reach goals that are far

away from the start-state at test-time.

7.4 Discussion and Conclusion

We introduced an algorithm that builds a graph abstraction of large MDPs with image-

based observations. Nodes of this graph correspond to option termination regions, edges

represent option policies, and edge probabilities are determined using option initiation

functions. The skill graph expands towards the frontier of the agent’s experience without

assuming access to state-sampling or a distance metric; the acquired graph enables

planning in increasingly large portions of the state-space.

Our method suffers from at least the following limitations:

• Each option drives the value of all state variables to a certain range of values. In

more complex environments, it may be unnecessary, or even impossible, to control

all state variables at once.

• We build a dense graph abstraction of the environment. This was not an issue in the

environments we considered in this paper, but scaling to larger environments could be

expensive in terms of memory usage. This might also necessitate more sophisticated

asynchronous dynamic programming methods such as prioritized sweeping (?).
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• We do not use deep skill chaining (Chapter 3), which could accelerate graph expansion

by permitting the agent to reach the expansion node with greater reliability.

• After reaching the expansion node, the IM-DSG agent executes the low-level ex-

ploration policy (CFN) until the end of the episode; more fine-grained control over

when to enter and exit low-level exploration (Pislar et al., 2022) would generalize

our algorithm to continuing problems without episode resets.

Despite these shortcomings, IM-DSG takes a small step towards the eventual goal

of building RL agents that continually discover their own state and action abstractions

(Gershman, 2017; Konidaris, 2019), and use them for effective exploration (Gopnik, 2020)

and planning (Sutton et al., 2024).
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CHAPTER 8

Scaling Goal-based Exploration via

Pruning Proto-goals

Exploration is widely recognised as a core challenge in RL. It is most acutely felt when

scaling to vast domains, where classical novelty-seeking methods are insufficient (Täıga

et al., 2019) because there are simply too many things to observe, do, and learn about; and

the agent’s lifetime is far too short to approach exhaustive coverage (Sutton et al., 2022).

Abstraction can overcome this issue (Gershman, 2017; Konidaris, 2019): by learning about

goal-directed, purposeful behaviours (and how to combine them), the RL agent can ignore

irrelevant details, and effectively traverse the state space. Goal-conditioned RL is one

natural formalism of abstraction, and especially appealing when the agent can learn to

generalise across goals (Schaul et al., 2015).

The effectiveness of goal-conditioned agents directly depends on the size and quality

of the goal space (Section 8.2). If it is too large, such as treating all encountered states

as goals (Andrychowicz et al., 2017), most of the abstraction benefits vanish. On the

other extreme, hand-crafting a small number of useful goals (Barreto et al., 2019a) limits

the generality of the method. To help find the “sweet spot”, I propose that the agent

adaptively expand or refine the goal space based on experience, allowing for a more
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Figure 8.1: Proto-goal RL: a goal-conditioned RL agent’s policy π acts with goals g
obtained from its Proto-goal Evaluator (PGE, blue). The PGE refines a cheaply defined
proto-goal space (B, violet) into a smaller set of plausible goals G, using observed transition
data (s, a, r, s′) that includes information about encountered proto-goals (b). It further
endows G with a distribution PG , based on goal desirability, from which g is then sampled.
When goals from PG are mastered (orange), they are recombined to create new proto-goals
that are added to the proto-goal space.

autonomous agent that can be both general and scalable.

Taking a step towards this ultimate aim, I propose a framework with two elements.

The first element of this framework is what I call a proto-goal space (Section 8.2), which

is a large space of candidate goals that can be cheaply designed to be meaningful for

the domain at hand, e.g., by pointing out the most salient part of an observation using

domain knowledge (Chentanez et al., 2005). What makes defining a proto-goal space

much easier than defining a goal space is its leniency: it can remain (combinatorially)

large and unrefined, with many uninteresting or useless proto-goals. The second element

of this framework is an adaptive function mapping the proto-goal space to a compact

set of useful goals, called a Proto-goal Evaluator (PGE, Section 8.3). The PGE may

employ multiple criteria of usefulness, such as controllability, novelty, reachability, learning
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progress, or reward-relevance. Finally we address pragmatic concerns on how to integrate

these elements into a large-scale goal-conditioned RL agent (Section 8.4), and show it can

produce a qualitative leap in performance in otherwise intractable exploration domains

(Section 8.5).

8.1 Background and Related Work

We consider problems modeled as Markov Decision Processes (MDPs)M = (S,A,R, T , γ),

where S is the state space, A is the action space, R is the reward function, T is the

transition function and γ is the discount factor. The aim of the agent is to learn a policy

that maximises the sum of expected rewards (Sutton and Barto, 2018).

Exploration in RL. Many RL systems use myopic strategies for exploration (e.g., ϵ-

greedy, softmax, action-noise (Lillicrap et al., 2015) and parameter noise (Fortunato et al.,

2018; Plappert et al., 2018)). Among those that address deep exploration (Osband et al.,

2016a), the majority of research (Täıga et al., 2019) has focused on count-based exploration

(Strehl and Littman, 2008; Bellemare et al., 2016), minimizing model prediction error

(Pathak et al., 2017; Burda et al., 2019a,b), or picking actions to reduce uncertainty

(Osband et al., 2016b, 2018) over the state space. These strategies try to eventually learn

about all states (Ecoffet et al., 2021), which might not be a scalable strategy when the

world is a lot bigger than the agent (Javed and Sutton, 2024). We build on the relatively

under-studied family of exploration methods that maximize the agent’s learning progress

(Schmidhuber, 1991; Kaplan and Oudeyer, 2004; Colas et al., 2022).

Goal-conditioned RL. When the space of GVF cumulants is limited to control, GVFs

reduce to goal-conditioned value functions that are often parameterized using Universal

Value Function Approximators (UVFAs) (Schaul et al., 2015). Hindsight Experience Replay

(HER) is a popular way of learning UVFAs in a sample-efficient way (Andrychowicz et al.,

2017): in addition to learning about the goal that the agent was pursuing, it additionally
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learns about a goal that was achieved in a trajectory in an off-policy way. The two most

common approaches to goal-conditioned RL are to assume that a set of goals is given, or

to treat all observations as potential goals (Liu et al., 2022) and then learn a policy that

can reach any state. In large environments, the latter methods often over-explore (Pong

et al., 2019; Pitis et al., 2020b) or suffer from interference between goals (Schaul et al.,

2019).

Discovery of goals and options. Several objectives have been proposed for goal/option

discovery: reward relevance (Bacon et al., 2017; Veeriah et al., 2021), composability

(Konidaris and Barto, 2009b; Bagaria and Konidaris, 2020a), diversity (Eysenbach et al.,

2019a; Campos Camúñez et al., 2020), empowerment (Mohamed and Jimenez Rezende,

2015), coverage (Bagaria et al., 2021b; Machado et al., 2017), etc. These heuristic

objectives measure desirability, but they must be paired with plausibility metrics like

controllability and reachability to discover meaningful goals in large goal spaces. The

IMGEP framework (Forestier et al., 2022) also does skill-acquisition based on competence

progress, but they assume more structure in the goal space (e.g., Euclidean measure,

objects), and use evolution strategies to represent policies instead of RL. STOMP (Sutton

et al., 2024) learns feature attainment options, which are similar to proto-goal achieving

policies; but unlike STOMP, we maintain different representations for states and goals.

