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ABSTRACT

A central question in reinforcement learning (RL) is how to leverage prior knowl-
edge to accelerate learning in new tasks. We propose a Bayesian exploration
method for lifelong reinforcement learning (BLRL) that aims to learn a Bayesian
posterior that distills the common structure shared across different tasks. We further
derive a sample complexity analysis of BLRL in the finite MDP setting. To scale
our approach, we propose a variational Bayesian Lifelong Learning (VBLRL)
algorithm that is based on Bayesian neural networks, can be combined with recent
model-based RL methods, and exhibits backward transfer. Experimental results on
three challenging domains show that our algorithms adapt to new tasks faster than
state-of-the-art lifelong RL methods.

1 INTRODUCTION

Reinforcement-learning (RL) methods (Sutton & Barto, 1998; Kaelbling et al., 1996) have been
successfully applied to solve challenging individual tasks such as learning robotic control (Duan
et al., 2016) and playing expert-level Go (Silver et al., 2017). However, in the real world, a robot
usually experiences a collection of distinct tasks that arrive sequentially throughout its operational
lifetime; learning each new task from scratch is infeasible, but treating them all as a single task will
fail. Therefore, recent research has focused on algorithms that enable agents to learn across multiple,
sequentially posed tasks, leveraging past knowledge from previous tasks to accelerate the learning of
new tasks. This problem setting is known as lifelong reinforcement learning (Brunskill & Li, 2014;
Wilson et al., 2007b; Isele et al., 2016b). The key questions in lifelong RL research are: How can an
algorithm exploit knowledge gained from past tasks to improve performance in new tasks (forward
transfer), and how can data from new tasks help the agent to perform better on previously learned
tasks (backward transfer)?

To answer these two questions, first consider a simple problem, which is to find different items in
different houses. Here, a single task corresponds to finding items in a specific house. Although items
may be stored in different locations in different houses, there still exists some shared information
that connects all houses. For instance, a toothbrush is more likely to be found in a bathroom than
a kitchen, and a room without a window is more likely to be a bathroom than a living room. Such
information can significantly accelerate the search for items in newly encountered houses. We propose
that extracting the common structure existing in previously encountered tasks can help the agent
quickly learn the dynamics of the new tasks. Specifically, this paper considers lifelong RL problems
that can be modeled as hidden-parameter MDPs or HiP-MDPs (Doshi-Velez & Konidaris, 2016;
Killian et al., 2017), where variations among the true task dynamics can be described by a set of
hidden parameters. We model two main categories of learning across multiple tasks: the world-model
distribution, which describes the probability distribution over tasks, and the task-specific model, that
defines the (stochastic) dynamics within a single task. To enable more accurate sequential knowledge
transfer, we separate the learning process for these two quantities and maintain a hierarchical Bayesian
posterior to approximate them. The world-model posterior is designed to manage the uncertainty in
the world-model distribution, while the task-specific posterior handles the uncertainty from the data
collected from only the current task.

We propose a Bayesian exploration method for lifelong RL (BLRL) that learns a Bayesian world-
model posterior that distills the common structure of previous tasks, and then uses it as a prior to
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learn a task-speci�c model in each subsequent task. For the discrete case, we derive an explicit
performance bound that shows that the task-speci�c model requires fewer samples to become accurate
as the world-model posterior approaches the true underlying world-model distribution. We further
develop VBLRL, a more scalable version of BLRL that uses variational inference to approximate the
world-model distribution and leverages Bayesian Neural Networks (BNNs) to build the hierarchical
Bayesian posterior. Our experimental results on a set of challenging domains show that our algorithms
achieve better forward and backward transfer performance than state-of-the-art lifelong RL algorithms
within limited samples for each task.

2 BACKGROUND

RL is the problem of maximizing the long-term expected reward of an agent interacting with an
environment (Sutton & Barto, 1998). We usually model the environment as a Markov Decision
Process orMDP (Puterman, 1994), described by a �ve tuple:hS; A; R; T; 
 i , whereS is a �nite set
of states;A is a �nite set of actions;R : S � A 7! [0; 1] is a reward function, with a lower and upper
bound0 and1; T : S � A 7! Pr(S) is a transition function, withT(s0js; a) denoting the probability
of arriving in states0 2 S after executing actiona 2 A in states; and
 2 [0; 1) is a discount factor,
expressing the agent's preference for delayed over immediate rewards.

