
3D Object Representations for Robot Perception
by

Benjamin C. M. Burchfiel

Department of Computer Science
Duke University

Date:
Approved:

George Konidaris, Supervisor

Carlo Tomasi, Chair

Katherine Heller

Stefanie Tellex

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2019

Abstract

3D Object Representations for Robot Perception
by

Benjamin C. M. Burchfiel

Department of Computer Science
Duke University

Date:
Approved:

George Konidaris, Supervisor

Carlo Tomasi, Chair

Katherine Heller

Stefanie Tellex

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2019

Copyright © 2019 by Benjamin C. M. Burchfiel
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Reasoning about 3D objects is one of the most critical perception problems robots face;

outside of navigation, most interactions between a robot and its environment are object-

centric. Object-centric robot perception has long relied on maintaining an explicit database

of 3D object models with the assumption that encountered objects will be exact copies of

entries in the database; however, as robots move into unstructured environments such as

human homes, the variation of encountered objects increases and maintaining an explicit

object database becomes infeasible. This thesis introduces a general-purpose 3D object

representation that allows the joint estimation of a previously unencountered object’s class,

pose, and 3D shape—crucial foundational tasks for general robot perception.

We present the first method capable of performing all three of these tasks simultane-

ously, Bayesian Eigenobjects (BEOs), and show that it outperforms competing approaches

which estimate only object shape and class given a known object pose. BEOs use an

approximate Bayesian version of Principal Component Analysis to learn an explicit low-

dimensional subspace containing the 3D shapes of objects of interest, which allows for

efficient shape inference at high object resolutions. We then extend BEOs to produce

Hybrid Bayesian Eigenobjects (HBEOs), a fusion of linear subspace methods with modern

convolutional network approaches, enabling realtime inference from a single depth image.

Because HBEOs use a convolutional network to project partially observed objects onto the

learned subspace, they allow the object to be larger and more expressive without impacting

the inductive power of the model. Experimentally, we show that HBEOs offer signifi-

iv

cantly improved performance on all tasks compared to their BEO predecessors. Finally,

we leverage the explicit 3D shape estimate produced by BEOs to further extend the state-

of-the-art in category level pose estimation by fusing probabilistic pose predictions with a

silhouette-based reconstruction prior. We also illustrate the advantages of combining both

probabilistic pose estimation and shape verification, via an ablation study, and show that

both portions of the system contribute to its performance. Taken together, these methods

comprise a significant step towards creating a general-purpose 3D perceptual foundation

for robotics systems, upon which problem-specific systems may be built.

v

To my wife Eileen,

without you nothing would be possible, because of you everything is within reach.