Furthermore, they do not provide an explicit way to prune large feature/goal spaces, nor

do they construct new features/goals out of existing ones.

8.2 Goals and Proto-goals

A goal is anything that an agent can pursue and attain through its behaviour. Goals

are well formalised with a scalar cumulant cg : S×A×S → R and a continuation function

γg : S × A × S → [0, 1], as proposed in the general value function (GVF) framework

(Sutton et al., 2011). Here, we consider the subclass of attainment goals g, or “endgoals”,
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which imply a binary reward that is paired with termination. In other words a transition

has either (cg = 0, γg > 0) or (cg = 1, γg = 0), i.e., only terminal transitions are rewarding.

The corresponding goal-optimal value functions satisfy:

Q∗
g(s, a) = Es′

[
cg(s, a, s

′) + γg(s, a, s
′)max

a′
Q∗
g(s

′, a′)
]
,

with corresponding greedy policy π∗
g := argmaxaQ

∗
g(s, a).

Proto-goals are candidate goals. Since attainment goals can easily be derived from any

binary function, we formally define a proto-goal to be a binary function of a transition

bi : S ×A×S → {0, 1}. We assume that, for a given domain, a set B of such proto-goals

can be queried. Proto-goals differ from goals in two ways. First, to fully specify a goal,

a proto-goal must be paired with a time-scale constant γ ∈ [0, 1] (a discount), which

defines the horizon over which g should be achieved. The pair (bi, γ) then define the goal’s

cumulant cg(s, a, s
′) := bi(s, a, s

′) and continuation function γg(s, a, s
′) := γ(1−bi(s, a, s

′)).

Second, less formally, the space of proto-goals B is vastly larger than any reasonable set

goals G that could be useful to an RL agent. Hence the need for the Proto-goal evaluator

(Section 8.3) to convert one space into the other.

8.2.1 Example Proto-goal Spaces

A proto-goal space implicitly defines a large, discrete space of goals. Its design uses

some domain knowledge, but, crucially, no direct knowledge of how to solve the given

task. The most common form is to use designer knowledge about which aspects of an

observation are most salient. For example, many games have on-screen counters that

track task-relevant quantities (health, resources, etc.); these parts of the observation are

salient and can be used to guide the agent’s exploration. Other examples include the

inventory in Minecraft, sound effects in console video games, text feedback in domains

like NetHack (see Section 8.5.3 and Figure 8.2), or object attributes in robotics. In all

of these cases, it is straightforward to build a set of binary functions that can be used to
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Figure 8.2: Proto-goal space in MiniHack: the message part of the observation is
converted to a binary vector bt using bag-of-words.

define the proto-goal space—for example, in NetHack, a simple proto-goal space includes

one binary function for each possible word that could be present in the text feedback.

8.2.2 Representation

Each observation from the environment is accompanied by a binary proto-goal vector

bt ∈ {0, 1}|B|, with entries of 1 indicating which proto-goals are achieved in the current

state (Figure 8.1). Initially, the agent decomposes bt into 1-hot vectors, focusing on

goals that depend on a single dimension. As the agent begins to master 1-hot goals, it

combines them using the procedure described in Section 8.2.3, to expand the goal space

and construct multi-hot goals, which represent cumulative achievement of several goals.

When querying the goal-conditioned policy π(a|s, g), we use the same 1-hot or multi-hot

binary vector representation for the goal g.

8.2.3 Goal Recombinations

A neat side-effect of a binary proto-goal space B is that it can straightforwardly be

extended to a combinatorially larger goal space with logical operations. For example,
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using the logical AND operation, we can create goals that are only attained once multiple

separate bits of b are activated simultaneously.1 One advantage of this is that it places

less burden on the design of the proto-goal space, because B only needs to contain useful

goal components, not the useful goals themselves. This is also a form of continual learning

(Ring, 1994), with more complex or harder-to-reach goals continually being constructed out

of existing ones. The guiding principle to keep this constructivist process from drowning

in too many combinations is to operate in a gradual fashion: we only combine goals

that, in addition to being plausible and desirable (Section 8.3), have also been mastered

(Section 8.4.3).

8.3 Proto-goal Evaluator

The Proto-goal Evaluator (PGE) converts the large set of proto-goals to a smaller,

more interesting set of goals G. It does this in two stages: a binary filtering stage that

prunes goals by plausibility, and a weighting stage that creates a distribution over the

remaining goals PG : G → [0, 1], based on desirability.

8.3.1 Plausibility Pruning

Implausible proto-goals are those that most likely cannot be achieved (either ever or

given the current data distribution). Having them in the goal space is unlikely to increase

the agent’s competence; to the contrary, they can distract and hog capacity. We use the

following three criteria to eliminate implausible goals:

Observed: we prune any proto-goal bi that has never been observed in the agent’s

experience, so far.

Reachable: we prune proto-goals that are deemed unreachable (e.g., pigs cannot fly, a

person cannot be in London and Paris at the same time).

1Note that we combine goals, but not their corresponding value-functions (Barreto et al., 2019a; Tasse
et al., 2021); we let the UVFA Qθ(s, a, g) handle generalization to newly created goals.
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Controllable: similarly, we prune goals that are outside of the agent’s control (e.g.,

sunny weather is reachable, but not controllable).

For the first criterion, we simply track global counts N(g) for how often we have

observed the proto-goal bi that corresponds to g being reached. Estimating reachability

and controllability is a bit more involved. We do this by computing a pair of proxy value

functions: each goal g is associated with two types of reward functions (or cumulants)—one

with “seek” semantics and the other with “avoid” semantics:

Rseek(s, g) = 1 if g is achieved in s else 0

Ravoid(s, g) = −1 if g is achieved in s else 0.

These seek/avoid cumulants in turn induce seek/avoid policies, and value functions

Vseek, Vavoid that correspond to these policies. Estimates of these values are learned from

transitions stored in the replay buffer B.

A proto-goal g is globally reachable if it can be achieved from some state:

max
s∼B

Vseek(s, g) > τ1, (8.1)

where τ1 > 0 is a threshold representing the (discounted) probability below which a goal

is deemed to be unreachable.

A proto-goal g is judged as uncontrollable if a policy seeking it is equally likely to

encounter it as a policy avoiding it:

Es
[
Vseek(s, g)

]
− Es

[
− Vavoid(s, g)

]
< τ2, (8.2)

up to threshold τ2. The set of plausible goals G is the subset of those proto-goals induced

by B that satisfy both Eq. 8.1 and 8.2.
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8.3.1.1 Scalably Estimating Many Seek/Avoid Values with LSPI

As a first line of defense in the process of trimming a vast proto-goal space, the

reachability and controllability estimation (and hence the computation of the proxy values

Vseek, Vavoid) must be very cheap per goal considered. On the other hand, their accuracy

requirement is low: they are not used for control, and it suffices to eliminate some fraction

of implausible goals. Consequently, we have adopted four radical simplifications that

reduce the compute requirements of estimating proxy values, to far less than is used in the

main deep RL agent training. First, we reduce the value estimation to a linear function

approximation problem, by invoking two iterations of least-squares policy iteration (LSPI,

(Lagoudakis and Parr, 2003; Ghavamzadeh et al., 2010)), one for the “seek” and one for the

“avoid” policy. As input features for LSPI we use random projections of the observations

into R|ϕ|, which has the added benefit of making this approach scalable independently of

the observation size. Third, the estimation is done on a batch of transitions that are only

a small subset of the data available in the agent’s replay buffer B (Lin, 1993).2 Finally,

we accept some latency by recomputing proxy values asynchronously, and only a few

times (≈ 10) per minute. Section 8.5.2 shows that such a light-weight approach is indeed

effective at identifying controllable goals.

