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Abstract

Behavioral modules are units of behavior providing reusable building
blocks that can be composed sequentially and hierarchically to generate
extensive ranges of behavior. Hierarchies of behavioral modules facilitate
learning complex skills and planning at multiple levels of abstraction and
enable agents to incrementally improve their competence for facing new
challenges that arise over extended periods of time. This chapter focusses
on two features of behavioral hierarchy that appear to be less well recog-
nized: its influence on exploratory behavior and the opportunity it affords
to reduce the representational challenges of planning and learning in large,
complex domains. Four computational examples are described that use
methods of hierarchical reinforcement learning to illustrate the influence
of behavioral hierarchy on exploration and representation. Beyond illus-
trating these features, the examples provide support for the central role of
behavioral hierarchy in development and learning for both artificial and
natural agents.

1 Introduction

Many complex systems found in nature or that humans have designed are or-
ganized hierarchically from components—modules—that have some degree of
independence. Herbert Simon called such systems “nearly decomposable” and
suggested that complex systems tend to take this form because it enhances evolv-
ability due to module stability (Simon 1996, 2005). The subject of modularity
has attracted significant attention in psychology, neuroscience, evolutionary bi-
ology, computer science, and philosophy (Callebaut and Rasskin-Gutman 2005).
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Although it is widely accepted that modularity is critically important for un-
derstanding and constructing complex systems, no single concept of modularity
adequately covers all the cases. Callebaut (2005), for instance, distinguishes
modularity of structure from modularity of process, further pointing out sig-
nificant differences between developmental, evolutionary, neural, and cognitive
modularity. This chapter focuses on a type of modularity in which modules are
viewed as “building blocks” that can be combined and connected to span large
spaces of structured entities, whether they are physical entities or behaviors.

Specifically, this chapter focuses on behavioral hierarchy. A behavioral hier-
archy is composed of behavioral modules: units of behavior by which an agent
interacts with its environment. Hierarchical structure results when a module is
itself composed of other modules. Human behavior has long been recognized to
exhibit hierarchical structure, with tasks being comprised of subtask sequences,
which in turn are built out of simpler actions. Behavioral hierarchy has been an
enduring theme in psychology, from the advent of cognitive views (e.g., Lashley
1951, Miller et al. 1960, Newell et al. 1963) to more recent models and cogni-
tive architectures (e.g., Anderson 2004, Botvinick and Plaut 2004, Langley and
Rogers 2004, Langley et al. 2009, Schneider and Logan 2006). Behavioral hierar-
chy has also been of longstanding interest in artificial intelligence (e.g., Sacerdoti
1974), control engineering (e.g., Antsaklis and Passino 1993), software design
and analysis (e.g., Alur et al. 2002), and neuroscience (e.g., Botvinick et al.
2009).

In this chapter we use the framework of hierarchical reinforcement learning
(HRL) to illustrate the benefits of behavioral hierarchy in addressing problems of
exploration and representation that arise in designing capable learning agents.
Although these benefits are well recognized by some, they are not as widely
appreciated as are more obvious benefits, and yet they also lie at the heart of
the utility of behavioral hierarchy. The relevance of behavioral hierarchy to
exploration and representation may also help explain why we see hierarchical
structure in the behavior of humans and other animals.

After discussing behavioral hierarchy and HRL, we describe four compu-
tational experiments. The first two experiments illustrate how the influence
of behavioral hierarchy on exploration can greatly improve learning in struc-
tured environments (Sections 4.3 and 4.4). The third and fourth experiments
respectively illustrate how behavioral hierarchy can address representational
challenges by allowing the use of low-complexity function approximation meth-
ods (Section 5.1) and how an agent can select different abstractions for each
behavioral module to make learning easier in problems with high-dimensional
state spaces (Section 5.2). Our conclusion emphasizes the generality of the prin-
ciples illustrated by these examples and their relevance to the design of agents
that accumulate competence over extended time periods. The chapter ends
with a discussion of prospects for future research. Material in this chapter has
appeared previously in Konidaris and Barto (2009a, 2009b), Konidaris (2011),
and Vigorito and Barto (2010).
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2 Behavioral Hierarchy

The most widely appreciated aspect of behavioral hierarchy is that actions can
make use of lower-level actions without concern for the details of their execution.
This facilitates both learning complex skills and planning at multiple levels of
abstraction. If an agent can construct a useful hierarchy of behavioral modules,
which here we think of as skills, then the search space of behaviors effectively
shrinks. This is because selecting between alternate higher-level skills allows
the agent to take larger, more meaningful steps through the search space of
behavioral strategies than does selecting between more primitive actions.

Another salient feature of behavioral modularity and hierarchy is that it
facilitates the transfer of results of learning in one task to other related tasks.
This has been called transfer learning, and is recognized to be significant for both
artificial and natural agents (Taylor and Stone 2009). Rather than acquiring
skills from scratch for each problem it faces, an agent can acquire “portable
skills” that it can deploy when facing new problems. Illustrating this benefit
of behavioral modularity is beyond the scope of this chapter, and we refer the
reader to Guestrin et al. (2003), Konidaris et al. (2012a), Konidaris and Barto
(2007), Liu and Stone (2006), Mehta et al. (2008), Taylor et al. (2007), and
Torrey et al. (2008).

The influence of behavioral hierarchy on exploratory behavior is less well
recognized. As new skills are added to an agent’s behavioral repertoire, they
become available as atomic behavioral modules that may be used when com-
puting behavioral strategies and models of more complex skills. The agent’s
growing skill set allows it to reach increasingly many areas of its state space
that were previously not easily accessible. This in turn allows for learning about
more complex environmental dynamics and consequently enables further skill
discovery. In this sense, behavioral hierarchy can provide a means for continual,
developmental learning in which the acquisition of new skills is bootstrapped on
existing structural and procedural knowledge.

Another aspect of behavioral hierarchy, and of behavioral modularity in gen-
eral, is the opportunity it affords to reduce the representational challenges of
planning and learning in large, complex domains. Each module can incorporate
its own module-specific representation that includes what is needed for its op-
eration while excluding information that is irrelevant to that operation. When
we perform a skill like throwing a ball, for instance, we do not have to take
into account the vast range of information available to us that is relevant to
other skills, but not to ball throwing. This can make it feasible to plan and
learn successfully in complex domains. This benefit of behavioral modularity
is well recognized across artificial intelligence, including the various approaches
to HRL (e.g., Barto and Mahadevan 2003, Dietterich 2000a, Parr 1998, Parr
and Russell 1998, Sutton et al. 1999), but its profound importance may not be
widely appreciated.
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3 Hierarchical Reinforcement Learning

This chapter is concerned with behavioral hierarchies implemented and learned
using computational reinforcement learning (RL, Sutton and Barto 1998). RL
algorithms address the problem of how a behaving agent can learn to approx-
imate an optimal behavioral strategy while interacting with its environment.
More technically, RL is about the on-line approximation of solutions to stochas-
tic optimal control problems, usually under conditions of incomplete knowledge
of the system being controlled. By emphasizing incremental on-line algorithms
instead of batch-style algorithms, RL not only relates well to the kind of learn-
ing we see in animals, it is also useful for engineering control problems where it
can have some advantages over more conventional approaches (Lewis and Vrabie
2009).