An MDP is a suitable model for the task facing a single agent. In the lifelong RL setting,
the agent instead faces a series of tasks� 1; :::; � n , each of which can be modeled as an MDP:
hS( i ) ; A ( i ) ; R( i ) ; T ( i ) ; 
 ( i ) i . A key question is how these task MDPs are related; we model the
collection of tasks as a HiP-MDP (Doshi-Velez & Konidaris, 2016; Killian et al., 2017), where a
family of tasks is generated by varying a latent task parameter! drawn for each task according to
the world-model distributionP
 . Each setting of! speci�es a unique MDP, but the agent neither
observes! nor has access to the function that generates the task family. Formally, then, the dynamics
T(s0js; a; ! i ) and reward functionR(r js; a; ! i ) for taski depend on! i 2 
 , which is �xed for the
duration of the task. For lifelong RL problems, the performance of a speci�c algorithm is usually
evaluated based on both forward transfer and backward transfer results (Lopez-Paz & Ranzato, 2017):

• Forward transfer: the in�uence that learning taskt has on the performance in future taskk � t.

• Backward transfer: the in�uence that learning taskt has on the performance in earlier tasksk � t.

3 BAYESIAN EXPLORATION FORL IFELONG REINFORCEMENTLEARNING

Figure 1: Plate representation
for the BLRL approach. � j
denotes trajectoryf s; a; r; s0gj .
There areK different tasks and
the agent samplesR trajecto-
ries from each task.

The key component of our approach is a hierarchical Bayesian
posterior over task MDPs controlled by the hidden parameter! .
Intuitively, we maintain probability distributions that separately
capture two categories of uncertainty within lifelong learning tasks:
the world-model posterior captures the epistemic uncertainty of
the world-model distribution over different tasks controlled by the
hidden parameter. As the learner is exposed to more and more
tasks, this posterior should converge to the world-model distribution
P
 . The task-speci�c posterior captures the epistemic uncertainty
of the current taskm. As the learner is exposed to more and
more transitions within the task, this posterior should approachm,
leaving only the aleatoric uncertainty of transitions within the task,
which is independent of other tasks. By sampling from the world-
model posterior, an agent can learn new tasks faster by exploiting
knowledge common to previous tasks, thus exhibiting positive
forward transfer.

We �rst consider the �nite MDP setting. Concretely, we use a hi-
erarchical Bayesian model to represent the distribution over MDPs.

Figure 1 shows our generative model in plate notation.	 is the parameter set that represents dis-
tribution P
 . It functions as the world-model posterior that aims to capture the common structure
across different tasks. The resulting MDPmi is created based on! i , which is one hidden parameter
sampled from	 . We can sample from our approximation of	 to create and solve possible MDPs.
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The proposed BLRL approach is formalized in Algorithm 3 in the appendix. Initially, before any
MDPs are experienced, the world-model posteriorqe(�jst ; at ) is initialized to an uniformed prior. For
each new taskmi , we �rst initialize the task-speci�c posteriorqm i

� (�jst ; at ) with the parameter values
from the current world-model posterior, and then, for each timestep, select actions using a Bayesian
exploration algorithm based on sampling from this posterior (Thompson, 1933; Asmuth et al., 2009).
A set of sampled MDPs drawn fromqm i

� is a concrete representation of the uncertainty within the
current task. BLRL samplesK models from the task-speci�c posterior whenever the number of
transitions from a state–action pair has reached thresholdB . Analogously to RMAX (Brafman &
Tennenholtz, 2003) and BOSS (Asmuth et al., 2009), we call a state–action pairknown whenever
it has been observedNst ;a t = B times. For each state–action pair, if it isknown, we use the task-
speci�c posterior to sample the model. If it isunknown, we instead sample from the world-model
posterior. These models are combined into a merged MDPm#

i and BLRL solvesm#
i to get a

policy � �
m #

i
. This approach is adopted from BOSS (best of sampled set) to create optimism in the

face of uncertainty, and thereby drive exploration. The new policy� �
m #

i
will be used to interact

with the environment until a new state–action pair reaches the sampling threshold. The collected
transitions from this task will be used to update the task-speci�c posterior immediately, while the
world-model posterior will be updated using transitions from all the previous tasks at a slower pace.
For simple �nite MDP problems in practice, we use the Dirichlet distribution (the conjugate for the
multinomial) to represent the Bayesian posterior. Thus, the updating process for the posterior is
straightforward to compute. Intuitively, BLRL is able to rapidly adapt to new tasks as long as the
prior of the task-speci�c model (that is, the world-model posterior) is close to the true underlying
model and captures the uncertainty of the common structure of a set of tasks.