vi

Contents

Abstract iv

List of Tables xi

List of Figures xii

List of Acronyms and Abbreviations xiv

Acknowledgements xvii

1 Introduction 1

1.1 Object-Centric Perception . 2

1.2 The Bayesian Eigenobject Framework for 3D Object Representation . . . 8

1.2.1 Organization and Contributions 9

2 Background 11

2.1 3D Object Representations . 11

2.1.1 Voxels . 12

2.1.2 Distance Fields . 13

2.1.3 Surface Meshes . 15

2.1.4 3D Pointclouds . 16

2.1.5 Parametric Models . 17

2.1.6 Parts-Based Representations . 17

2.1.7 Multiview Representations . 18

2.2 Segmentation . 19

vii

2.3 Classification . 20

2.4 Pose Estimation . 22

2.5 3D Shape Completion . 23

2.6 Integrated Approaches . 26

3 Bayesian Eigenobjects 27

3.1 Background: Principal Component Analysis 28

3.1.1 Variational Bayesian Principal Component Analysis 29

3.2 Overview . 30

3.2.1 Class Models: Eigenobject Construction via VBPCA 31

3.2.2 Object Classification . 32

3.2.3 Pose Estimation . 34

3.2.4 Partial Object Completion . 35

3.2.5 BEOs: Joint Pose, Class, and Geometry Estimation 37

3.3 Experimental Results . 39

3.3.1 Classification and Object Completion 40

3.3.2 Pose Estimation . 43

3.3.3 Joint Pose, Class, and 3D Geometry Estimation 44

3.3.4 High Resolution Output and Limited Training Data 45

3.4 Discussion . 47

4 Hybrid Bayesian Eigenobjects 48

4.1 Introduction . 48

4.2 Overview . 49

4.2.1 Learning a Projection into the Subspace 50

4.2.2 Input-Output Encoding and Loss 53

4.3 Experimental Evaluation . 54

viii

4.3.1 Classification . 56

4.3.2 Pose Estimation . 56

4.3.3 3D Completion . 57

4.3.4 Inference Runtime Performance 59

4.3.5 Pure Classification Evaluation 60

4.3.6 Pix3D Evaluation . 61

4.4 Discussion . 63

5 Probabilistic Pose Estimation with Silhouette Priors 64

5.1 Introduction . 64

5.1.1 Background: Mixture Density Networks 65

5.2 Predicting Pose Posteriors . 67

5.2.1 Using Predicted-Shape Priors for Predicting Pose Distributions . . 67

5.2.2 Pose Priors from Shape and Segmentation 69

5.2.3 Sampling Pose Estimates . 70

5.3 Experimental Evaluation . 72

5.4 Discussion . 76

6 Conclusion 78

6.1 Example BEO Application: Grounding Natural Language Descriptions to
Object Shape . 78

6.1.1 Learning a Joint Language and Shape Model 80

6.1.2 Language Grounding Experiments and Results 81

6.1.3 Picking Objects from Depth Observations and Natural Language
Descriptions . 83

6.2 Future Work . 85

6.2.1 Multimodal Input . 85

6.2.2 Joint Segmentation . 86

ix

6.2.3 Refining Estimates via Multiple Observations 86

6.2.4 Detecting Perception Failure . 87

6.2.5 Modeling Articulated and Deformable Objects 88

6.3 Final Remarks . 88

Bibliography 91

Biography 101

x

List of Tables

3.1 ModelNet10 classification accuracy. 42

4.1 ModelNet10 classification accuracy. 55

4.2 Comparison of mean runtimes. 59

4.3 EfficientNet classification comparison. 61

4.4 Pix3D shape completion performance. 62

4.5 Discretized Pix3D pose estimation performance. 62

5.1 ShapeNet pose estimation performance—mean error and runtime 73

5.2 ShapeNet pose estimation performance—gross-error incidence rate 73

5.3 Discretized Pix3D pose estimation performance. 76

6.1 Object Retrieval Results (Percent Correct) 83

xi

List of Figures

2.1 The Utah Teapot represented using voxels. 12

2.2 The Utah Teapot as a signed distance function. 14

2.3 The Utah Teapot in mesh form. 15

2.4 The Utah Teapot represented as a 3D pointcloud. 17

2.5 A parametrically generated 3D sphere. 18

2.6 A parts-based mesh model of the Utah teapot. 18

2.7 A multiview depiction of the Utah teapot. 19

3.1 A high-level overview of the BEO process. 30

3.2 A collection of aligned and voxelized cars. 31

3.3 An example EDT (right) of a 2D square (left). 39

3.4 Completion errors and query time. 40

3.5 A sampling of BEO object completions. 41

3.6 Pose estimation error for BEOs and an ICP baseline. 43

3.7 Full system performance. 44

3.8 Example BEO Completions. 45

3.9 Example high-resolution completion from a small training dataset. 46

4.1 Overview of the HBEO framework. 51

4.2 The architecture of HBEONet. 52

4.3 Pose estimation error in 3-DOF. 57

4.4 3D completion error. 57

xii

4.5 Sample completions from the ModelNet10 test set. 58

5.1 Ill-posed regression example. 67

5.2 Example output of HBEO-MDN net evaluated on a car. 71

5.3 Mean pose error. 74

6.1 An overview of our language grounding system. 79

6.2 View-transfer experiment example. 82

6.3 Our language grounding system on the Baxter robot. 84

xiii

List of Acronyms and Abbreviations

2D Two Dimensional

3D Three Dimensional

AI Artificial Intelligence

AMT Amazon Mechanical Turk

BEOs Bayesian Eigenobjects

BPCA Bayesian Principal Component Analysis

CNN Convolutional Neural Network

CPU Central Processing Unit

DF Distance Field

DNN Deep Neural Network

DOF Degrees of Freedom

EDT Euclidean Distance Transform

ELU Exponential Linear Unit

xiv

EM Expectation-Maximization

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

GPS Global Positioning System

GPU Graphics Processing Unit

HBEO Hybrid Bayesian Eigenobjects

ICP Iterative Closest Points

LSTM Long Short-Term Memory

MAP Maximum a Posteriori Estimation

MDN Mixture Density Network

MLE Maximum Likelihood Estimation

MV Multivariate

PCA Principal Component Analysis

PDF Probability Density Function

PPCA Probabilistic Principal Component Analysis

RAM Random Access Memory

RCNN Region-Based Convolutional Neural Network

RGB Red, Green, and Blue Image

xv

RGBD Red, Green, Blue, and Depth Image

ROS Robot Operating System

SDF Signed Distance Field

SO Special Orthogonal Group

TSDF Truncated Signed Distance Field

USB Universal Serial Bus

VAE Variational Autoencoder

VBPCA Variational Bayesian Principal Component Analysis

xvi

Acknowledgements

Thank you to my fantastic advisor George; the most supportive mentor a young researcher

could ask for. George’s emphasis on curiosity, scientific rigour, and chasing big problems

has helped shape me into the scientist I now am. His ingenuity, insight, and thoughtfulness

has been an inspiration. George is quick to celebrate the success of others, and patient

when ideas fail; he is a truly wonderful scientist to work beside and continuously inspires

the best in his students.

To Carlo and Ron, thank you both for being my mentors. You taught me what it means

to be a researcher and you ignited my interest in robotics. If it wasn’t for the patience,

kindness, and attention you both afforded me, I would not be where I am today.

I owe a debt of gratitude to my wonderful committee, Carlo, Stefanie, and Katherine.

Thank you for your comments, invaluable feedback, and support.