RL problems consist of four elements: a set of environmental states; a set of
actions available to the agent in each state; a transition function, which specifies
the probability of the environment transitioning from one state to another in re-
sponse to each of the agent’s actions; and a reward function, which indicates the
amount of reward associated with each such transition. Given these elements,
the objective for learning is to discover a behavioral strategy that maximizes cu-
mulative long-term reward. Behavioral strategies are called policies, which are
rules, or functions, that associate with each possible state an action to be taken
in that state. Policies are like stimulus-response rules of learning theories except
that a state is a broader concept than a stimulus. A state characterizes relevant
aspects of the learning system’s environment, which includes information about
the world with which the learning agent interacts as well as information about
the internal status of the agent itself.

In the usual RL scenario, an agent learns how to perform a “task” speci-
fied by a given reward function—for instance, learning how to win at playing
backgammon (Tesauro 1994), where a win is rewarded and a loss punished.1 In
these scenarios, there is a conflict between exploitation and exploration: in de-
ciding which action to take, the agent has to exploit what it has already learned
in order to obtain reward, and it has to behave in new ways—explore—to learn
better ways of obtaining reward. RL systems have to somehow balance these
objectives. However, in other scenarios the goal is to learn a predictive model
of the environment, the environment’s causal structure, or a collection of widely
useful skills. In these scenarios, exploration is itself part of an agent’s task.
Scenarios like this play a role in some of the illustrations described below.

A key focus of RL researchers is the problem of scaling up RL methods so
they can be effective for learning solutions to large-scale problems. Artificial
Intelligence researchers address the need for large-scale planning and problem
solving by introducing various forms of abstraction into problem solving and
planning systems (e.g., Fikes et al. 1972, Korf 1985, Sacerdoti 1974). Abstrac-

1In RL, the reward signal usually handles both rewards and punishments, which are re-
spectively represented by positive and negative values of the numerical reward signal. This
abstraction is widely used despite the fact that it is at odds with the differences between
appetitive and aversive systems in animals.
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tion allows a system to ignore details that are irrelevant for the task at hand.
For example, a macro—a sequence of operators or actions that can be invoked
by name as if it were a primitive operator or action—is one of the simplest forms
of abstraction. Macros form the basis of hierarchical specifications of action se-
quences because macros can include other macros in their definitions: a macro
can “call” other macros. A macro is a type of module: a reusable component
of a program.

HRL uses a generalization of a macro that is often referred to as a “temporally-
abstract action,” or just an “abstract action” (Sutton et al. 1999). Conventional
macros are open-loop behavioral policies in the sense that their unfolding does
not depend on information sensed during their execution. In contrast, HRL
uses closed-loop policies as modules, meaning that the course of execution can
depend on input from the agent’s environment. Unlike a macro, then, which
specifies a specific action sequence, an abstract action in HRL generates a se-
quence of actions that depends on how the actions influence the environment.
Thus, in addition to specifying a single “primitive action” to execute in a given
state, a policy in HRL can specify a multi-step abstract action to execute in a
state, which is characterized by its own policy that can specify both primitive
actions and other abstract actions. Once a temporally abstract action is ini-
tiated, execution of its policy continues until a specified termination condition
is satisfied. Thus, the selection of an abstract action ultimately results in the
execution of a sequence of primitive actions as the policy of each component
abstract action is “expanded.”

Although several approaches to HRL have been developed independently,
they all use closed-loop policies as behavioral modules: the options formalism of
Sutton, Precup, and Singh (1999), the hierarchies of abstract machines (HAMs)
approach of Parr and Russell (Parr 1998, Parr and Russell 1998), and the MAXQ
framework of Dietterich (2000a). These approaches are reviewed by Barto and
Mahadevan (2003).

The illustrations in this chapter are based on the theory of options, and
we use the terms option and skill interchangeably. An option consists of 1) an
option policy that directs the agent’s behavior when the option is executing, 2)
an initiation set consisting of all the states in which the option can be initiated,
and 3) a termination condition, which specifies the conditions under which the
option terminates. In addition, a system can maintain, for each option, an
option model, which is a probabilistic description of the effects of executing an
option. As a function of an environment state where the option is initiated, it
gives the probability with which the option will terminate at any other state,
and it gives the total amount of reward expected over the option’s execution.
Option models can be learned from experience (usually only approximately)
using standard methods. Option models allow algorithms to be extended to
handle learning and planning at higher levels of abstraction (Sutton et al. 1999).

The question of where options come from has occupied a number of re-
searchers. In many cases a system designer can define a collection of potentially
useful options by hand based on prior knowledge about the agent’s environ-
ment and tasks. To do this, the designer specifies the policy, initiation set, and
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termination condition for each of these “native options,” which are analogous
to action patterns and their triggering conditions given to an animal through
evolution, such as swallowing, the fight-or-flight-or-freeze response, and many
others. In other instances, it may be possible to define an option by creat-
ing only a reward function for that option, and let the agent learn a policy,
together with its initiation and termination conditions, through RL.2 This is
most commonly done by identifying potentially useful option goal states and
rewarding the agent for reaching them. These goal states are potential subgoals
for problems the agent will face over its future.

Option goal states have been selected by a variety of methods, the most
common relying on computing visit or reward statistics over individual states
to identify useful subgoals (Digney 1996, McGovern and Barto 2001, Şimşek and
Barto 2004, 2009). Graph-based methods (Mannor et al. 2004, Menache et al.
2002, Şimşek et al. 2005) build a state-transition graph and use its properties
(e.g., local graph cuts, Şimşek et al. 2005) to identify option goals. Other meth-
ods create options that allow the agent to alter otherwise infrequently changing
features of its environment (Hengst 2002, Jonsson and Barto 2006). Mugan
and Kuipers (2009) developed a related system, which they called Qualitative
Learner of Actions and Perception (QLAP), that creates a discrete qualita-
tive representation of a continuous state space using “landmarks” to partition
the space. Options are created to change the values of the resulting qualita-
tive variables. A related method was presented by Bakker and Schmidhuber
(2004) that relies on unsupervised clustering of low-level sensations to define
subgoals. Clustering was also used to cluster subgoals to prevent the creation of
multiple options that all correspond to the same underlying skill (Niekum and
Barto 2011). Konidaris and colleagues (Konidaris and Barto 2009b, Konidaris
et al. 2011a, 2012b) illustrated the utility of setting the goal of an option to be
reaching the initiation set of an already-formed option in a process called “skill
chaining.” This method is used in the example described in Section 5.1 below.
Still other methods extract options by exploiting commonalities in collections
of policies over a single state space (Bernstein 1999, Perkins and Precup 1999,
Pickett and Barto 2002, Thrun and Schwartz 1995).

Barto and colleagues (Barto et al. 2004, Singh et al. 2005) proposed that op-
tion goals can be identified through reward signals unrelated to a specific task,
such as signals triggered by unexpected salient stimuli. This allows an agent to
create options that have the potential to be useful for solving many different
tasks that the agent might face in its environment over the future (see Sec-
tion 4.4 below). Hart and Grupen (2011) proposed a comprehensive approach
in which a reward signal identifies behavioral affordances (J.Gibson 1977) that
expose possibilities for action in the environment. Mugan and Kuiper’s (2009)
QLAP system similarly adopts this “developmental setting” in creating options
outside the context of a specific task. Reward signals that do not specify an
explicit problem to solve in an environment are related to what psychologists

2Option reward functions have been called “pseudo reward functions” (Dietterich 2000a) to
distinguish them from the reward function that defines the agent’s overall task, a distinction
not emphasized in this chapter.
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call intrinsic motivation. Whereas extrinsic motivation means doing something
because of some specific rewarding outcome, intrinsic motivation means “do-
ing something because it is inherently interesting or enjoyable” (Ryan and Deci
2000). Intrinsic motivation leads organisms to engage in exploration, play, and
other behavior driven by curiosity in the absence of externally-supplied rewards.
Schmidhuber (1991a, 1991b) proposed that an RL agent could be given a kind
of curiosity by being rewarded whenever it improved its environment model. Al-
though he didn’t use the term “intrinsic reward,” this was the first contribution
to what we now call ”intrinsically-motivated RL.” An extended discussion of
intrinsically-motivated RL is beyond the scope of this chapter, and the reader
is referred to Baldassarre and Mirolli (2012) for multiple perspectives on the
subject.