8.3.2 Desirability Weighting

The second task of the PGE is to enable sampling the most desirable goals from the

reduced set of plausible goals G produced via pruning. A lot has been discussed in the

literature about what makes goals desirable (Gregor et al., 2016; Bacon et al., 2017;

Konidaris and Barto, 2009b; Eysenbach et al., 2019a; Bellemare et al., 2016; Machado

et al., 2017); for simplicity, we stick to the two most commonly used metrics: novelty and

2If the batch does not contain any transition that achieves a proto-goal, we are optimistic under
uncertainty and classify it as plausible.
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reward-relevance. We use a simple count-based novelty metric (Auer, 2002):

novel(g) :=
1√
N(g)

, (8.3)

where N(g) is the number of times goal g has been achieved across the agent’s lifetime.

The desirability score (or “utility”) of a goal g is then simply u(g) := R(g) + novel(g),

where R(g) is the average extrinsic reward achieved on transitions where g was achieved.

Desirability scores for each goal are turned into a proportional sampling probability:

PG(g) :=
u(g)∑
g′∈G u(g

′)
. (8.4)

In practice, when queried, the PGE does not output the full distribution, but a (small)

discrete set of K plausible and desirable goals, by sampling from PG with replacement

(K = 100 in all our experiments).

8.4 Integrated RL Agent

This section details how to integrate proto-goal spaces and PGE components into

a goal-conditioned RL agent. As is typical in the goal-conditioned RL literature, we

use a Universal Value Function Approximator (UVFA) neural network to parameterize

the goal-conditioned action-value function Qθ(s, a, g), which is eventually used to pick

primitive actions. At the high level, we note that the PGE is used at three separate entry

points, namely in determining how to act, what to learn about (in hindsight), and which

goals to recombine. What is shared across all three use-cases is the plausibility filtering

of the goal space (implausible goals are never useful). However, the three use-cases have

subtly different needs, and hence differ in the goal sampling probabilities.
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8.4.1 Which Goal to Pursue in the Current State

For effective exploration, an agent should pursue goals that maximize its expected

learning progress, i.e., it should pick a goal that will increase its competence the most

(Lopes et al., 2012). As proxies for learning progress, we adopt two commonly used

heuristics, namely novelty (Auer, 2002) (Eq. 8.3) and reachability (Konidaris and Barto,

2009b). The issue with exclusively pursuing novelty is that this could lead the agent to

prioritise the most difficult goals, which it cannot reach with its current policy yet, and

hence induce behaviour that is unlikely to increase its competence. Thus, we combine

novelty with a local reachability metric, for which we can reuse the goal-conditioned

value Vθ(st, g), which can be interpreted as the (discounted) probability that the agent can

achieve goal g from its current state st, under the current policy πθ. To avoid computing

reachability for each goal in Gt (which can be computationally expensive), we instead

sample M goals based on novelty and pick the closest:

gt = argmax
g∈{g1,...,gM}∼novel

[
Vθ(st, g)

]
.

8.4.1.1 Stratified Sampling over Heterogeneous Timescales

The attainment count for a goal N(g) can be low because it is rarely reachable, or

because it naturally takes a long time to reach. To account for this heterogeneity in goal

space, we first estimate each goal’s natural timescale and then use stratified sampling to

preserve diversity and encourage apples-to-apples desirability comparisons. To estimate

the characteristic timescale (or horizon) h for each goal, we average the “seek” value-

function over the state-space: h(g) := Es∼B

[
Vseek(s, g)

]
. Once each goal has a timescale

estimate, we divide the goals in the goal space into different buckets (quintiles). Then, we

uniformly sample a bucket of goals; since the goals in the bucket have similar timescales

(≈ h), we use novelty and reachability to sample a specific goal from that bucket to pursue.
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8.4.1.2 Learning about Extrinsic Reward

The evaluator always picks actions to maximize the extrinsic task reward. If the actors

never did during training, then the action-value function would have unreliable estimates

of the task return (called the tandem effect (Ostrovski et al., 2021)). So, periodically,

the actors pick the task reward function and select actions based on that. Since the

task reward function may not correspond to a specific goal, we represent the task reward

function as a special conditioning—a 0 tensor serves as the goal input to Qθ(s, a, g = 0).

8.4.2 Which Goals to Learn about in Hindsight

Once the agent picks a goal g to pursue, it samples a trajectory τ by rolling out the

goal-conditioned policy πθ(:, g). Given all the goals achieved in τ , GτA, the agent needs to

decide which goals G ⊂ GτA to learn about in hindsight.

The agent always learn about the on-policy goal g, and the task reward (which

corresponds to the conditioning g = 0). Among the set of achieved goals G ⊂ GτA, the

agent samples a fixed set of Mher goals and learns about them using hindsight experience

replay (Andrychowicz et al., 2017) (we use Mher = 15). Similar to the previous section, we

want to sample those Mher goals that maximize expected learning progress. We found that

using a count-based novelty score as a proxy for learning progress (sample proportionally

to novel(g)) worked well for this purpose, and outperformed the strategies of (a) learning

about all the achieved goals and (b) picking the Mher goals uniformly at random from GτA.

8.4.3 Mastery-based Goal Recombination

We use one simple form of goal recombination in the agent: for any pair of goals that

it has mastered, it adds their combination (logical AND) as a proto-goal to be evaluated

by the PGE. A goal is considered mastered when its success rate is above a pre-specified

threshold κ (= 0.6 in all our experiments). For example, if the agent has mastered the

goal of getting the key, and another goal of reaching the door, it will combine them to
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Figure 8.3: Progression of the goal space refinement in SparseTaxi (domain illustrated in
the leftmost sub-figure (Brockman et al., 2016)). This is a visualization of the 5× 5 grid;
yellow and black squares are explored and unexplored taxi locations respectively; purple
squares denote explored passenger locations. The set of plausible goals grows over time
from controlling the taxi location, to eventually controlling the location of the passenger.
The passenger destination is always deemed uncontrollable by the Proto-goal Evaluator.

create a new proto-goal which is attained when the agent has reached the door with the

key.

8.4.4 Distributed RL Agent Implementation

For all non-tabular experiments, we integrate our method with an off-the-shelf dis-

tributed RL agent, namely R2D2 (Kapturowski et al., 2019). It is a distributed system of

128 actors asynchronously interacting with 128 environments. The learner is Q-learning-

based, using a goal-conditioned action-value function Qθ(s, a, g) parameterized as a UVFA.