Thank you to the wonderful members of the IRL lab, both at Duke University and at

Brown: Barrett, Cam, Lauren, Ben Matt, Yuu, Andrew, Branka, and Garrett. Thank you as

well to my other wonderful collages and collaborators, Ergys, Cassi, Jason, Nakul, Vanya,

Eddie, and Thao. I benefited hugely from their insights, discussions, and keen intellects.

Thank you to the wonderful computer science department at Duke University; I count

myself extremely fortunate to be surrounded by such amazing people.

Thank you to my wonderful and supportive parents, including Anne, you have been

pillars of advice, love, and support. Thank you as well to my little brother, Royden, for

being wonderful. Thank you to Eileen, you are my one.

xvii

This research was supported in part by DARPA under agreement number D15AP00104.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation thereon. The content is solely the re-

sponsibility of the authors and does not necessarily represent the official views of DARPA.

xviii

1

Introduction

The recent proliferation of generally capable and relatively inexpensive mobile manipula-

tion platforms represents a golden opportunity to finally realize the promise of robotics:

reliable and versatile robots operating autonomously in our homes, offices, hospitals, and

public spaces. These general purpose robots—long a dream of robotics researchers—must

be able to operate in unstructured environments that were not explicitly designed with

robots in mind. Common examples of desired functionality include robots that can make

tea, robots that can fetch a snack from the corner store, robots that can prepare a meal, and

robots that can organize a home. Many hurdles exist which must be overcome to realize this

vision: hardware (and energy sources) must develop further in capability and come down

in price, planning algorithms must progress to allow nuanced and provably-safe operation

in complex environments, learning algorithms must advance to allow knowledge to better

generalize from previously completed tasks to new ones, and human-robot communication

must improve to allow robots to better take instructions from, and provide transparent

feedback to, non-domain-expert humans.

One of the most critical of these hurdles is perception, the conversion of sensor input

into useful representations of the robot’s environment. Perception generally consists of

1

amalgamating data from RGB cameras, infrared or laser based depth sensors, and poten-

tially more exotic modalities such as GPS signals, haptic sensors, temperature sensors,

microphones, and ultrasonic sensors. Because modern robots operate using a software

stack model, with multiple encapsulated modules deriving their input from the output of a

precedingmodule and providing input tomodules further up in the stack, reliable and robust

perception—which is one of the lowest modules in the stack—is critical for the success of

the entire system; a robot with perfect planning algorithms will still fail catastrophically if

given a poor state-representation based on faulty perception. Without significant advances

in perception, robots will never be able to operate in unstructured environments, regardless

of the advances made in other areas of research.

1.1 Object-Centric Perception

A key differentiator of robotics is the ability for systems to affect the physical world; unlike

other intelligent agents, robots taking actions physically interact with their surroundings.

In indoor environments, most of this interaction will occur with objects: robots must

determinewhen and how to grasp, push, avoid, andmanipulate nearby objects to accomplish

their goals. A useful general purpose object-centric perception system must thus support

these interactions in real-world settings. Specifically, several key attributes are necessary

for such a perception system.

Applicability to Novel Objects

If robots are to operate in human-centric environments, their perceptual systems must

accommodate the huge object variation that exists in those settings. As of April 2019,

Amazon.com sells over 40 million distinct objects, almost all of which could reasonably

be encountered in a household setting. It is therefore unreasonable to assume that objects

in a robot’s environment have been previously encountered, regardless of whether the

particularities require a known 3D model, 2D silhouette, or that the object is a member of

2

a previously trained-upon dataset. Instead, robot perception must assume that encountered

objects are all previously unseen and rely upon generalizing from previously observed

objects that are similar, but not identical.

Applicability to Partially Observed Objects

Robots, by virtue of being mobile and able to effect change in their surroundings, have the

unique advantage of active sensing—the ability to influence their sensor inputs by taking

actions that change their environment or their position in that environment. Nevertheless,

in realistic scenarios, it is infeasible to expect that a robotic agent fully observe all objects

it may wish to reason about or interact with. It is also unrealistic to expect a robot to

traverse its entire environment, manipulating each object of interest to observe it from all

angles. Instead, object-centric perceptual systemsmust operate on partially observed input;

robots obtain sensor information from a single snapshot in time (such as a single RGB or

depth image) and are required to reason based on that limited input. Ideally, additional

information could be amalgamated over time, fusing multiple sensor-snapshots obtained

from multiple spatial and temporal locations.

Applicability to Cluttered Environments

Clutter occurs when multiple objects are present in close vicinity to each other, often

physically making contact; in many household areas, such as inside cabinets and drawers,

object clutter is the norm. Clutter is a particularly challenging scenario because objectsmay

have significant occlusionwith arbitrary portions being observable; in adversarial instances,

reasoning about objects in cluttermay require active sensing—imagine attempting to reason

about an object with only a tiny fraction visible—to displace occluding objects. Clutter is

also closely related to the task of segmentation: given an environment containing multiple

objects, determine which portions of the environment belong to individual object instances.

3

Classification of Objects by Semantic Type

Object classification, long a mainstay of computer vision in the 2D RGB setting, is critical

for many robotic tasks. It is necessary for language-based human robot interaction as

humans tend to rely heavily on semantic labels when communicating requests, for example:

“Bring me the television remote”. Without the ability to ground observed objects to class-

labels, these sorts of interactions are infeasible. Semantic class also provides a natural

distillation for many useful affordances such as “cups hold liquid”, “screwdrivers turn

screws”, and “light-switches control lights”. Furthermore, some notions such as pose only

make sense when conditioned on a particular class. It makes little sense to say that a

generic object is oriented upwards, but it is unambiguous to say that a cup is upright.