Overall, the problem of how to create widely useful options—or more gener-
ally, how to create widely useful behavioral modules—is of central importance
for progress in HRL, and much research remains to be done. The illustrations
described in this chapter are relevant to creating useful options, but since our
purpose here is to highlight the utility of behavioral modularity, we do not
deeply discuss option creation algorithms.

4 Exploration in Structured Environments

Exploration is indispensable for an RL system’s operation. To learn in the
absence of explicit instructional information, meaning information that directly
tells the agent how it should act, an agent has to try out actions to see what
effect they have on reward signals and other aspects of the agent’s environment.
In other words, behavior has to exhibit some form of variety. The simplest
RL systems inject randomness into their action-generation procedures so that,
for example, they sometimes choose an action uniformly at random from the
set of all possible actions instead of taking an action that appears to be one
of the best based on what they have learned so far. But exploration does not
have to be random: trying something new can be directed intelligently, the only
requirement being that an exploratory action is not one of the actions currently
assessed to be best for the current situation. Behavioral hierarchy provides an
important means for exploring more intelligently than acting randomly because
it allows exploration to take advantage of an environment’s structure.

In this section we present two examples that illustrate how behavioral hier-
archy is implicated in intelligent exploration in structured environments. The
first example illustrates how hierarchically-organized skills can be discovered
that facilitate learning an environment’s structure. The second example shows
how a skill hierarchy can make it possible to solve a collection of learning prob-
lems that would be essentially impossible to solve otherwise. Both examples use
learning problems posed in what Vigorito and Barto (2010) called the “Light
Box Environment,” described next.
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4.1 The Light Box Environment

Figure 1 shows the Light Box Environment in which many different problems
can be posed. There is a set of twenty “lights,” each of which can be on or
off. For each, the agent has an action that toggles the light on or off. Thus
there are twenty actions, 220 ≈ 1 million states, and approximately 20 million
state-action pairs.

The nine circular lights are simple toggle lights that can be turned on or
off by executing their corresponding action. The triangular lights are toggled
similarly, but only if certain configurations of circular lights are active, with each
triangular light having a different set of dependencies. Similarly, the rectangular
lights depend on certain configurations of triangular lights being active, and the
diamond-shaped light depends on configurations of the rectangular lights. In
this sense there is a strict hierarchy of dependencies in the structure of this
environment.

Figure 2 is the causal graph of the Light Box Environment, showing the
dependencies between the variables that represent the states (on or off) of the
lights. To remove clutter, the dependencies of the variables on themselves are
not drawn, but the state of each light obviously depends on its own value at the
previous time step. With the exception of these reflexive dependencies, each
link in the causal graph indicates that the parent light must be “on” in order
to satisfy the dependency.3

The Light Box Environment is also stochastic (each action taken fails to
produce its intended effect with probability 0.1), and it is even more compli-
cated because if an action is taken to toggle a light whose dependencies are not
currently satisfied, the environment’s entire state is reset to all lights being off.

This environment emulates scenarios in which accurate lower-level knowledge
is essential for successfully learning more complex behaviors and their environ-
mental effects. Because of the “reset” dynamics, random action selection is
extremely unlikely to successfully turn on any of the lights at the top of the
hierarchy. An agent must learn and make use of specific skills in order to reach
and remain in the more difficult-to-reach areas of the state space. We emphasize
that the agent does not perceive any structure directly: it only senses strings of
twenty bits. The structure must be discovered solely from the state transitions
the agent experiences, which is a non-trivial problem.

Skills, in the form of options, discovered in the Light Box Environment may
have nested policies, the relationship between two of which is shown in Figure
3. The policies are represented as trees, with internal nodes representing state

3More technically, the complete structure of an environment like the Light Box can be
represented as a set of Dynamic Bayesian Networks (DBNs, Dean and Kanazawa 1989), one
for each of the agent’s actions. A DBN is a directed acyclic graph with nodes in two layers
representing the environment’s features at time steps t and t + 1 respectively. A DBN also
includes conditional probability tables that give the state-transition probabilities. A causal
graph as shown in Figure 2 summarizes the feature dependencies by including a directed edge
from one feature’s node to another’s if and only if there is an agent action whose DBN has
an edge from that feature’s node at step t to the second feature’s node at step t + 1 (Jonsson
and Barto 2006).
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Figure 1: The Light Box Environment. c©2010 IEEE. Reprinted, with permis-
sion, from Vigorito and Barto (2010).
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Figure 2: The Causal Graph of the Light Box Environment. c©2010 IEEE.
Reprinted, with permission, from Vigorito and Barto (2010).
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Figure 3: Examples of Option Policies in the Light Box Environment. Inter-
nal nodes represent state variables, leaves represent action (option) choices.
Branches are labeled with state variable values. Notice the nested policies.
c©2010 IEEE. Reprinted, with permission, from Vigorito and Barto (2010).

variables and leaves representing action choices, which may be either primitive
actions or options. Branches are labeled with the possible values of their parent
variables. In the example shown, the policy for the option to turn on light
number 16 (O16) contains at one of its leaves another option (O10) to turn on
light number 10, which is one of the dependencies for light number 16. This
nesting of policies is a direct result of the hierarchical nature of the environment.

4.2 Exploration for Learning Structure

If the causal structure of an agent’s environment is known, in the form of a
causal graph like that shown in Figure 2, it can be used to create a hierarchical
collection of skills that decompose a task into sub-tasks solved by these skills.
Jonsson and Barto (2006) presented an algorithm called VISA (Variable In-
fluence Structure Analysis) that creates options by analyzing the causal graph
of an environment. VISA identifies context-action pairs, called exits (Hengst
2002), that cause one or more variables to be set to specific values when the
given action is executed in the corresponding context. A context is a setting of
a subset of the environment’s descriptive variables to specific values from which
the exit’s action has the desired effect; it is like a production system’s precon-
dition (Waterman and Hayes-Roth 1978). By searching through the structured
representation of the environment, VISA constructs exit options that allow the
agent to reliably set collections of variables to any of their possible values. Vari-
ables for which such options have been formed are called controllable variables.
The result of executing VISA is a hierarchy of skills that together represent a
solution to the original task. VISA also takes advantage of structure in the
environment to learn compact policies for options by eliminating variables on
which a policies do not depend, a topic we address in detail in Section 5 below.

But it is unrealistic to assume that a causal model of the environment is
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available to an agent before it has to tackle specific tasks in that environment.
Although discovering causal structure is a very subtle problem in general sit-
uations (Pearl 2000), the assumptions built into an environment such as the
Light Box, in which actions are the complete causes of state changes, make it
possible to apply a number of different approaches that have been developed
to learn the structure of Bayesian networks. Many of these apply to the case
where there is a training set of possible observations (assignments of values to
the environment’s descriptive variables, or sequences of such assignments) that
can be accessed without restriction (e.g., Buntine 1991, Friedman et al. 1998,
Heckerman et al. 1995). Some algorithms accelerate learning by selecting the
most informative data instances from the training set through a process called
active learning (e.g., Murphy 2001, Steck and Jaakkola 2002, Tong and Koller
2001). These methods effectively perform experiments by fixing subsets of the
variables to specific values and sampling over the remaining variables.