3.1 SAMPLE COMPLEXITY ANALYSIS

We now provide a simple theoretical analysis of BLRL. First, we use the setting and results of Zhang
(2006) to describe the properties of the Bayesian prior and how it relates to the sample complexity for
the concentration of the Bayesian posterior.

Lemma 1. Let � (! ) denote the prior distribution on the parameter space� . We consider a set of
transition-probability densitiesp(�j ! ) indexed by! , and the true underlying densityq. De�ne the
prior-mass radius of the transition-probability densities as:

d� = inf f d : d � � ln � (f p 2 � : DKL (qjjp) � dg)g: (1)

Intuitively, this quantity measures the distance between the Bayesian prior we use to initialize the
posterior and the true underlying distribution. Then,8� 2 (0; 1) and� � 1, let

"n = (1 +
1
n

)�d � + ( � � � )"upper;n (( � � 1)=(� � � )) ; (2)

where"upper;n is thecritical upper-bracketing radius (Zhang, 2006). The decay rate of"upper;n

controls the consistency of the Bayesian posterior distribution (Asmuth et al., 2009). Let� = 1
2 , we

have for allt � 0 and� 2 (0; 1), with probability at least1 � � ,

� n

�n
p 2 � : jjp � qjj2

1=2 �
2"n + (4 � � 2)t

�=4

o�
�
�X

�
�

1
1 + ent : (3)

Proof (sketch).The proof is similar to that of Corollary 5.2 of Zhang (2006) (see Appendix A.5).
Instead of using the critical prior-mass radius" �;n to describe certain characteristics of the Bayesian
prior, we de�ne and use the prior-mass radiusd� , which is independent of the sample sizen and
measures the distance between the prior and true distribution.

Similar to BOSS, for a new MDPm � M with hidden parameters! m , we can de�ne the Bayesian
concentration sample complexity for the task-speci�c posterior:f (s; a; �0; � 0; � 0), as the minimum
numberc such that, ifc IID transitions from(s; a) are observed, then, with probability at least1 � � 0,

P rm � posterior (jjTm (s; a; ! m ) � Tm � (s; a; ! m )jj1 < � 0) � 1 � � 0: (4)
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Lemma 2. Assume the posterior is consistent (that is,"upper;n = o(1)) and set� = 2 , then
the Bayesian concentration sample complexity for the task-speci�c posteriorf (s; a; �; �; � ) =

O
�

d� +ln 1
�

� 2 � � d�

�
.

Proof (sketch).This bound can be derived by directly combining Lemma 1 and Equation 4.

The above lemma suggests an upper bound of the Bayesian concentration sample complexity using
the prior-mass radius. We can further combine this result with PAC-MDP theory (Strehl et al., 2006)
and derive the sample complexity of the algorithm for each new task.

Theorem 1. For each new task, set the sample sizeK = �( S2 A
� ln SA

� ) and the parameters� 0 =
� (1 � 
 )2; � 0 = �

SA ; � 0 = �
S2 A 2 K , then, with probability at least1 � 4� , V A t (st ) � V � (st ) � 4� 0

in all but ~O( S2 A 2 d�
�� 3 (1 � 
 )6 ) steps, where~O(�) suppresses logarithmic dependence.

Proof (sketch).The proof is based on the PAC-MDP theorem (Strehl et al., 2009) combined with the
new bound for the Bayesian concentration sample complexity we derived in Lemma 2. In general,
we use the same process in BOSS to verify the three required properties of PAC-MDP: optimism,
accuracy and learning complexity. For each new task, the main difference between BLRL and BOSS
is that we use the world-model posterior to initialize the task-speci�c posterior, which results in a
new sample complexity bound based on the prior-mass radius.

The result formalizes the intuition that, if we put a larger prior mass at a density that is close to the
trueq such thatd� is small, the sample complexity of our algorithm will be lower. In the meantime,
the sample complexity is bounded by polynomial functions of the relevant quantities, showing that
our training strategy preserves the properties required by PAC-MDP algorithms (Strehl et al., 2009).