Determination of 3D Pose

Category-level pose estimation—the task of determining the orientation of a previously

unseen object, relative to a canonical pose—is useful for many common tasks. For instance,

a robot that sets a table may wish to place items upright, a robot using a remote control may

require it be oriented at the device it controls, and a robot taking instructions from a human

may need to decipher explicit pose commands. As alluded to previously, pose estimation

of novel objects relies on an explicit notion of category, to ensure that “canonical pose” is

well defined, in contrast to the more common task of instance-based pose estimation, which

seeks to find an alignment between a known object model and an observation of that object

in the world. While full six degree of pose estimation, predicting an object’s translation

and orientation relative to the robot, is necessary for robust perception, in the robot-specific

setting—where robots are virtually always equipped with a depth-sensor—estimating the

translation of an arbitrary object is straightforward given an estimate of its 3D shape and

three degree of freedom orientation.

4

Determination of 3D Shape

3D object shape is directly applicable to many robotic planning and manipulation tasks

including grasping objects, avoiding objects, estimating physically-grounded object affor-

dances, understanding and generating natural-language descriptions of objects, and storing

objects (packing). Critically, the ability to estimate the 3D shape of novel and partially

observed objects allows a robot to perform shape-dependent tasks without exhaustively

observing all of the objects it may interact with. For example, given the task of “fetch the

pot with a long curved handle”, a robot without the ability to estimate 3D shape would

be required to observe all possible pots in its environment from many viewpoints before

being confident it had not missed a pot satisfying the query. Additionally, if the 3D shape

estimate is viewpoint invariant (conditioned on object class), the problem space for many

vision tasks becomes dramatically smaller—for example a 3D pot-handle detector need not

be trained across all possible viewpoints as in the 2D case.

Confidence Measures and Probabilistic Output

Robots, with their multi-stage reasoning pipelines and ability to take actions that affect

the physical world, have unique advantages and challenges. Because gross failures in

the perception portion of the reasoning pipeline tend to be catastrophic to later stages

(such as a planning module) when naively trusted, prediction confidence measures are

especially important in the robot setting. Given such measures, filtering approaches—such

as Bayesian filters (Chen, 2003)—can dramatically improve belief estimates and overall

robot reliability by allowing a robot to act conservatively in the face of high uncertainty.

Additionally, if perceptual confidence is sufficiently poor, robots possess the unique ability

to take action to actively influencing their future sensor returns (for example, obtaining a

new view of a particular object).

Indeed, imperfect or biased predictions are still useful in robotics; noisy solutions are

5

useful because they provide valuable hypotheses about that world which may be verified

and refined through additional interaction. Humans, for instance, commonly search for

objects in their environment and examine multiple items, rejecting several, before finding

one that is suitable. While a human’s ability to infer object properties is not perfect, it

is good enough that people must generally consider only a very small number of objects

before finding one with the characteristics they seek. To enable these sorts of behaviors in

robots, it is thus critically important that robot perception be probabilistic, providing not

just point-estimates but full probability distributions.

Extensibility

Current robot hardware is far more versatile than the software powering it. While a

modern mobile manipulation platform (e.g. the Kinova Movo) is physically capable of

diverse household tasks such as setting the table, washing dishes, and cooking dinner,

our ability to perform these tasks in arbitrary environments is hampered by software.

The state-of-the-art in robotics may be able to perform one of these tasks in a specific

environment, but would not generalize to a novel setting with new layouts and objects,

to say nothing of performing a new task that had not been explicitly considered by the

designers. Currently, if a robot’s operating environment—or task—changes, its perception

pipeline must generally be retrained from scratch. A first step in overcoming this state

of affairs is extensible perception, with foundational modules designed to be general and

problem-specific perception built on top of the foundational portions. This approach

allows much of the perception pipeline to be retained when a domain or task changes,

resulting in less data and fewer computational resources being required to adapt a robot to

a new setting. In the context of object-centric perception, object type, pose, and 3D shape

are intrinsically foundational, allowing task-specific perception modules to be constructed

from these building blocks. For instance, a grasping predictor might use 3D shape and

pose estimates, an affordance estimator might use 3D shape and object category, and a

6

system that disambiguates between objects based on natural language descriptions might

use all three. In this way, a large number of specific perceptual capabilities can be created

from a low-level pretrained object representation—with limited data and without requiring

retraining of the entire perception system.

Efficiency

Robots, operating in and amongst humans, must be reactive: they ideally need to respond to

commands and changes in their environment at least as fast as their human compatriots do.