Experience is stored in a replay buffer B, including the binary proto-goal annotation

vector b.

8.5 Experiments

Our empirical results are designed to establish proto-goal RL as an effective way to

do exploration, first in a classic tabular set-up (Taxi, Section 8.5.1), and then in two

larger-scale domains (NetHack and Baba Is You, Sections 8.5.3 and 8.5.4) whose com-

binatorial proto-goal spaces, left unpruned, would be too large for vanilla goal-conditioned

RL. Ablations and probe experiments show the effectiveness of our controllability and
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Figure 8.4: Learning curves comparing Q-learning with ϵ-greedy exploration to proto-goal-
based exploration in SparseTaxi. Error bands denote standard error over 20 independent
runs.

desirability metrics, and provide qualitative insights into the discovered goal spaces.

8.5.1 Tabular Experiment: Exploration in Taxi

We build intuition about proto-goal exploration on the Taxi domain, a tabular MDP

classically used to evaluate hierarchical RL algorithms (Dietterich, 2000). In this problem,

the agent controls a taxi in a 5 × 5 grid; the taxi must first navigate to the passenger,

pick them up, take them to their destination (one of 4) and then drop them off. The

default reward function is shaped (Randløv and Alstrøm, 1998), but to make it a harder

exploration problem, we propose the SparseTaxi variant, with two changes : (a) no

shaping rewards for picking up or dropping off the passenger and (b) the episode terminates

when the passenger is dropped off. In other words, the only (sparse) positive reward

occurs when the passenger is dropped off at their correct destination.

As the proto-goal space, we use a factoring of the state space, namely one bi for each

entity (taxi, passenger, destination) in each grid location (|B| = 34). Figure 8.3 shows the

progression of how the PGE gradually refines a goal space throughout training. The set
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Figure 8.5: MiniHack experiments. Left: Final performance, when varying difficulty
via the number of monsters in NarrowRiver. Right: The challenge of getting off the
ground in WideRiverWithLava (no monsters). In all 5 + 1 scenarios, using proto-goals
outperforms the baseline R2D2 agent. Scenarios are illustrated above the result plots.

of reachable states expands gradually, mimicking a curriculum; at first, goals correspond

to navigating the taxi to different locations, later they include goals for dropping off the

passenger at different depots. Also noteworthy is that proto-goals corresponding to the

destination are absent from the goal space, because they are classified as uncontrollable.

In terms of performance, our proposed method of goal-discovery also leads to more

sample-efficient exploration in SparseTaxi (Figure 8.4). Compared to a vanilla Q-learning

agent with ϵ-greedy exploration, our goal-conditioned Q-learning agent learns to reliably

and quickly solve the task.

8.5.2 Verifying the Controllability Measure

Our method of measuring controllability using the discrepancy between “seek” and

“avoid” values (Section 8.3.1) is novel, hence we conduct a set of sanity-checks to verify

that it can capture controllability in many of its guises. Three experiments probe three

separate types of controllability:
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Figure 8.6: Testing our seek-avoid controllability measure using the F1 classification metric,
which is the harmonic mean of precision and recall (higher is better). In each domain,
we collect transitions using a random policy. For evaluation, we manually specify which
of the proto-goals are controllable vs uncontrollable. Then, we measure how effectively
the agent can classify controllable vs uncontrollable proto-goals for different values of the
threshold τ1 (see Equation 8.2).

Static controllability: Proto-goals whose attainment status does not change. The

passenger destination in Taxi is a good example of this kind of uncontrollability—

while the destination changes between episodes, there is no single transition in the

MDP in which it changes.

Time-based controllability: Some problems have a timer that increments, but is not

controllable by the agent. We check whether our controllability metric classifies

such time-based proto-goals as plausible, using 4× 4 gridworld with a timer that

increments from 1–100 (which is the max number of steps in an episode).

Distractor controllability: More generally, parts of the observation that change inde-

pendently of the agent’s actions are distractors for the purpose of controllability.

For this test, we use a visual gridworld, where one image channel corresponds to the

controllable player, and the two other channels have pixels that light up uniformly

at random (Gregor et al., 2016) (often referred to as a “noisy TV” (Schmidhuber,

2010a; Burda et al., 2019a)).

For each of these setups, we compare our controllability predictions (Eq. 8.2) to ground-
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Figure 8.7: Baba Is You experiments. Top left: U-Maze domain: the agent controls
the white sheep at the bottom-right, which must move the “wall” block just above the
“is” block in the bottom-left and then go to the brown colored wall in the bottom-right.
Top right: Learning curves comparing our approach to (flat-lining) Agent57. Bottom:
Ablations showing the importance of sometimes acting according to the task reward during
training (left), using desirability metrics in the PGE (middle), and the impact of the
number of goals sampled for computing local reachability (right).

truth labels, and find it to correctly classify which proto-goals are controllable (Figure 8.6).

As the agent interacts with the environment for more episodes, its prediction quality

improves, suggesting dependence on the amount of data used to estimate the seek/avoid

values. Furthermore, these results suggest that for most values of τ1, the agent can

correctly identify controllable proto-goals, but the value of τ1 depends on the environment.

8.5.3 Natural Language Proto-goals: MiniHack

The first non-tabular domain we investigate is MiniHack (Samvelyan et al., 2021),

a set of puzzles based on the game NetHack (Küttler et al., 2020), which is a grand

challenge in RL. In addition to image-based observations, the game also provides natural
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language messages. This space of language prompts serves as our proto-goal space—while

this space is very large (many 1000s of possible sentences), it contains a few useful

and interesting goals that denote salient events for the task. Figure 8.2 illustrates how

word-based proto-goal vectors are created in MiniHack.

I used two variants of theRiver task as exemplary sparse-reward exploration challenges:

in this task the agent controls a character that must cross a river to get to the task-goal;

to cross the river, the character must first construct a bridge out of boulders. I chose

these tasks because the survey of Samvelyan et al. (2021) noted that while novelty-seeking

algorithms (Burda et al., 2019b; Raileanu and Rocktäschel, 2020) could solve the easiest

version of River, they were unable to solve more difficult variations.

In all of these, the agent must make a bridge out of boulders and then cross it to

reach its goal. In the NarrowRiver variant, the agent needs to place one boulder to

create a bridge, and the difficulty depends on the number of monsters who try to kill the

player. Figure 8.5 (left) shows that while increasing the number of monsters degrades

performance, our proto-goal agent outperforms the baseline R2D2 agent on each task

setting. In the WideLavaRiver variant, the river is wider, requiring 2 boulders for a

bridge, and includes deadly lava that also dissolves boulders. Figure 8.5 (right) shows

that our proto-goal agent comfortably outperforms its baseline.

Discovered goal space. Words corresponding to important events in the game find

their way into the goal-space. For instance, the word “water” appears in the message

prompt when the boulder is pushed into the water and when the the player falls into the

river and sinks. Later, combination goals like “boulder” AND “water” also appear in the

goal-space and require the agent to drop the boulder into the water.
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8.5.4 Doubly Combinatorial Puzzles: Baba Is You

The game Baba Is You (Teikari, 2019) has fascinating emergent complexity. At first

sight, the player avatar is a sheep (“Baba”) that can manipulate objects in a 2D space.