4 SCALING UP: VARIATIONAL BAYESIAN L IFELONG RL

Directly computing the exact posterior is typically not possible for large scale problems. Instead,
we propose a practical approximate algorithm, VBLRL, that uses neural networks and variational
inference (Hinton & van Camp, 1993a). We model the posterior via the transition dynamics using
p(st +1 ; r t jst ; at ; � ); � 2 � . The posterior, given a new state–action pair, can be rewritten via Bayes'
rule:

p(� jD t ; at ; st +1 ; r t ) =
p(� jD t )p(st +1 ; r t jD t ; at ; � )

p(st +1 ; r t jD t ; at )
; (5)

whereD t is the agent's history with all the experienced tasks up until time stept. As representing
the posteriorp(� jD ) is intractable, we approximate it through an alternative distributionq(� ; � ) by
minimizingDKL [q(� ; � )jjp(� jD )], leveraging variational lower bounds (Hinton & van Camp, 1993b;
Houthooft et al., 2016).

We choose Bayesian neural networks (BNN) to approximate the posterior. The intuition is that, in the
context of stochastic outputs, BNNs naturally approximate the hierarchical Bayesian model since
they also maintain a learnable distribution over their weights and biases (Graves, 2011; Houthooft
et al., 2016). We expect the uncertainty embedded in the weights and biases of networks can capture
the epistemic uncertainty introduced by hidden parameters of different tasks, while we also set the
outputs of the neural networks to be stochastic to capture the aleatoric uncertainty within each speci�c
task. In our case, the BNN weights and biases distributionq(� ; � ) can be modeled as fully factorized
Gaussian distributions (Blundell et al., 2015):

q(� ; � ) =
j � jY

i =1

N (� i j� i ; � 2
i ); (6)

where� = f �; � g, and� is the Gaussian's mean vector while� is the covariance matrix diagonal.
Then, the posterior distribution over the model parameters can be computed through:

� t = arg min
�

h
DKL [q(� ; � )jjp(� )] � E� � q( � ;� ) [logp(st +1 ; r t jD t ; at ; � )]

i
; (7)
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wherep(� ) represents the �xed prior distribution of� . The second term on the right hand side can
be approximated through1N

P N
i =1 logp(st +1 ; r t jD t ; at ; � i ) with N samples from� i � q(� ). This

optimization can be performed in parallel for eachs, keeping� t � 1 �xed.

Figure 2: How VBLRL estimates different kinds of uncertainties in HiP-MDP. The world-model
posterior captures the epistemic uncertainty of the general knowledge distribution (shared across all
tasks controlled by the hidden parameters) via the internal variance of world-model BNN. As the
learner is exposed to more and more tasks, the posterior should converge toP
 . The task-speci�c
posterior captures the epistemic uncertainty of the current taskm, which comes from the alleatory
uncertainty of the world model when generating! m for a new task, via the internal variance of
task-speci�c BNN. The posterior should output the highest probability for! near the true! m as the
agent collects enough data from the task. The aleatory uncertainty of the �nal prediction is measured
by the output variance of the prediction.

We provide the intuition of how our design capture the uncertainties of lifelong RL in Figure 2 and
summarize the method in Algorithm 1. The left side of the �gure shows the process of how transitions
are generated from the environment's true distribution, while the other parts show how our models
generate transition predictions and how they separately estimate different uncertainties generating
from approximating the true underlying distribution. We employ our posterior knowledge models
in the context of a model-based RL method. When encountering a new task, VBLRL �rst uses the
model parameters (that is,f �; � g of weights and biases of BNN) from the general knowledge model
to initialize the task-speci�c posterior network. The task-speci�c model outputs the predicted next
state and reward given a state–action pair. Then, we use model-predictive control (Garcia et al., 1989)
to select actions based on the generated transitions.

For planning, at each step, we begin by creatingP particles from the current statesp
� = t = st 8p. Then

we sampleN candidate action sequencesat :t + T from a learnable distribution. We propagate the
state-action pairs using the learned task-speci�c modelpm i (�js; a) (BNN) and use the cross entropy
method (Botev et al., 2013) to update the sampling distribution to make the sampled action sequences
close to previous action sequences that achieved high reward. We further calculate the cumulative
reward estimated (via the learned model) for previously sampled sequences and use the mean of that
distribution to select the current action.