Practically speaking, routine decision making should be realtime, meaning that in nominal

circumstances the time required for a robot to accomplish a task should be dominated by the

physical constraints of the system, not by processing time. A robot able to fetch a drink only

after several minutes of computation is far less desirable than one that begins retrieving the

beverage immediately. This has several implications for robot perception, the first being

general efficiency. If a method requires many seconds of computation when running on

on-board hardware, it is likely not useful in most circumstances. The second implication

is that it may be permissible to take a long time to solve “hard” problems if the nominal

case is fast. In an object-representation setting, highly unusual objects might require

additional computation to process, relative to more typical items. As a result, any-time (or

variable-time) algorithms become highly valuable in robot settings; inexact estimates of

object properties often suffice for a given task and it is a waste, computationally, to refine

estimates more than required. If a robot is instructed to hand a human an upright cup,

it may not necessary to estimate pose to within a single degree of resolution, a relatively

coarse pose estimate would suffice. Conversely, if a robot is packing a suitcase, it may

indeed need to carefully reason about precise object positions and orientations. Variable

time algorithms are a perfect fit for these scenarios, allowing initially rough estimates to

be refined when needed and when the available computational budget allows.

7

1.2 The Bayesian Eigenobject Framework for 3D Object Representation

This thesis presents a novel unified framework for representing 3D objects called Bayesian

Eigenobjects (BEOs). BEOs learn, from a collection of 3D training meshes, a low-

dimensional linear subspace containing the 3D shapes of objects of interest. Our work

uses Variational Bayesian Principal Component Analysis (Bishop, 1999b) as the basis for

a multi-class object representation; by learning a compact basis for each class, we are

able to store previously encountered objects efficiently by retaining only their projection

coefficients. Furthermore, novel objects can be localized, classified, and completed by

projecting them onto class basis and then projecting back into object space. Because we do

not query a database of individual objects, our method scales gracefully with the number

of objects in each class, requiring a constant amount of computation for projection and

reconstruction even as the number of previously encountered data-points increases, and

can accommodate objects of higher resolution than competing methods.

The BEO framework produces a pose-invariant shape representation, a disentangled

three degree of freedom pose estimate, and a category prediction for partially observed

and novel objects. The current version of our method, HBEO-MDNs, produces a single

3D shape estimate and a distribution over possible classes and object poses—from input

consisting of a single segmented depth-image—in realtime. HBEO-MDNs retain the linear

subspace-based object representation used by BEOs but replace explicit projection onto

that space with a learned convolutional prediction. This decoupling of subspace generation

and projection allows for nuanced nonlinear reasoning leveraging complex learned features,

provides shape, pose, and class prediction directly from depth images, and, as the subspace

no longer directly constrains the projection estimate, allows the subspace to be loose,

increasing the expressive power of the method. HBEO-MDNs also provide variable-time

category-level pose estimation, producing increasingly accurate pose estimates with larger

time budgets.

8

1.2.1 Organization and Contributions

This document is organized as follows:

• (Chapter 2) We discuss general background in the area of object-centric perception

including common 3D object representations and existing approaches to classifi-

cation, category-level pose estimation, and 3D completion of partially observed

objects.

• (Chapter 3) We construct a novel compact representation for 3D objects, BEOs,

that disentangles 3D shape, pose, and class. BEOs learn an explicit low-dimensional

space representing 3D objects of interest and perform inference in this space. Specif-

ically, we propose employing a variational approximation to Principal Component

Analysis to provide regularization to the learned object-subspace and allowing it to

better generalize to novel objects, even in the case of few training examples.

• (Chapter 3) We provide a method for applying BEOs to partially observed 3D voxel

objects, allowing shape, pose, and class to be estimated jointly given a novel and

partially observed query object. This method explicitly minimizes L2 voxel-space

error between a partially observed object and the corresponding portion of its 3D

shape estimate.

• (Chapter 4) We extend BEOs to allow prediction given only a single depth-image.

This extension also produces a system capable of running in realtime and dramatically

improves the quality of the class, pose, and shape predictions. Our BEO extension,

Hybrid Bayesian Eigenobjects (HBEOs) replaces the linear subspace-projection step

of BEOs with a convolutional network and achieved state-of-the-art pose estimation

and 3D completion from depth performance at the time of its publication. HBEOs

are extremely fast, performing inference at over 60hz on a single consumer GPU.

9

• (Chapter 5) We propose an improved category-level pose estimation process that

leverages the unique capabilities of joint pose and 3D shape estimation. This system,

HBEO-MDN, predicts a distribution over poses, instead of a single pose, and uses

agreement between observed input and predicted 3D shape and pose to construct an

efficient pose-prior. Because this prior is computed in 2D input-image space it is

lightweight to compute and the resulting variable time system is still able to run in

realtime and further improves pose-estimation performance relative to pure HBEOs.

HBEO-MDNs are currently the state-of-the-art method for category-level 3DOF

pose estimation. We show via an ablation analysis that both of these contributions,

multi-modal distribution prediction and shape-pose consistency priors, contribute to

the performance of HBEO-MDNs.

• (Chapter 6) We provide a discussion of the progress made in recent years on robot

object-centric perception as well as the challenges that must still be overcome to

realize truly general-purpose robot perception, including the applicability of the

HBEO framework to other areas of robot perception. As an initial example, we

demonstrate the suitability of the learned pose-invariant shape representation to serve

as an extensible building block for robotic tasks by incorporating it in a language

grounding system which disambiguates between multiple objects based on natural

language descriptions. Wewere able to train the language portion of this system from

a small amount of language data from only a single viewpoint and generalize to novel

views without additional training and with almost no performance loss compared to

a system trained more conventionally from a variety of object views.