However, some objects are “word-blocks” that can be arranged into sentences, at which

point those sentences become new rules that affect the dynamics of the game (e.g., change

the win condition, make walls movable, or let the player control objects other than the

sheep with an “X-is-you”-style rule). The natural reward is to reach the (sparse) win

condition of the puzzle after 100s of deliberate interactions.

When testing various RL agents on Baba is You, we observed a common failure mode:

the exploration process does not place enough emphasis on manipulating object and text

blocks. So, we created a simple level (U-Maze shown in Figure 8.7) that is designed

to focus on the crucial aspect of rule manipulation. This puzzle requires the agent to

learn how to push a word block in place (from center to bottom left), which adds a new

win-condition, and then touch the correct block (on the bottom right). Exploration here

is challenging because the agent has to master both navigation and block-manipulation

before it can get any reward. In addition, the game’s combinatorially large state space is

a natural challenge to any novelty-based exploration scheme.

As in Taxi, we use a simple factored proto-goal space, with one binary element for every

object (specific word blocks, wall, sheep) being present at any grid-position. Plausible

1-hot goals could target reaching a specific position of the sheep or movable blocks. Most

combinations (2-hot proto-goals) are implausible, such as asking the sheep to be in two

locations at once, but some could be useful, e.g., targeting particular positions for both

“Baba” and a word-block.

Given the exploration challenges in this domain (R2D2 never sees any reward, even

on smaller variants of the puzzle), we use the stronger, state-of-the-art Agent57 agent as

baseline here, which adds deep exploration on top of R2D2—it constructs an intrinsic
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reward using novelty and episodic memory (Badia et al., 2020a). Figure 8.7 (top right)

shows that our R2D2 with proto-goals (but no intrinsic rewards) outperforms Agent57.

Note that with careful tuning, Agent57 does eventually get off the ground on this task,

but never within the 200M frame budget considered here. On the other hand, Agent57

has the advantage that it does not require engineering a proto-goal space.

Discovered goal space. At first, the goal-space is dominated by navigation goals;

once these are mastered, goals that move the word-blocks begin to dominate. Then the

agent masters moving to a particular location and moving a word-block to some other

location. Eventually, this kind of exploration leads to the agent solving the problem and

experiencing the sparse task reward.

Ablations. Figure 8.7 (bottom left) analyzes how often the agent should act according

to the extrinsic reward instead of picking a goal from the discovered goal-space. When

that probability is 0, the agent never reaches the goal during evaluation; acting according

to the task reward function 10% of the time during training performed the best in this

setting. In a second ablation, Figure 8.7 (bottom middle) shows the importance of using

desirability metrics on top of plausibility when mapping the proto-goal space to the

goal-space. Finally, Figure 8.7 (bottom right) shows the impact of the number of goals

sampled for computing local reachability during goal-selection (Section 8.4.1).

8.6 Conclusion and Future Work

We presented a novel approach to using goal-conditioned RL for tackling hard ex-

ploration problems. The central contribution is a method that efficiently reduces vast

but meaningful proto-goal spaces to a smaller sets of useful goals, using plausibility and

desirability criteria based on controllability, reachability, novelty and reward-relevance.

Directions for future work include generalising our method to model-based RL to plan

with jumpy goal-based models, more fine-grained control on when to switch goals (Pislar
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et al., 2022), making the proto-goal space itself learnable, as well as meta-learning the

ideal trade-offs between the various desirability criteria.
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CHAPTER 9

Going Beyond State-Reaching:

Learning Abstractions for

Intrinsically Motivated Skill

Discovery

Recall successfully riding your bicycle for the first time. The moment you balanced your

bicycle without training wheels, you realized that you had done something right. In future

practice, you recreated your speed and balance, not the color of your t-shirt, the weather

conditions outside or the exact wear and tear on your tires. However, when existing skill

discovery algorithms attempt to learn a policy to reach a previously encountered event

(Chentanez et al., 2005), they attempt to recreate every aspect of that state. Examples

include the ϵ-ball from deep skill graphs (Bagaria et al., 2021b), pixel-wise equality

(Veeriah et al., 2018), the perceptual hashing from Go-Explore (Ecoffet et al., 2021),

random projections of the target state (Dabney et al., 2021; Farebrother et al., 2023), or a

neural classifier that predicts perceptual similarity between states (Vezhnevets et al., 2017;

Hafner et al., 2022). This state-reaching strategy adversely impacts hierarchical agents
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in several ways. First, the resulting skills are nontransferable; consider a robot grabbing

a cup from a cluttered table: the skill’s subgoal is tied to the position of every object

in the state, requiring the agent to learn combinatorially more skills. Beyond stymying

transfer, which is one of the key benefits of HRL (Taylor and Stone, 2009), state-reaching

artificially reduces the size of the skill’s subgoal region, which complicates policy learning

and eventually makes the skill less useful to the agent. Finally, recreating a state is

unscalable because in vast, realistic domains, recreating all aspects of a particular state

may be impossible (Bagaria and Schaul, 2023).

Our skill discovery algorithm is inspired by intrinsic motivation in humans and other

animals: during play, when children cause something interesting to happen, they try

recreate it, with increasing efficiency (White, 1959). They practice this skill until they get

bored and move on, but retain the ability to reuse the acquired skill later (Barto et al.,

2004). Similarly, when during an AI agent’s exploration, it notices something particularly

interesting, it should learn a skill to reliably achieve it in the future. Other algorithms (for

example, Bagaria et al. 2021b) use these ideas; but resort to a state-reaching objective.

Instead, we identify the subset of the state features responsible for the saliency (Chentanez

et al., 2005) of that state, and create a subgoal achievement classifier that attends to

those specific features.1 These classifiers serve as pseudo-reward functions for training

skill policies, which are composed together by a high-level policy over options to maximize

extrinsic reward.

We test our algorithm in two challenging exploration problems: MiniGrid-KeyCorridor

(Chevalier-Boisvert et al., 2023), and VisualTaxi (Dietterich, 2000; Allen et al., 2021);

both have image-based observations, and a sparse reward function. We quantitatively

compare our agent with a novelty maximization technique (Lobel et al., 2023) and a flat

model-free RL algorithm (Kapturowski et al., 2019) based on Q-learning (Watkins and

Dayan, 1992) with ϵ-greedy exploration and find that our algorithm performs favorably.

1We do not assume that state features are given and learn subgoal achievement classifiers directly
from images, but the language of “features” helps present our ideas simply.
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9.1 Background and Related Work

Our ultimate goal is still to build agents that maximize rewards in Markov Decision

Processes (MDPs). To aid in reward maximization in large environments with sparse

rewards, our agent will discover options, where each option is described using its initiation

function, policy and termination function: o ∈ O = (Io, πo, βo). Each option is concerned

with its own subgoal, and the agent’s policy over options πO decides which option to

execute with the aim of maximizing the task reward.