The task-speci�c posterior is updated using the data collected from only the current task. The
world-model posterior is updated after a few more steps with the collected transitions fromall
the visited tasks. The intuition is to guide the two posteriors to separately learn two categories of
uncertainty within lifelong learning tasks. Note that other CEM-based model-based RL algorithms
like PETS (Chua et al., 2018) usually maintain a set of neural networks using the same training
data, and sample action sequences from each of the neural nets to achieve randomness in transitions.
Besides the problem of requiring special training tricks, it is unrealistic to maintain (� 30) models for
each task in lifelong RL settings. Our usage of BNNs avoids such problems as we only have to train
one neural network using the same data for each task, and we can sample an unlimited number of
different action sequences to cover more possibilities as needed. In PETS, the epistemic uncertainty
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is estimated via the variance of the output mean of different neural networks, while in VBLRL, it
is estimated via the variance of the weights and biases distribution of BNN during training. This is
implied as the objective function we use to update� t is from minimizingDKL [q(� ; � )jjp(� jD )].

Algorithm 1: Variational Bayesian Lifelong RL

Initialize general knowledge modelpwm (�js; a; � wm ), replay bufferDm 1 ; � � � ; Dm M

for each taskmi from i = 1 ; 2; 3; � � � ; M do
Initialize task-speci�c modelpm i (�js; a; � m i ) with general knowledge modelpwm
for each episodedo

for Timet = 0 to TaskHorizondo
Sample Actionsat :t + T � CEM(�)
Propagate state particlessp

� with pm i (s
0js; a)

Evaluate actions as
P t + T

� = t
1
P

P P
p=1 pm i (r js; a)

Update CEM(�) distribution.
Execute optimal actionsa�

t :t + T
end
Add transitions to replay bufferDm i

Update task-speci�c model according to Equation (7) givenDm i

Update general knowledge model according to Equation (7) givenf Dm 1 ; � � � ; Dm i g
end

end

4.1 BACKWARD TRANSFER OFVARIATIONAL BAYESIAN L IFELONG RL

In our lifelong RL setting, the agent interacts with each task for only a limited number of episodes
and the task-speci�c model stops learning when the next task is initiated. As a result, there may
exist portions of the transition dynamics in which model uncertainty remains high. However, as the
world-model posterior continues to train on new tasks, it gathers more experience in the whole state
space and can provide improvements in its guesses concerning the “unknown” transition dynamics,
even for previously encountered tasks.

Intuitively, the performance of an agent on one task has the potential to be further improved (positive
backward transfer) if there exists a suf�ciently large set of state–action transition pairs of which the
task-speci�c model's predictions are not con�dent due to lack of data. This type of model uncertainty
is sometimes called epistemic uncertainty (Kiureghian & Ditlevsen, 2009; Ciosek et al., 2020). In
our algorithm, the aleatory variability (irreducible chance in the outcome) is measured by the output
variance of the predictionf � r p

�
; � sp

�
g, and the epistemic uncertainty (due to lack of experience)

corresponds to the uncertainty of the output mean and variance (see De�nition 1 below). Thus, a
straightforward method to improve a previously learned task-speci�c model is to �nd the predictions
it needs to make that have high epistemic uncertainty, and replace them with the predictions from the
world-model posterior, which has lower epistemic uncertainty. If we only consider reward prediction,
the conditions for measuring whether a task-speci�c model is suf�ciently con�dent are as follows.
De�nition 1. Assume there exist known constants� � r , � � r . For a given state–action pair(s; a), the
task-speci�c model (reward) is proclaimed con�dent when the following conditions are satis�ed:

P P
p=1 (� r p

�
� � r p

�
)2

P � 1
< � � r ;

P P
p=1 (� r p

�
� � r p

�
)2

P � 1
< � � r ; (8)

whereP is the number of particles. Similar de�nition applies to the task-speci�c model's next-state
prediction. Intuitively,� � r and� � r function as the threshold to judge whether the uncertainty of the
output mean or variance for each dynamic prediction is too high to be called as a con�dent prediction.

The detailed backward transfer testing algorithm can be found in the appendix. In practice, it is
often hard to �nd speci�c con�dence thresholds (� � s , � � r , � � s , � � r ) that are effective. Instead, we
implement a simpler approach: During planning, for each prediction, we compare the uncertainty of
the output mean and variance of the world model and the task-speci�c model, and then choose the
one with lower values, which indicates higher con�dence level.
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