10

2

Background

Object-centric perception is a broad field, spanning 3D object representation, classification,

pose-estimation, and segmentation. This area has advanced rapidly over the past decade,

largely due to advances in deep learning, inexpensive depth sensors such as the Microsoft

Kinect, and the rapid advance of affordable computational hardware, particularly GPUs.

This chapter discusses the individual components of 3D object-centric perception in

more detail as well as relevant related work. We first introduce common 3D object

representations before discussing relevant object-centeric perception tasks and integrated

approaches capable of jointly solving these tasks.

2.1 3D Object Representations

Multiple representations have been proposed to model 3D objects, each with inherent

advantages and disadvantages. We provide a brief overview of the most common and use

each to visualize the Utah Teapot (Crow, 1987).1

11

Figure 2.1: The Utah Teapot represented using voxels.

2.1.1 Voxels

Voxel representations extend the notion of a 2D image, containing pixels, to three dimen-

sions by modeling an object as a volumetric image defined on a rectangular 3D grid of

voxels. In the same way that an image pixel can be identified by its row and column, a

voxel can be identified by its 3D index (Kaufman, 1994). Similar to an image pixel, each

voxel may store a real number or, if the voxel model is multi-channel, a vector, perhaps

describing the voxel’s color. One of the most common varieties of voxel representation

is the occupancy grid, which restricts voxel elements to binary values. One difficulty en-

demic to voxel representations is rotation; because voxel coordinate systems and cells are

rectangular, rotation (in non-90◦ increments) requires interpolation. As a result, repeated

rotations of a voxel model will degrade the object and it is generally better to convert a

voxel model into a more rotation-friendly representation (such as a dense point cloud) prior

to rotation.

Voxel representations are dense, explicit, and have a fixed size. Because they are

1 Except in the case of the parametric representation where we illustrate a parametric 3D sphere.

12

dense, voxels unambiguously represent interiors of objects, allowing hollow items to be

distinguished from solid ones. However, this density is a double-edged sword; voxel repre-

sentations are often large, using significant amounts of storage to represent homogeneous

regions of occupied or unoccupied space. Some hierarchical voxel representations, such as

octrees (Laine and Karras, 2010), exist however the resulting representation is no longer a

fixed size. Voxels are explicit in the sense that they straightforwardly allow intersection and

occupancy queries with little additional computation required. Determining if a location

in space contains a portion of the object is trivial—simply index into the correct voxel

location and evaluate that element. In robot settings, this is quite valuable since collision

checking—a critical component of trajectory planning and object manipulation—is one of

the most commonly performed planning operations (Laumond et al., 1998). Voxel-based

occupancy grids are thus one of the most commonly used representations in robotics.

Finally, while modern machine learning has developed techniques capable of performing

inference on variable-sized data, particularly in the Natural Language Processing domain

with the advent of Recurrent Networks (Mikolov et al., 2010), it is generally more straight-

forward to operate on fixed-size representations. The majority of inference techniques

assume fixed-size input, making voxel representations an appealing prediction target for

approaches generating 3D shapes.

2.1.2 Distance Fields

Distance fields (DFs) represent an object using the function f (x) = d(x, ∂o) where o is the

set of all points in—or on the surface of—the object and d(x, ∂o) denotes the distance from

3D point x to the nearest point on the surface of o. This representation is surface-based,

defining an object by proximity to the closest object-boundary point. Signed distance fields

(SDFs) are a slight modification of distance fields which preserve the sign of the distance,

13

Figure 2.2: The Utah Teapot as a signed distance function.

explicitly denoting interior and exterior points:

f (x) =

{
max(−d(x, ∂o), α) if x ∈ o
min(d(x, ∂o), β) otherwise.

The signed formulation is useful because it explicitly represents volume; any point such

that f (x) ≤ 0 is a part of the object. If α > −∞ or β < ∞ the representation becomes a

Truncated Signed Distance Field (TSDF), where values larger than β and smaller than α are

clipped. Generally, a closed form representation of f (x) is difficult to obtain and a sampling

approach is used instead: given a rectangular 3D grid, similar to a voxel representation,

each cell’s distance to the object’s surface is evaluated and the resulting (signed) distance

is stored in that cell. The result is a special case of a generic voxel approach, instead of

storing a Boolean value indicating occupancy, distance to the object’s surface is stored.

Such a distance field may be trivially converted into a binary voxel representation by

setting all positive values in the field to False and all 0 or negative values True. Distance

fields are especially appealing when comparing noisy object models, or object models

with noisy alignments, due to their spatial smoothness. In a binary voxel representation,

14

slightly misaligned identical objects may seem significantly different, given an element-

wise comparison, if they contain thin structures. A DF, or (T)SDF approach reduces this

effect because small translations result in a small perturbations of distance.

2.1.3 Surface Meshes

Figure 2.3: The Utah Teapot in mesh form.