Intrinsically Motivated Skill Discovery. In this chapter, we use intrinsic motivation

(IM) as a basis for option discovery. IM is a drive to do something for its own sake; skills

learned using IM may not have immediate, obvious utility, which often only becomes

clear later on. Within computational RL, IM has been estimated using several proxies:

novelty, surprise, incongruity, empowerment, learning progress, compression, and so on;

we quantify IM using novelty, but our approach is compatible with other proxies of IM as

well. Crucially, IM provides a means for learning a collection of reusable skills to be used

as building blocks for systematic exploration of large environments.

9.1.1 Learning Subgoal Achievement Classifiers

During option discovery, the subgoal go of each option o ∈ O must be defined. This

subgoal is a function that maps a state s to a binary decision that indicates whether or

not the subgoal go is satisfied in s. The subgoal is turned into a pseudo-reward Ro and

termination function βo that is used to train that option’s policy πo: execution terminates

with a reward of 1 when the subgoal is achieved and continues without reward otherwise.

Most option discovery algorithms fall in one of two categories: they either require a

system designer to manually define a subgoal achievement function, or they resort to

state-reaching, where the benefits of abstraction start to vanish. Few methods take on the

challenge of learning a subgoal achievement function during the discovery process; three

146



approaches are most common:

• Perceptual similarity. Commonly, algorithms compare the distance between

the current state st and the goal state gt. This is either done using euclidean

distances in the raw observation space (with a fixed, pre-specified threshold), or by

first computing random projections of st and gt and comparing the distance in the

projected space. Hashing the state and goal state using domain-specific perceptual

metrics is also a common strategy. Autoencoders are also used to compute distances

between lower dimensional embeddings of the state and the goal state, but these

autoencoders are trained using pixel-wise reconstruction errors, which results in

classifiers that are tied to all perceptual features of the inputs.

• Temporal distance estimation. These methods learn a classifier that predicts

whether the current state is less than K time steps away from a goal state (K is a

fixed hyperparameter). Such a classifier can be trained on states encountered during

learning: for every trajectory τ = (s1, s2, s3, ...), any two pairs of states that are less

than K steps apart are positive examples and all other pairs constitute negative

examples; the classifier gθ : S×S → {0, 1} is trained using cross-entropy loss. While

thresholding using the number of time steps is more natural than thresholding

pixel-wise differences, such a classifier still attends to all aspects of the goal state.

• Mutual information estimation. DISCERN (Warde-Farley et al., 2019a) com-

putes the mutual information between the next state sT of the option and the goal

state gt as the pseudo-reward function for training that option’s policy. This has the

advantage that it abstracts away uncontrollable aspects of the state, but it has two

disadvantages: (a) the maximum mutual information between sT and gt is unknown,

so it is unclear when to terminate the option, and (b) features of the state that are

controllable might still be irrelevant for that particular option’s subgoal, but such

features are not abstracted away by this technique.
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These techniques differ in their level of sophistication and ease of implementation, but

they all fall in the category of state-reaching : no explicit effort is made to identify a few

salient features of state the and subsequently learn options that only try to achieve certain

values in those features.

9.1.2 Options of feature attainment

The strategy of learning options for different features has been explored by some HRL

methods. For example, in STOMP, each option is responsible for separately maximizing a

particular state feature (Sutton et al., 2024). Additionally, Proto-goal RL (Chapter 8),

combines existing features to learn options that achieve combinations of features (Bagaria

and Schaul, 2023). However, both these methods assume that a factored representation is

provided to the agent, while our work discovers the factored goal-space autonomously via

interaction data.

9.2 Method: Abstract Subgoal Discovery

Modern reinforcement learning systems can efficiently compute proxies for intrinsic

motivation, like novelty (Kapturowski et al., 2022). However, their use as a guiding

signal for option discovery focuses on state-reaching, which fails to scale beyond modest

navigational problems (Hansen et al., 2021). To learn new skills, our agent first executes

a low-level exploration policy that tries to visit novel states; if it observes a particularly

novel state during this interaction, it compares the most novel state to the most boring

state in that trajectory. Then, the agent asks counterfactual questions: if each feature in

the most novel state was reset to its value in the boring state (one-by-one), how much

does the novelty of the resulting counterfactual state drop? Feature resets that result

in large changes to novelty are responsible for high novelty predictions. After repeating

this process for each feature, we are left with the minimal set of features that explains

the difference in novelty between the most novel and most boring state (illustrated in
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Figure 9.1: Illustration of the core insight. Suppose an agent observes a state
trajectory of length 7 and a novelty estimator assigns each state st in that trajectory a
novelty score nϕ(st). sN denotes the most novel state, and sB denotes the most boring
state in that trajectory. Suppose that each state has 3 features; the colored boxes represent
feature values for those two states. Rather than simply treating sN as a target state, we
seek to identify which features in particular were responsible for the large difference in
novelty ∆n = nϕ(sN) − nϕ(sB). Our algorithm can handle input images, but we show
state features here for simplicity.

Figure 9.2). Finally, a classifier is created that only attends to the discovered feature

set, ignoring the rest. This classifier serves as an abstract subgoal achievement classifier

and the agent subsequently learns a skill policy to achieve that subgoal. This process is

illustrated in Figure 9.1.

Our agent repeatedly executes the following high-level steps: (a) identify the subgoal

with the highest potential for exploration, (b) achieve that subgoal by executing the

corresponding option, (c) explore from that subgoal after achieving it, (d) identify the

most (locally) interesting state in that trajectory, (e) determine which features make that

state interesting, (f) initialize a new option to achieve the new subgoal, and add it to the

agent’s set of options.
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9.2.1 Generating Exploratory Behaviors

For effective low-level exploration, we follow the same strategy as the IM-DSG agent

from Chapter 7. We first select an existing subgoal from where we expect to see the most

novel states. After achieving that subgoal using a goal-conditioned policy, we execute a

policy that is trained to maximize a novelty-based reward function. While there are many

candidate methods that can approximately compute novelty, we use CFN (Lobel et al.,

2023) that trains a function fϕ that maps a state to a novelty score between 0 and 1.

Where to explore from? We first assign each existing subgoal a score that reflects

the utility of exploring from it:

U(n) = Es∼n [Vnovelty(s)] ≈ Es∼n [VCFN(s)] ,∀n ∈ N (9.1)

where N is the set of all subgoals discovered so far, VCFN(s) is the CFN value function

that accumulates the novelty reward function RCFN = fϕ(s) and the expectation is taken

over all the states in which that subgoal classifier has been triggered so far. Once each

subgoal has been assigned a utility, we simply sample one from the following distribution:

Pn =
U(n)∑

n′∈N U(n′)
. (9.2)

How to conduct the exploration? Once a subgoal n∗ is sampled from Pn, a goal-

conditioned policy πθ(st|n∗) is executed to achieve it. If the goal-conditioned policy is

successful, the CFN policy πCFN is executed.

9.2.2 Identifying Interesting Events

The CFN policy execution results in a trajectory τ = {s1, s2, .., sK}. If there is any

state in that trajectory that is particularly novel, then we begin our search for a new

subgoal classifier. First, the agent identifies the most novel state sN and most boring
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Figure 9.2: Illustration of our feature selection algorithm. The most boring and
most novel states, sB and sN respectively, are input into the Counterfactual Generator,
which outputs 3 counterfactual states: c1, c2, c3. Changing the third feature (pink→ pink)
does not impact novelty, restoring the second feature from yellow to green does not cause
enough of a drop, but changing the first feature from black to blue substantially lowers
novelty, indicating that the first feature (black) accounts for most of the novelty of sN .

state sB in the trajectory:

if max
s

[
fϕ(s)

]
> µt + σt, sN = argmax

s∈τ

[
fϕ(s)

]
and sB = argmin

s∈τ

[
fϕ(s)

]
.

where µt and σt are the running mean and standard deviation of the CFN rewards

encountered so far.