In an RL setting where an agent learns while interacting with its environ-
ment, it may not be easy for the agent to access data necessary for learning
the environment’s causal structure. For example, a mobile robot attempting to
learn the structure of a new environment cannot transport itself to any location
instantaneously, making it difficult to perform all the experiments that might be
useful. A collection of exit options formed by an algorithm like VISA would be
valuable for allowing the agent to perform useful experiments, but such an algo-
rithm requires knowledge of the environment’s causal structure to begin with.
Degris at al. (2006), Diuk et al. (2009), Jonsson and Barto (2007), Mugan and
Kuipers (2009), and Strehl et al. (2007) proposed methods for learning causal
graphs of certain types of dynamic environments as part of the RL process,
where it is not possible to sample the process in arbitrary states but only along
trajectories.

Here we focus on the structure learning method of Jonsson and Barto (2007),
which is an active learning method that takes advantage of the growing struc-
tural knowledge to guide behavior so as to collect useful data for refining and
extending this knowledge. It follows other structure-learning methods by esti-
mating the probability of observing the data given a particular graphical repre-
sentation of the system’s causal structure, and incrementally searches the space
of structures by adding and deleting the edges in the graph in an attempt to
find the structure that maximizes this probability. This is not guaranteed to
find the best graph (the general problem is NP-complete Chickering et al. 1995),
but it usually succeeds in finding high-scoring graphs.

Details of Jonsson and Barto’s (2007) active learning scheme are fairly com-
plicated and beyond the scope of this chapter, but for current purposes the
essential point is that the agent collects sample experiences so that the amount
of evidence for each possible graph refinement is roughly equalized. This is ac-
complished by the agent choosing actions that maximize the entropies of the
probability distributions the system uses for its refinement criteria. This is ad-
vantageous because having a more uniform distribution over the input values
of a given refinement variable makes the evaluation of that refinement more
accurate. Thus, correct refinements get discovered more quickly than they do
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with uniformly random action selection.
This approach does produce faster learning in some environments, but in

more complex environments it can fail to discover a significant portion of the
environment’s structure. This is because this active learning scheme is myopic,
only considering the effects of primitive actions at each step, and thus can cause
the agent to become stuck in “corners” of the state space that are difficult to
get out of. To partially remedy this the agent can learn skills, in the form of
options, while it is exploring. Selecting skills can allow the agent to reach con-
figurations of environmental variables that would be difficult to reach using only
primitive actions. In this approach, an agent uses its current skill collection to
perform experiments so as to expedite structure learning. An experiment in this
scheme, like an exit, is composed of a context and an associated primitive ac-
tion. Vigorito and Barto (2010) studied a method that selects actions according
to Jonsson and Barto’s (2007) active structure learning method, but while in-
teracting with its environment it constructs options with hierarchically-defined
policies like that shown in Figure 3 and uses them to improve active structure
learning. Instead of selecting only from primitive actions, it selects from the
agent’s entire suite of primitive actions and available options.

Although this method takes advantage of acquired skills to explore more
broadly than possible with just primitive actions, in complex tasks with large
state spaces it still may fail to explore many regions of the state space, prefer-
ring to maintain uniformity in the current region. This happens because the
agent still uses only local information in selecting actions: it only considers how
the distributions change locally as a result of executing single actions or single
options. This method is illustrated in the Light Box Environment in Section 4.3
below, where we call the agent using it the Local agent.

One way to produce a more global method is to allow the agent to use its
current environment model to plan to reach configurations of environmental
variable values that will likely yield more relevant information. Here, execut-
ing a plan means executing the plan’s policy that specifies actions—primitive
actions or options—in response to observations from the environment. Vigorito
and Barto (2010) produced an algorithm that does this by introducing a re-
ward function that rewards the agent for achieving a context consisting only
of controllable variables. This method is also illustrated in the Light Box En-
vironment in Section 4.3 below, where we call the agent using it the Global
agent.

Using this reward function, a policy is computed (using Structured Value
Iteration, Boutilier et al. 2000) to reach the rewarding context and execute the
action associated with it. The policy is executed to completion before the next
best experiment is computed. In this sense, the agent defines its own problems
as it continues to learn and explore, becoming “bored” with things that it un-
derstands well and focusing its attention on the parts of its environment about
which it is uncertain. This is a property of intrinsically-motivated curiosity as
pointed out by Schmidhuber (1991a). We think of the reward function used by
the Global agent as producing intrinsic reward signals.

Since the Global agent starts out with no controllable variables, initial
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exploration is carried out according to the local active learning scheme like
that described above. However, as enough structure is discovered and certain
variables become controllable via construction of low-level options, the agent
can use these new skills to reliably set contexts about which it has limited
experience. When options happen to be created prematurely and are malformed,
their lack of utility is discovered fairly quickly by the agent when it attempts
to use these options in its experimental plans and they fail repeatedly. These
options are removed from the agent’s skill collection until the agent performs
more experiments relevant to discovering their structure, at which point they
will be re-created and tested in further experiments. Once a correct option is
learned, its empirical success rate will on average match its expected success
rate, and the option will remain in the agent’s skill collection to be used in all
further experiments. In this way, structure learning is bootstrapped on existing
structural and procedural knowledge.

The next section describes a study by Vigorito and Barto (2010) that com-
pares the performance of agents using different types of exploration strategies
to guide behavior while learning the structure of the Light Box Environment.
Although this environment is relatively simple and was designed with an explicit
hierarchical structure, it clearly illustrates the advantages that skill hierarchies
can confer to exploration for learning an environment’s structure.

4.3 Active Learning Learning of Light Box Structure

Three agents were compared in Vigorito and Barto’s (2010) illustration of the
behavior of structure-learning agents in the Light Box Environment. Agent
Random always selected a random action from its set of available actions,
which included options previously acquired, and executed each to completion
before choosing another. Agent Local also selected from its set of primitive
actions and previously acquired options, but employed the local active learning
scheme described above. Agent Global, on the other hand, used the global
active learning scheme of described above. This agent was able to compute
plans (via Structured Value Iteration) in order to select among primitive actions
and previously acquired options so as to maximize future reward. It therefore
used more global information than did agent Local and so could reach more
informative areas of the state space.

Since Vigorito and Barto (2010) knew the true transition structure of the
Light Box, they could compare the refinements made by each agent at any given
time step to the set of refinements that define the correct model. Figure 4 shows
the number of correct refinements discovered by each agent as a function of the
number of time steps. The learning curves presented are averages of 30 runs for
each agent. Clearly the hierarchical nature of the environment made structure
learning very difficult for agents that could not plan ahead in order to reach
more informative areas of the state space. Both Random and Local were
able to learn what is essentially the bottom layer of the hierarchy, but once this
structure was discovered they continually sampled the same areas of the state
space and their learning rate leveled out.
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c©2010 IEEE. Reprinted, with permission, from Vigorito and Barto (2010).

14



Global, on the other hand, used the options constructed from this initial
structure to plan useful experiments in its environment, allowing it to reach
areas of the state space that the other agents could not reach reliably. This
allowed it to uncover more of the environment’s structure, which in turn allowed
it to generate new skills that enabled further exploration not possible with only
the previous set of options. This bootstrapping process continued until all of
the domain structure had been discovered, at which point the agent possessed
options to set each light to either on or off. The structured representation of
the environment allowed the agent to uncover the transition dynamics without
ever visiting a vast majority of the environment states, with Global reliably
finding the correct structure in under 40,000 time steps.