A surface mesh, or polygon mesh, represents an object by modeling its surface as

a collection of polygons organized via a graph structure which specifies a topological

relationship between points. The most typical mesh formulation consists of triangles

induced via vertices and edges in the graph, where edges correspond to triangle sides

and vertices in the graph are triangle vertices. Mesh variants employing other types of

polygons also exist and some mesh representations utilize multiple types of polygons to

represent a single shape. It should be noted that mesh representations are generally not

fixed size as it is common for objects to use varying numbers of polygons depending on

their geometric complexity. Surface meshes are also irregular: large numbers of small

polygons may be used in areas of high-frequency detail and more homogeneous surface

portions may be represented with a relatively small number of larger polygons. Because

15

they represent object surfaces, and not volumes, meshes tend to be compact and lightweight

relative to volumetric representations at the cost of being unable to distinguish between

filled and hollow object interiors. Surface mesh models are well-suited to transformations

because simply multiplying vertex coordinates by a rotation and translation matrix results

in a transformed model with no quality degradation. Resizing a mesh model is also

straightforward; the model is centered by subtracting the mean vertex coordinate, µ, from

all vertices, each vertex coordinate is then multiplied by the desired scale factor, and the

mesh is translated back to the proper location via the addition of µ to every vertex.

2.1.4 3D Pointclouds

3D pointclouds represent an object as a collection of unordered and unstructured points,

p = {x, y, z}, in 3D space. Point cloud representations are commonly constructed by

projecting each depth-pixel in a range image into 3D space. One of the primary advantages

of the pointcloud representation is its flexibility; it is straightforward to project points

from multiple sensors at various spatiotemporal locations as long as the transform between

each of the sensing locations is known. Pointclouds also have variable density and do not

constrain the size of the world-space or require it be known a priori. Voxel representations

can be converted to dense pointclouds by sampling a point at the center of every voxel

while mesh representations can be converted to a surface pointcloud representation by

including vertices as points and sampling additional points from the faces. A drawback of

pointclouds is their lack of inter-point structure: there is no way to express that two points

in a pointcloud are physically connected. As a result, occupied regions of an object must

be densely populated with points and ambiguities can still arise when an object has small

openings in its structure relative to the density of sampled points. Like meshes, pointcloud

representations are straightforward to rotate and translate; however, resizing pointclouds

can require point interpolation to preserve density.

16

Figure 2.4: The Utah Teapot represented as a 3D pointcloud.

2.1.5 Parametric Models

Parameterized surface models directly represent an object via its surface—defined by a

paramaterized function f (θ). Parametric models have the advantage of being extremely

compact and highly precise. Because they are not discrete, parametric models are capable

of infinite resolution and similarity transformations do not corrupt fine details of the model.

Parametric models are not always straightforward to construct; for complex objects such

as human bodies (Cheng et al., 2018), they are typically created manually, making them

somewhat cumbersome to use as a general-purpose object model. For instance, a 3D sphere

with radius r centered at {x0, y0, z0} may be defined as the set of all points satisfying

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = r2

where θ = {x0, y0, z0, r}.

2.1.6 Parts-Based Representations

Parts-based representations model an object as a graph of simpler object models (parts).

This graph specifies how parts are connected to form the entire object. One advantage of

17

Figure 2.5: A parametrically generated 3D sphere.

parts-based approaches is their suitability for modeling articulated objects; by representing

each rigid portion of an object as a distinct part, articulation is then defined as themovement

(typically—but not always—rotation) of collections of parts. A common example of this

type of representation is the Unified Robot Descriptor File used in the Robot Operating

System (ROS) (Quigley et al., 2009). While in theory each object part could be any object

representation, in practice surface mesh and parametric models are the most commonly

used representations for parts-based approaches.

Figure 2.6: A parts-based mesh model of the Utah teapot.

2.1.7 Multiview Representations

Multiview object representations (Korn and Dyer, 1987) implicitly model a 3D object’s

shape via a collection of 2D images from various viewpoints. The most typical multiview

18

formulation uses a fixed number of discrete viewpoints, creating a compact fixed-size

representation. Furthermore, because typical robot sensors such as RGB cameras and

depth-sensors produce 2D images, multiview object representations directly correspond

to sensor measurements obtained from the viewpoint locations. As a result, multiview

representations are extremely fast to construct and a convenient choice for recognition

tasks because features extracted from the multiview representation are directly comparable

to features obtained from a sensor observation. Recently, mutiview representations have

gained popularity for 3D classification tasks; see the following section for more details.

Figure 2.7: A multiview depiction of the Utah teapot.