9.2.3 Feature Selection Algorithm

After identifying the most novel and most boring states (sN and sB) from the previous

step, the agent identifies the minimal set of features that explains the difference in novelty

between sN and sB. The feature selection algorithm, illustrated in Figure 9.2, is composed

of two high-level steps: (a) counterfactual generation and (b) feature elimination.
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9.2.3.1 Counterfactual Generation

When the states are already factored feature vectors (for e.g, in MuJoCo), then the

counterfactual generation is straightforward: given sN and sB, replace each feature of

sN with its corresponding value in sB, one-by-one. When the states are represented as

images, the process is more involved and is described via Algorithm 2.

Algorithm 2 Counterfactual Generator for Image-based Observations

Inputs: Exploration trajectory τ , most novel state sN and most boring sB
Output: Bounding boxes in sN that reflect the relevant parts of sN .

1: Initialize output list of counterfactual images C as an empty list.
2: Compute background image b using trajectory τ .
3: Remove background from sN and sB to get s̄N , s̄B.
4: Find contours CB in s̄B.
5: Construct bounding boxes BB around the contours CB.
6: For each bounding box in BB, find the corresponding patch in s̄N .
7: Create a mapping from each bounding box bB ∈ BB to its most similar bounding box

patch bN ∈ BN .
8: for Bounding box bB ∈ BB do
9: Initialize the counterfactual image c with sN .
10: Replace the patch bB of c with the corresponding patch in sB: c[bB] = sB[bB].
11: if bB has a corresponding bounding box in BN then
12: Replace the patch bN of c with the corresponding patch in sB: c[bN] = sB[bN].
13: end if
14: return Add counterfactual image c to output list C.
15: end for
16: return Counterfactual image list C.

In Algorithm 2, the Counterfactual Generator computes a background (using KNN

Background Subtraction) and subtracts it from sN and sB. Then, it detects contours in

the resulting images (Line 4) using the Suzuki-Abe algorithm (Suzuki and Abe, 1985).

Bounding boxes are constructed around these contours and matched between the two

images (the matching is done via a cross-correlation based template matching algorithm).

These are well established, basic computer vision algorithms with efficient implementations

in the popular open-source library OpenCV (Bradski, 2000).
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Limitations. Our approach to counterfactual generation exploits the simplicity of the

image observations in our test domains. We found these techniques to be easy to implement

and effective in our experiments, but future work should investigate more elegant and

scalable solutions; the works of Su et al. (2024) or Radford et al. (2021) could be good

starting points.

9.2.3.2 Feature Elimination

After obtaining a set of counterfactual states from the previous step, we input them

one-at-a-time to the novelty function fϕ. When the predicted novelty of a counterfactual

state is significantly lower than the novelty of the entire state sN , then we consider the

corresponding feature to be salient; we retain all such features and discard the rest.

9.2.4 Classification

Having identified a minimal set of features that explain the novelty difference ∆n

between sB and sN , we construct a classifier g : s → {0, 1} that describes the subtask

of a new option. This classifier is severely constrained in terms of its training data—sN

is the only state that we can confidently label as a positive example. Because of the

severely constrained (positive) dataset size, we take a non-parametric approach to build

our classifier.

Classifier representation. Each classifier g, is associated with two attributes. The

first attribute is the positive example for the classifier—the most (locally) novel state, sN .

The second attribute is the feature extraction function obtained from the previous step of

the algorithm (Section 9.2.3). In the case of already factored state representations (e.g,

in MuJoCo), this feature extraction function simply extracts the relevant features of a

state, i.e, h : S ∈ RD → Rd, where d < D. When the input observations are in the form

of images, then h extracts the bounding boxes retained by the feature selection algorithm.
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Making classification decisions. Given an arbitrary state s, g needs to output a

binary classification label. The first step is to apply the feature extractor to g’s positive

example sN . The second step is to then compare sN ’s extracted features with the features

extracted from the input state s:

g(s) = I
{
D(h(sN), h(s)) < ξ

}
,

where I is the indicator function, ξ a hyperparameter threshold, and D : Rd × Rd → R

is a function that compares the dissimilarity between two input feature vectors. When

the input space is factored, D is the Euclidean distance metric. When the input space

is images, then D is the cross-correlation between the extracted patches from the two

input images; this subroutine is a simple call to OpenCV’s matchTemplate(x, y) function

(Bradski, 2000). Again, this approach exploits the visual simplicity of most RL benchmark

problems, but may not be a scalable choice for complex natural images, where neural

approaches might be a better fit. Since the computer vision algorithm is not our core

contribution, we chose the simplest algorithm that worked in our experimental suite.

9.2.5 Policy Learning

Once a classifier g is constructed, the agent creates a new option which gets a terminat-

ing reward of 1 for reaching a state for which g returns true, and 0 otherwise. This option

is added to the agent’s option space O and can be executed by the policy-over-options πO

in the future. The option’s policy πo is learned using a goal-conditioned version of R2D2

(Kapturowski et al., 2019) with hindsight experience replay (Andrychowicz et al., 2017).

9.3 Experiments

We begin by performing probing experiments to qualitatively understand how the

subgoals discovered using our method differ from those learned using other popular
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Figure 9.3: Subgoal achievement classifiers learned in MiniGrid-KeyCorridor.
Visualized bounding boxes show the patches that were deemed relevant for each of the
three subgoal classifiers shown, all other pixels are ignored. (left) this option’s subgoal
depends on reaching a particular location and opening the yellow door; (middle) this
option aims to reach a particular location in the mid-left room but while the key is in the
hallway; (right) this option aims to put the player inside the locked room with the ball
(the task goal), regardless of the position of the key or the states of any of the doors.

methods. Our experimental suite consists of:

• VisualTaxi. This is a more challenging version of the classic Taxi problem (Di-

etterich, 2000): the agent controls a taxi in a 10× 10 grid, which has 7 depots; a

passenger awaits in one of the depots and needs to be dropped off in a different

depot (Diuk et al., 2008). If the agent successfully completes the entire task, it gets

a sparse terminating reward of 1. Additionally, the agent gets image observations

of the domain (Allen et al., 2021), rather than a tabular or factored state as in

previous work (Bagaria and Schaul, 2023).

• MiniGrid-KeyCorridor. Same as in Chapter 7.

9.3.1 Qualitative Analysis

Figure 9.3 shows the subgoals for 3 different options discovered in MiniGrid. While

state-reaching options would attend to the configuration of all objects in this environment,

our agent only attends to a small handful. This results in an agent with fewer options,

which makes the learning problem of the policy on options πO easier.