This experiment clearly demonstrates the utility of behavioral modularity in
a developmental framework. Using an initially learned set of skills as a basis for
further exploration in hierarchically-complex environments like the Light Box
is necessary for the discovery and learning of new, more complex skills. But
the initial learning of low-level skills may not be sufficient for learning complex
tasks. An agent must continue to learn new skills using those it has already
discovered in order to make full use of a behavioral hierarchy. Unlike agents
Random and Local, Global used those skills in a planning framework that
drove it towards the more informative areas of the state space, and thus it
performed much better than the others.

The learning curves for Random and Local in Figure 4 eventually flatten
out, indicating that the agents reach a complexity plateau and are unable to
learn beyond that point. By contrast, agent Global is able to learn more
complex behavior, using its already acquired skills as building blocks. This kind
of open-ended learning, where the agent is able to continually acquire ever more
complex skills by progressively building on the skills it has already acquired,
characterizes the utility of this approach in complex hierarchically-structured
environments.

4.4 Skills for Multiple Tasks

Another benefit of behavioral modularity for exploration occurs when an agent
has to face multiple tasks in an environment. Consider the following scenario.
Suppose an agent finds itself in an environment in which it will—over the
future—face a collection of tasks, where each task is specified by a different
reward function. Further suppose that the environment has structure that can
be exploited to accumulate reward, but that the agent does not know anything
about this structure to begin with, or how it can be exploited. Assume also
that at the start the agent does not know what tasks it will have to face. This
scenario captures some features of the situation in which an infant finds itself,
or in which an adult finds itself when confronting an environment in which it
has little experience and where there is the luxury of a “developmental period”
during which relatively few demands are made. What should an agent do to
prepare for future challenges? Clearly, it should explore its environment and
discover features of its structure that might be useful later on. Our perspective
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is that it should not only accumulate knowledge of the environment’s structure,
but it should also acquire behavioral modules in the form of skills that will be
on call as it faces multiple tasks over the future, thereby enabling it to learn to
perform those tasks more efficiently than would be possible without those skills.

Vigorito and Barto (2010) conducted experiments to illustrate this scenario
in the Light Box Environment. They compared the time it took to compute
policies for various tasks (defined by different reward functions) for an agent
with only primitive actions to the time taken by one with a full hierarchy of
options (including primitives). For each of the twenty lights they computed a
policy for a task whose reward function was 1 when that light was on and −1
otherwise. They averaged together the computation times of the tasks at each
level of the Light Box hierarchy, i.e., all times for circular lights were averaged
together, and similarly for triangular and rectangular lights, with only one task
for the diamond light.

Results in Figure 5 show that for the lowest level of the hierarchy, where each
task could be accomplished by one primitive action, the two agents took very
little time to compute policies, with the options agent being slightly slower due
to having a larger action set through which to search. However, once the tasks
required longer sequences of actions to perform, there was a significant increase
in the computation time for the primitives-only agent, and little or no increase
for the options agent. The overhead of computing the options in the first place
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was thus compensated for once the agent had been confronted with just a few
different higher-level tasks. The savings became very substantial above level 2
(note the log scale).

These results illustrate that even with as few as two or three dependencies-
per-variable, the benefits of exploring with options can be dramatic. Lacking a
hierarchically-structured search, the probability of the agent “stumbling upon”
the solution to a higher-level task is extremely small. Indeed, in some envi-
ronments, this probability is essentially zero. Caching previous experience in
the form of reusable skills effectively restructures the search space, enabling the
agent to experience the consequences of behavior that would otherwise be very
unlikely.

5 Representational Advantages of Behavioral Mod-
ularity

In addition to facilitating searches for highly rewarding behavior by restructur-
ing the search space, behavioral modularity presents the opportunity to greatly
reduce the representation problem that is a major challenge in applying RL to
problems with large or infinite state and/or action sets. RL algorithms work by
learning certain functions of a problem’s set of states. Depending on the type of
RL algorithm, these functions can include value functions, which for each state
(or possibly each state-action pair) provide a prediction of the reward the agent
can expect to receive over the future after observing that state (and possibly
performing a specific action in that state). Or an algorithm may require directly
learning a policy, a function that for each state specifies an action that the agent
should take when observing that state.

Learning in environments with large state sets requires compact represen-
tations of the needed functions when it is not feasible to explicitly store each
function value. This is especially an issue when state sets are multi-dimensional
since the size of the state set increases exponentially with the number of dimen-
sions: the well-known “curse of dimensionality” (Bellman 1957). The problem is
compounded when states are represented by multiple descriptive variables that
can take real numbers as values, which is the case for many applications of RL.
Hierarchical organizations of behavioral modules can be especially advantageous
in these types of problems.

An important component of all the approaches to HRL is that each behav-
ioral module, or skill, can operate with its own representations of states and
actions, as well as its own manner of representing any needed functions. The
representations on which a skill depends must be sufficient only for successfully
learning and performing that skill, and thus can exclude wide ranges of infor-
mation that, while perhaps relevant to other skills, are irrelevant for the skill in
question. This implies that the problem of learning an individual skill can be
much simpler than learning to solve a larger problem.

To be more specific about how skill-specific representations can differ from
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one another, consider the following common approach to representing the func-
tions a learning agent may need to maintain. Suppose each environmental state
has a “native representation” that is a vector of the values of a set of descriptive
variables.4 For example, the native representation of a state of the Light Box
Environment of Section 4.1 is a tuple of 20 bits, each indicating the state of
one of the lights. In the Pinball Task described in Section 5.1 below, the native
representation of a state is a 4-tuple of real numbers giving the two-dimensional
position of the ball and its two-dimensional velocity. These descriptive variables
are usually called features, and we can call them “native features.” Of course,
what are considered native features are not immutable properties of an environ-
ment. In designing artificial agents, these features depend on design decisions
and the nature of the problems the agent is supposed to handle; in nature,
they depend on the animal’s sensory repertoire and perceptual processes, both
exteroceptive and interoceptive.

Given a native state representation, it is necessary to implement a function
approximation method that receives as input a state’s native representation and
produces as output a function value, for example, an estimate of the amount of
reward expected over the future after the agent visits that state. Linear function
approximation is a simple and very well-studied way to do this. In this method,
a state’s native representation is transformed into another vector specified by a
set of basis functions, and this new vector’s components are linearly combined
to produce the function’s output value. Each basis function maps the space of
native representations to the real numbers. The weights used to combine the
components are adjusted by a learning algorithm.

The reason for using a set of basis functions is that although any function
implemented by this method is a linear function of the weights—which makes
it relatively easy to design and analyze learning algorithms—the overall func-
tion can be a very complex non-linear function of the native representation
because the basis functions can be non-linear functions of the native representa-
tion. Further, it is usual practice to use many more basis functions than native
features. For example, in continuous domains with many native features, an
overall problem’s value function or policy approximation may require hundreds
of even thousands of basis functions to represent it. The examples described
in Sections 5.1 and 5.2 below use Fourier bases consisting of varying numbers
of multivariate sinusoidal basis functions (Konidaris et al. 2011b). Mahadevan
(2009) provides a thorough account of the use of basis functions in RL.