155



Figure 9.4: Learning curves comparing our agent (Abstract Subgoals) with a non-
hierarchical novelty maximizing RL method (CFN) and a vanilla RL method (R2D2).
Solid lines denote average undiscounted task return; shaded regions denote standard
deviation across 5 random seeds.

Figure 9.4 shows the performance of our integrated agent in two sparse-reward problems.

We compare against Coin Flipping Networks (CFN) (Lobel et al., 2023), which is a state-

of-the-art count-based exploration algorithm and R2D2 (Kapturowski et al., 2019), which

is a distributed version of deep Q-learning (Watkins and Dayan, 1992; Mnih et al., 2015).

These results corroborate our hypothesis that the drive to discover and use targeted

options results in rapid exploration in challenging problems.

9.4 Conclusion

We presented an intrinsically motivated algorithm that learns reusable options that

focus on achieving only certain aspects of state. The agent first explores the environment

and when it finds a state that is particularly novel, it identifies the minimal set of features

needed to explain the novelty of that state. Then it builds a classifier that focusses on

only those features, while ignoring the rest. This classifier describes the subtask of a new

option that is added to the agent’s arsenal. We showed qualitatively how our discovered

options differ from existing methods that focus on state-reaching. Finally, we showed

that our HRL agent rapidly explores its environment and in doing so, effectively solves
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long-horizon RL problems.

Our agent suffers from at least two drawbacks. First, the methods used to extract the

minimal set of relevant features exploits the simplicity of our test environments. Second,

the policy over options πO is model-free, and can be significantly improved by using

high-level planning, similar to the IM-DSG agent discussed in Chapter 7.
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CHAPTER 10

Discussion and Conclusion

The goal of this thesis was to address the question of abstraction discovery within

the context of reinforcement learning. We sought to create agents capable of acquiring

their own abstractions autonomously by interacting with the environment and in doing

so, demonstrate effective exploration and planning.

In the pursuit of this goal, we made three concrete contributions. The first was on the

topic of discovering skills that can be reliably composed together in time; this was

done via the deep skill chaining algorithm and by addressing issues of non-stationarity

that arise in the option discovery process. While this contribution focused only on action

abstraction, our second contribution was to confront the challenges of simultaneous

acquisition of state and action abstractions to create a new, abstract decision

processes amenable to planning; this was first done with the deep skill graphs algorithm,

which was later scaled using intrinsic motivations. Our final contribution was a framework

for skill discovery that considered exploration beyond coverage. The Proto-goal RL

agent finds controllable, reachable and desirable subspaces of the goal space for targeted

exploration; this was finally extended by enabling the agent to ask counterfactual questions

that probed the factored nature its observations.
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However, each algorithm proposed in this thesis have several shortcomings that merit

further research.

10.1 Limitations and Future Work

Deep skill chaining (DSC) improved upon non-hierarchical RL algorithms in long-

horizon problems. It did so by learning options such that each option drove the agent

to states inside the initiation region of another option. Methods to learn such initiation

functions relied on a binary subtask description for the option, which limits the space of

problems to which our method can be applied. Future work should consider ways to learn

option initiation functions for arbitrary subtask specifications.

Furthermore, DSC chained together options that each control the full state of the

agent. As discussed in Chapter 9, this is not realistic (or even desirable) in large, realistic

domains. Methods that combine the factored nature of subgoal classifiers learned in

Chapter 9 with chainability objectives will likely result in more powerful hierarchical

agents.

The Intrinsically Motivated Deep Skill Graphs (IM-DSG) agent lifted some of the

assumptions of DSG (state-sampler and distance function). But, it still has a special notion

of an “expansion node”; it should be possible to construct an algorithm that more carefully

trades-off exploration and exploitation in the abstract MDP, perhaps by taking inspiration

from classical model-based RL works (Strehl and Littman, 2008). Furthermore, planning

in the abstract MDP was done using value iteration, but asynchronous, incremental and

approximate versions, or even hierarchical planners (Garrett et al., 2021), might be more

scalable choices for future work.

Proto-goal RL conditions the agent’s value function on binary vectors, where each

bit represents a subgoal achievement classifier of state. While each classifier exploits

structure in the input space to make its decisions, this structure in the goal-space is largely
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unobservable to the agent’s policy/value function. Future work should investigate ways in

which each subgoal can be described using smooth representations that better prime the

agent’s goal-conditioned policy for stronger generalization.

On the topic of goal-conditioned policies, we considered two approaches in this thesis:

one in which each option has its own function approximator, and second in which all options

shared the same function approximator to enable generalization across options. Future

work should investigate intermediate parameterizations that demonstrate generalization

without incurring interference (Schaul et al., 2019).

Chapters 8 and 9 that developed proto-goal exploration, did not build an abstract

model for planning. We wish to make more abstract models that are more expressive

than the graphs of Chapters 6 and 7, perhaps in the style of Konidaris et al. (2018).

Furthermore, future work could build multi-level hierarchies, perhaps taking inspiration

from the skill-symbol loop (Konidaris, 2016).

All our exploration algorithms resort to a simplified strategy: first exploit and then

explore. While this is commonplace, it is not always the correct strategy (Ecoffet et al.,

2021). For example, in the video game Starcraft, more meaningful exploratory choices are

made at the beginning of an episode, when the agent has to pick between different choices

of weapons, armor, etc. In general, it should be up to the agent on when to explore more

freely and when to carefully exploit using existing skills. The works of Pislar et al. (2022)

and Bauer et al. (2023) could serve as starting points in this endeavor.

Finally, there are limits to how much a single agent may be able to discover about the

environment. Richer forms of exploration include learning skills in socio-cultural settings

(Sigaud et al., 2021), and collaboratively exploring large, complex environments in the

multi-agent setting.
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10.2 Closing Remarks

Exploration and discovery are among the most fascinating aspects of natural intelligence.

Scientific study too can be viewed as a form of exploration: we ask questions about the

natural world, and use the scientific method (alongside a collaborative spirit) to find

answers to those questions (Bush, 1945). Not only do we possess the ability to find answers

to questions, we also have an intriguing capability of finding good questions to ask in the

first place. The option discovery problem, in its most general and powerful form, is akin

to this spirit of exploration: find questions that are worth asking (cumulants) and figure

out a way to answer them via trial-and-error (policies).

Understanding how humans and other animals learn to ask good questions may be

one of the biggest (meta-) scientific problems of our time. This thesis reflects a smaller-

than-minuscule step towards understanding the process of exploration and discovery by

attempting to create artificial agents that posses such capabilities in small, toy, simulated

environments. Ultimately, AI agents that can ask good questions and autonomously

find answers to those questions may be the most scalable kind (Sutton, 2019); they will

add to the wealth of human knowledge and in doing so, will dramatically expand our

understanding of the natural world, and might qualitatively improve the lives of all.
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d’Alché-Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural Information

174



Processing Systems 32: Annual Conference on Neural Information Processing Systems

2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 12498–12509.

Japkowicz, N. and Stephen, S. (2002). The Class Imbalance Problem: A Systematic Study.

Intelligent data analysis, 6(5):429–449.

Jaques, N., Lazaridou, A., Hughes, E., Gülçehre, Ç., Ortega, P. A., Strouse, DJ., Leibo,
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Stockholm Sweden. PMLR.
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