Skill-specific representations can therefore differ in terms of native features,
function approximation methods, basis functions, or all of these. For example, a
skill may depend only on a subset of the environment’s full set of native features,
the rest being irrelevant to the skill. More generally, a skill may depend only
on an abstraction of the full native representation produced by transforming
the native representation in a many-to-one manner to produce a more compact
description that removes some of the distinctions originally present while pre-

4Actions similarly have native representations, but we restrict attention to state represen-
tations to keep things simple.
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serving relevant information (Dietterich 2000b, Li et al. 2006, Ravindran and
Barto 2002). Abstraction is a key approach to solving high-dimensional RL
problems, but it is typically difficult to find a single abstraction that applies to
the entirety of a complex problem: the problem itself may simply be intrinsi-
cally high-dimensional and therefore hard to solve monolithically. Nevertheless,
it may at the same time consist of several subproblems that can be captured as
skills, each of which can be learned efficiently using a suitable abstraction.

Skill-specific representations can also differ in the function approximation
methods they use. In the case of linear function approximation, for example,
each skill may use its own set of basis functions. Alternatively, each skill might
use the same type of basis functions, but can use fewer of them than would
be required to provide sufficiently accurate function approximation over the
environment’s entire state space. This applies when skills generate activity that
is concentrated on a subset of the environmental state space.

In the next section we illustrate the case in which all the options rely on the
same native features, but the options are only required to achieve accuracy on
subsets of the state space. Each option therefore uses a function approximator
based on many fewer basis functions than would be required to achieve adequate
accuracy over the entire state space. Konidaris and Barto (2009b) called these
“lightweight options,” in reference to the relative simplicity of their function
approximation methods. In Section 5.2, we present an example in which each
skill can select a different abstraction of the task’s native representation.

5.1 Representing Complex Policies using a Collection of
Lightweight Options

Konidaris and Barto (2009b) use a “Pinball Task” to illustrate lightweight op-
tions. A Pinball Task is a dynamic navigation task with a 4-dimensional contin-
uous state space. Figure 6 shows an instance of a Pinball Task. Other instances
have different obstructions and different goal locations.

The goal of a Pinball Task is to maneuver a small ball from its starting
location into the large red hole in the upper right corner in Figure 6). The ball’s
movements are dynamic so its state is described by four real-valued variables:
x, y, ẋ and ẏ. Collisions with obstacles are fully elastic and cause the ball
to bounce, so rather than merely avoiding obstacles the agent may choose to
use them to efficiently reach the red hole. There are five primitive actions:
incrementing or decrement ẋ or ẏ by a small amount (which incurs a reward of
−5 per action), or leaving them unchanged (which incurs a reward of −1 per
action); reaching the goal obtains a reward of 10, 000.

Learning policies for a Pinball Task is very difficult because its dynamic
aspects and sharp discontinuities make it difficult for both control and for func-
tion approximation, and it requires very accurate control for long periods of
time. Konidaris and Barto (2009b) compared Pinball agents that attempted to
learn flat policies (that is, policies not hierarchically defined) with agents that
used hierarchical policies. The latter agents used skill chaining to create skills
such that from any point in the state space, the agent could execute a sequence
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Figure 6: An Instance of a Pinball Task. The goal is to maneuver a small ball
from a starting location into the large red hole in the upper right corner. One
possible starting location is shown in the upper left corner.

of skills, implemented as options, to reach a given goal region of state space.
This algorithm both discovers the skills and determines their initiation sets by
learning the local region from which their policies consistently allow the agent
to reach its goal. Skill chaining adaptively breaks the problem into a collection
of subproblems whose sizes depend on the complexity of policy that they can
represent. Its key mechanism is to treat the initiation sets of options already
acquired as goal regions for forming new options.5

We omit details of skill chaining and refer the reader to Konidaris and Barto
(2009b). It is related to what is known in robotics as pre-image backchaining
or sequential composition (Burridge et al. 1999). In related work by Neumann
et al. (2009), an agent learns to solve a complex task by sequencing motion
templates. The most recent related work is by Tedrake (2010) in a model-based
control setting.

The options created by skill chaining were lightweight because they used a
function approximation scheme with many fewer basis functions than required to
approximate the value function adequately over the entire state space. Specifi-
cally, whereas the flat policies were derived from value functions combining 1,296
basis functions for each action for the Pinball instance shown in Figure 6, the
value functions of the options each combined only 256 basis functions for each

5In this respect, it is closely related to the algorithm used by agent Global described in
Section 4.3 in which an intrinsic reward is generated for reaching a context consisting only
of controllable variables, although that algorithm does not immediately extend to problems
with continuous state spaces.
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action.6 Each option therefore implemented a “lightweight policy”—a much
simpler policy than the overall task policy.

Figure 7 shows the performance (averaged over 100 runs) in the Pinball Task
shown in Figure 6 for agents using a flat policy (without options) compared
with agents employing lightweight options obtained through skill chaining, and
agents starting with given (pre-learned) options. Performance is shown as an
agent’s return for each episode, which is the total amount of reward it received
over that episode. Given the task’s reward function, return is inversely related
to the number of time steps required to maneuver the ball into the hole. Pre-
learned options were obtained using skill chaining over 250 episodes in the same
Pinball Task instance. The figure shows that the skill chaining agents performed
significantly better than flat agents by 50 episodes, and obtained consistently
better solutions by 250 episodes, whereas the flat agents did much worse and
were less consistent. Konidaris and Barto (2009b) observed similar results for
another instance of the Pinball Task.

Agents that started with pre-learned options did very well initially—with an
initial episode return far greater than the average solution eventually learned by
agents without options—and proceeded quickly to the same quality of solution
as the agents that discovered the options themselves. This shows that it was the
options acquired, and not a by-product of acquiring them, that were responsi-
ble for the increase in performance. Given this set of lightweight options, the
problem became relatively easy to solve.

Figure 8 shows two sample solution trajectories from different start states
accomplished by an agent performing skill chaining in the Pinball Task, with the
options executed shown in different colors. The figure illustrates that this agent
discovered options corresponding to simple, efficient policies covering segments
of the sample trajectories.

The primary benefit of behavioral modularity in this problem is that it re-
duces the burden of representing the task’s value function, allowing each option
to focus on representing its own local value function and thereby achieving a
better overall solution. Furthermore, using the strategy described here, an agent
can create as many options as necessary, thereby adapting to fit the problem
difficulty. Although these results illustrate a behavioral hierarchy consisting of
only two levels (the level of the options and the level of the primitive actions)
the benefit of lightweight options clearly extends to deeper hierarchies.

5.2 Selecting Skill-Specific Abstractions

The lightweight options described above illustrate the fact that a behavioral
building block can have lower complexity than would be required for a mono-
lithic solution to a given problem. Although the lightweight options in that
example acquired different policies applicable to different parts of the problem’s

6Konidaris and Barto (2009b) used Sarsa with linear function approximation using a 5th-
order Fourier basis (1, 296 basis functions per action). Option policy learning was done using
Q-learning with a 3rd-order Fourier basis (256 basis functions per action). See Konidaris et al.
(2011b) for details about using Fourier bases in RL.

21



50 100 150 200 250 300

−16

−14

−12

−10

−8

−6

−4

−2

0

x 10
4

Episodes

R
et

ur
n

 

 

No Options
Given Options
Skill Chaining

Figure 7: Performance in the Pinball Task. Graphs show performance for agents
employing skill chaining, agents using given pre-learned options, and agents
without options. Performance is shown as an agent’s return for each episode,
which is inversely related to the amount of time the agent took to complete the
task. Results are averages of 100 runs.

state space, they were all built using the same, complete, set of native environ-
mental features. It is also possible for each skill to be based on its own abstrac-
tion of the problem’s state and action spaces. Here we describe an example due
to Konidaris and Barto (2009a) and Konidaris (2011) in which each skill selects
its own abstraction, which in this case is a subset of the environment’s native
features.7 The goal is similar to that of earlier work by Jonsson and Barto
(2002) in which each option implemented a separate instance of McCallum’s
(1996) U-Tree algorithm designed to synthesize state representations from past
histories of observations and actions. The goal is also similar to that of Seijen
et al. (2007) who studied a method that included special abstraction-switching
actions.

In abstraction selection (Konidaris 2011, Konidaris and Barto 2009a), when
an agent creates a new option it also selects an appropriate abstraction for
learning that option from a library of existing abstractions. Once the agent
has determined the option’s termination condition—but not yet its policy or
initiation set—the agent uses trajectories that reach the option’s termination
condition as sample trajectories to determine the appropriate abstraction for
the new option. The new option policy is then defined using only the native
features relevant to its selected abstraction.

Briefly, abstraction selection is treated as a model selection problem, where
7More technically, each abstraction is a projection of the state space onto the subspace

spanned by a subset of the set of native features.
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Figure 8: Sample Solution Trajectories from Different Start States in the Pinball
Task. Acquired options executed along each sample trajectory are shown in
different colors; primitive actions are shown in black.

the agent aims to find the highest likelihood model to fit the returns it receives
along its sample trajectories. For the example described below, the class of
models considered consists of linear combinations of a set of basis functions
defined over the sets of native features corresponding to the abstractions in the
library. Konidaris and Barto (2009a) used the Bayesian Information Criterion
(BIC), a relatively simple metric that balances an abstraction’s fit and its size
while incorporating prior beliefs as to which abstractions might be suitable.
The process returns a selection probability as output. These properties allow
the agent, for example, to select an abstraction when it is only 95% sure it is
the correct one. The abstraction selection algorithm runs on each abstraction in
parallel and is incremental and online. It compiles information from the sample
transitions into sufficient statistics and does not require them to be stored. For
details, see Konidaris (2011), Konidaris and Barto (2009a).

Konidaris and Barto (2009a) illustrate abstraction selection using the Con-
tinuous Playroom, an environment where skill-specific abstractions can signif-
icantly improve performance. The environment, a continuous version of the
environment of Barto et al. (2004) and Singh et al. (2005), consists of three
effectors (an eye, a marker, and a hand), five objects (a red button, a green
button, a light switch, a bell, a ball, and a monkey) and two environmental
variables (whether the light is on, and whether the music is on). The agent is
in a 1-unit by 1-unit room, and may move any of its effectors 0.05 units in one
of the usual four directions. When both its eye and hand are over an object,
the agent may additionally interact with the object, but only if the light is on
(unless the object is the light switch). Figure 9 shows an example configuration.

Interacting with the green button switches the music on, while the red button
switches the music off. The light switch toggles the light. Finally, if the agent
interacts with the ball and its marker is over the bell, then the ball hits the bell.
Hitting the bell frightens the monkey if the light and music are both on and
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Figure 9: An Example Continuous Playroom. The agent can move its eye, hand,
and marker (shown as the cross). The objects are randomly relocated at the
start of each episode.

causes it to squeak, whereupon the agent receives a reward of 100, 000 and the
episode ends. All other actions cause the agent to receive a reward of −1. At
the beginning of each episode the objects are arranged randomly in the room
so that they do not overlap.

The agent has 13 possible actions (3 effectors with 4 actions each, plus the
interact action), and a full description of the Continuous Playroom requires
18 state variables: x and y pairs for three effectors and five objects (since the
position of the monkey may be omitted) plus a variable each for the light and
the music. Because the environment is randomly rearranged at the beginning
of each episode, the agent must learn the relationships between its effectors and
each object, rather than simply the absolute location for its effectors. Moreover,
the settings of the light and music are crucial for decision making and must be
used in conjunction with object and effector positions. Thus, for task learning
the agent used 120 native state features—for each of the four settings of the
lights and music it used a set of 30 features representing the difference between
each combination of object and effector (∆x and ∆y for each object-effector
pair, so 5 objects ×3 effectors ×2 differences = 30).

The Continuous Playroom is a good example of a problem that should be
easy—and is easy for humans—but is made difficult by the large number of
features and the interactions between them that cannot all be included in an
overall task function approximator: a 1st order Fourier basis over 120 variables
that does not treat each variable as independent has 2120 basis functions. Thus,
it is a problem in which options can greatly improve performance, but only if
those options are themselves feasible to learn.
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Konidaris and Barto (2009a) assumed that the agent starts with primitive
actions only, and that a new option is created for moving each effector over each
object when the agent first successfully does so. The task is then to efficiently
learn the policies for these options using abstraction selection.

The agent was given an abstraction library consisting of 17 abstractions.
Since the environment consists of objects and effectors, abstractions were in-
cluded for each of the 15 object-effector pairs, with each abstraction consisting
of just two features: ∆x and ∆y for the object-effector pair. Also included in the
library was a random abstraction (two features with values selected uniformly
at random over [0, 1] at each step), and a null abstraction, which used all 120
native features.

For overall task learning in the Continuous Playroom, Konidaris (2011) used
a 10th-order independent Fourier basis over the 120 native features (1, 320 basis
functions per action). For learning an option policy with an option-specific
abstraction, a full 10th-order Fourier basis was used for each action (121 basis
functions per option). For option learning without abstraction, the lights and
music features were discarded and the agent used the 30 difference features and
a 10th-order independent Fourier basis (330 basis functions per action). For the
abstraction selection process, a 2nd-order Fourier basis was used.

Figure 10 compares the overall learning curves in the Continuous Playroom
for agents that used abstraction selection with those that did not use abstrac-
tions when learning option policies. The figure also includes curves for agents
that were given pre-learned optimal option policies, and agents that were im-
mediately given the correct abstraction so that performance can be compared
to the ideal case. The abstraction selection agents were constrained to only
perform selection after 5 episodes.

Figure 10 shows that agents performing abstraction selection performed iden-
tically to those that did not use abstractions initially, until about 5 episodes,
whereafter the agents were allowed to perform abstraction selection and their
performance improved relative to agents that did not use abstractions, matching
the performance of agents that were given the correct abstractions in advance
by 10 episodes. The difference in performance between agents that did not use
abstractions and agents that performed abstraction selection was substantial.

This example illustrates advantages of using abstractions, but it does not
explain why it makes sense for an agent to select abstractions from a library
instead of developing them itself from its experiences. According to Konidaris
and Barto (2009a), the key advantage of abstraction selection is that it shifts the
state-space representation problem out of the agent’s control loop: instead of
having to design a relevant abstraction for each skill as it is discovered, a library
of abstractions can be provided and the agent can select a relevant one for each
new skill. As the Continuous Playroom example shows, this can significantly
bootstrap learning in high-dimensional state spaces, and it allows one to easily
incorporate background knowledge about the problem into the agent.

However, providing a library of abstractions to the agent in advance requires
both extra design effort and significant designer knowledge of the environment
the agent is operating in. This immediately suggests that the abstraction library
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Figure 10: Learning with Abstraction Selection. Learning curves for agents
given optimal option policies, agents given the correct abstraction in advance,
agents using no abstractions, and agents that performed abstraction selection.
The dashed line at 5 episodes indicates the first episode where abstraction se-
lection was allowed; before this line, agents using abstraction selection learned
option policies without abstractions.

should be learned, rather than given. Just as an agent should learn a library
of applicable skills over its lifetime, so should it also learn a library of suitable
abstractions over its lifetime—because an agent’s abstraction library determines
which skills it can learn quickly. We refer the interested reader to Konidaris
(2011) for more on these issues.

6 Summary and Prospects

Modularity, in one form or another, is widely observed in both artificial and
natural systems. This chapter has focused on behavioral modularity in which
“units of behavior,” which we call skills (or in the HRL framework, options), are
reusable building blocks that can be composed to generate extensive ranges of
behavior. Perhaps the most widely appreciated feature of behavioral modularity
becomes apparent when hierarchical composition is possible, in which modules
can be composed of other, lower-level modules. Behavioral hierarchies facili-
tate both learning complex skills and planning at multiple levels of abstraction.
Another salient feature of behavioral modularity is that it facilitates transfer
learning, in which results of learning in one task are transferred to other related
tasks. In a developmental framework, this allows agents to incrementally im-
prove their competence for facing new challenges that arise over extended time
periods.
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This chapter focusses on two features of behavioral hierarchy that appear
to be less well recognized: its influence on exploratory behavior and the op-
portunity it affords to reduce the representational challenges of planning and
learning in large, complex domains. Behavioral hierarchy not only allows explo-
ration to take “bigger steps,” it can make areas of a state space accessible that
would be effectively inaccessible otherwise. Our example using the Light Box
Environment illustrates this: without the ability to cache learned behavior into
reusable skills, the agent would have very little chance of ever causing “higher-
level” events to occur, and thus would have very little chance to learn about
these aspects of its environment. This additionally illustrates how behavioral
hierarchy can provide a means for continual, developmental learning in which
the acquisition of new skills is bootstrapped on previously acquired structural
and procedural knowledge.

Our other examples using the Pinball and Continuous Playroom environ-
ments, illustrate the utility of allowing each module to incorporate its own
module-specific representation. Skills typically involve circumscribed aspects of
an agent’s environment, which allows irrelevant features to be omitted in the
representations underlying the skill. Because each skill in a Pinball Task applies
to a restricted subset of the problem’s state space, skills can use mechanisms
of lower complexity than they would need if they were more widely applica-
ble. This was illustrated through the idea of a “lightweight option.” In the
Continuous Playroom, an example with a higher dimensional state space, the
skill-creation mechanism selected the subset of state variables considered most
relevant to learning and performing that skill. This is an example of how in-
dividual skills can take advantage of skill-specific abstractions. In this case,
abstractions were selected from a pre-specified small library of abstractions, but
the principle would be similar with other methods for creating and selecting
abstractions.

The examples described in this chapter were developed to illustrate methods
designed to scale RL to larger and more complex problems. However, we believe
that key features of these examples are relevant to modularity in human and
animal behavior as well. A guiding principle of all of this research has been that
behavioral modules, especially when hierarchically organized, provide a powerful
means for continual, developmental learning. It is plausible that the benefits
of behavioral hierarchy that we have illustrated through these examples have
counterparts that influenced the evolution of hierarchical modularity in humans
and other animals.

Although the examples presented in this chapter are based on the options
framework of Sutton et al. (1999), it would be a mistake to conclude that this
framework is fully developed, that it provides an adequate account of all the
issues associated with behavioral hierarchy, or that it is the only framework in
which our main points could have been framed. The options framework has the
advantages of resting on a strong theoretical base and affording a collection of
principled algorithms, but much more development is needed to make it better
suited to engineering applications and to improve its account of salient features
of behavioral modularity observed in animals. We conclude by briefly describing
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several avenues for continued development.

1. Option Creation. The question of where options come from was briefly
discussed in Section 3. Although many different approaches are being
studied, significant challenges remain. For example, most of the methods
that have been developed focus on identifying state space regions that
act as useful option goals, and therefore as subgoals for higher-level tasks.
These options terminate when the goal region is entered. How to identify
useful option goals is far from settled. Further, many skills involve on-
going repetitive behavior, such as running, swinging, stirring, etc. These
kinds of skills are not characterized by goal regions but rather by de-
sired dynamic behavior, such as desired limit cycles. Little work has been
done on creating options of this type, although much work in robotics is
relevant, such as the methods used in the biped walker of Tedrake et al.
(2004) and the control-basis approach of Grupen and colleagues (Hart and
Grupen 2011, 2012, Huber and Grupen 1997).

2. Parameterized Options. One limitation of the option model of a skill is
that most skills, as the term is ordinarily used, seem more flexible than
options. What we may think of as a single skill, for instance, throwing
a ball, would correspond to many different options whose policies would
differ depending on the type of ball, its desired trajectory, etc. Because
option policies are closed-loop, the behaviors that options specify are reac-
tive to state information, which could include desired trajectory specifics.
However, it might be better to model a skill as a family of options that
are parametrically related to one another in the sense that they share a
basic structure and differ by the settings of only a few parameters. For
instance, the ball’s speed might be a parameter for a ball-throwing skill.
Initial investigations of parameterized options have been undertaken by
Soni and Singh (2006) and da Silva et al. (2012).

3. Representation and Abstraction. It is well-known that how a problem is
represented critically influences the performance of problem solving meth-
ods Amarel (1981). The problems of designing and/or learning represen-
tations are intimately related to the problem of forming useful abstrac-
tions: all representations involve abstraction in one guise or another. The
forms of representation and abstraction illustrated by the examples in this
chapter only touch the surface of these topics, which have long occupied
researchers in many fields. There is ample opportunity for integrating the
approaches to representation and abstraction taken in RL and HRL , such
as those described by Mahadevan (2009) and Osentoski and Mahadevan
(2010), with those developed by researchers in other areas.

4. Many-Level Skill Hierarchies. There is a shortage of examples in which an
agent automatically constructs a many-level skill hierarchy. The Global
agent in the Light Box illustration constructed a four-level skill hierar-
chy for turning on the highest-level light, and the agent solving a Con-
tinuous Playroom problem constructed a multi-level skill hierarchy, but
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these illustrations were accomplished in relatively simple environments
with explicitly-designed hierarchical structure. Other examples, such as
the Pinball example described here, create two-level hierarchies (primi-
tives actions plus options that do not invoke other options). Compelling
support remains to be developed for the claim that truly open-learning
can emerge from an HRL system with the ability to autonomously form
deep skill hierarchies.

5. Ensembles of Tasks: Competence and Transfer. A theme only briefly
touched upon in this chapter is the importance of considering ensembles
of tasks instead of single tasks. The example in Section 4.4 illustrates how
appropriate skills can make it much easier for an agent to learn any one of
several tasks posed by different reward functions in the Light Box Envi-
ronment. The right kinds of skills—based on the right kinds of representa-
tions and abstractions—can make an agent “competent” (White 1959) in
an environment, meaning that it is able to efficiently solve many different
problems that can come up in that environment. Beyond this, competence
can extend from multiple tasks in a single environment to multiple tasks
in multiple environments, where the environments have features in com-
mon that make it possible to transfer knowledge and skills from one to
another. Developing algorithms for learning and problem solving across
task ensembles continues to be a challenge. Some perspectives on this
theme are discussed by Barto (2012) and Singh et al. (2010).

6. Real-World Applications. The illustrations described in this chapter all
involved simulated environments that were artificially structured to test
and demonstrate the capabilities of various HRL algorithms. Although
these are considered to be “toy” environments, the problems they pose
are not trivial. For example, a Pinball Task can be very difficult to solve
for both humans and conventional control methods. But in many respects
HRL theory has far outpaced its applications. Although there are many
applications of related techniques to real-world problems (too many to
attempt to cite here), there is a shortage of instances that demonstrate
the full potential of HRL in important real-world tasks. This is a direction
in which progress is much needed.
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