2.2 Segmentation

Segmentation is the task of assigning group labels to sensor data; themost common example

being assigning per-pixel membership in an RGB or depth image, although segmentation

methods operating on pointclouds have also been proposed (Nguyen and Le, 2013; Wang

et al., 2018). While early image-based segmentation was generally unsupervised, often

treating the image as a graph and constructing a segmentation based on pixel similarity

(Felzenszwalb and Huttenlocher, 2004; Zhang et al., 2008), modern segmentation methods

are usually trained in a supervised fashion with individual segments corresponding to

semantically meaningful entities. Segmentation can be either instance-level or category-

level (also referred to as semantic segmentation). Category-level segmentation maps

19

every sensor input to a semantic category label (Chen et al., 2017; Lin et al., 2017;

Yu et al., 2018), for example all pixels in an image corresponding to cars are mapped

to the same label. Category-level segmentation does not disambiguate between multiple

instances of the same category. Conversely, instance-level segmentation (Zhang et al., 2016;

Liang et al., 2017; He et al., 2017) assigns sensor data a distinct label for each category

instance; an instance-level segmentation algorithm would segment an image consisting

of 10 cars and 20 pedestrians into 30 distinct segments (if we ignore background). For

robot object-centric perception, instance segmentation is generally preferable to category-

level segmentation, particularly when observing cluttered scenes. One of the most widely

employed instance-level segmentation algorithms is MASK-RCNN (He et al., 2017), a

region-based convolutional network designed to segment RGB images. Recently, a unified

segmentation paradigm, panoptic segmentation (Kirillov et al., 2019), has been proposed

which combines elements of semantic and instance segmentation by predicting individual

masks for object instances but single semantic masks for non-object regions of the scene

(for example grass). Thus, under a panoptic segmentation regime, every pixel in a scene is

assigned both a semantic label and an instance label.

2.3 Classification

Object classification is the task of determining an object’s semantic type given a sensor

observation of that object. 2D classification, which performs classification based upon 2D

input, is extremely well studied (Lowe et al., 1999; Gehler and Nowozin, 2009; Bergamo

and Torresani, 2010; B. Browatzkiand and Wallraven, 2011; Krizhevsky et al., 2012; He

et al., 2016; Hu et al., 2018; Tan and Le, 2019) and consists of predicting an object label

given a single color or depth image. These systems are trained in a supervised fashion

on a set of training data and evaluated on a distinct testing dataset; they are designed to

determine the class of novel objects. Classification methods historically used handcrafted

20

image-level features (Viola et al., 2001; Dalal and Triggs, 2005) which were extracted and

fed to supervised machine learning models such as support vector machines (Joachims,

1998) or random forests (Breiman, 2001). These methods are fairly effective for small

datasets where the structure imposed by human-generated features helps ensure learning

generalizes from little training data, but their relative efficacy tends to diminish in data-

rich settings. A drawback of fixed features is lack of flexibility; it is difficult for even

the most qualified humans to construct ideal features and using a fixed set of suboptimal

input features can destroy useful information. It is thus desirable, when there is sufficient

training data available, to learn features directly from the data. Modern classification

approaches (Krizhevsky et al., 2012; He et al., 2016; Hu et al., 2018) do just this: making

use of convolutional architectures to learn a hierarchically applied series of image filters

directly from a—typically large—set of training data. These approaches have been hugely

successful, achieving top-1 accuracy of over 84 percent across 1000 possible classes in the

recent 2018 ImageNet challenge (Russakovsky et al., 2015; Huang et al., 2018).

In the last few years 3D classification has also gained considerable research atten-

tion. Modern approaches to 3D object classification rely on convolutional deep networks

trained from full 3D models of objects. Broadly speaking, most current 3D classification

approaches fall into two categories: multiview and volumetric. Volumetric approaches

explicitly represent 3D objects as volumes (generally via voxels) (Maturana and Scherer,

2015; Qi et al., 2016; Shi et al., 2015; Wu et al., 2015; Su et al., 2018) while multiview

approaches represent a 3D object as a series of 2D or 2.5D views (Su et al., 2015a; Bai

et al., 2016; Su et al., 2018; Ma et al., 2019). Both methods have shown promising results

and research has been conducted to combine the two representations (Hegde and Zadeh,

2016). Both 2D and 3D classification algorithms have progressed to the point of being

highly-reliable—when sufficient training data is available—often outperforming humans

in this setting. These methods work less well when there is a paucity of training examples

and few-shot and zero-shot classification remains an open area of research (Chen et al.,

21

2019).

2.4 Pose Estimation

Pose estimation consists of determining an object’s position and orientation in the world.

With rigid objects, pose estimation generally consists of either a three degree of freedom

orientation estimate or a six degree of freedom orientation and position estimate. Most

pose estimation methods are single-instance, estimating the pose of a known object. In

these settings, when a full 3D model of the object is available, techniques such as Iterative

Closest Points (Besl and McKay, 1992), Bingham Distribution Pose Estimation (J. Glover

and Bradski, 2011), and DNN approaches (Tulsiani and Malik, 2015; Xiang et al., 2017)

have shown to be effective. Instance-based pose estimation approaches generally fall into

one of three categories: inference-based, template-based, and matching-based. Inference-

based approaches attempt to directly predict the pose of a known object, typically using

a supervised learning algorithm. Because there is no training-testing distribution shift,

these approaches (Tulsiani and Malik, 2015; Xiang et al., 2017; Li et al., 2018a) are

largely immune to the common supervised learning problems of overfitting and lack of

generalization. Template-based approaches perturb objects of interest, offline, and generate

templates from these perturbations. To perform pose-estimation, these methods (Liu et al.,

2012; Bakry and Elgammal, 2014; Rios-Cabrera and Tuytelaars, 2013) then extract features

from the observation and match it to the most similar template, producing a pose estimate.

Finally, matching-based approaches (Besl and McKay, 1992; Choi et al., 2012) attempt

to directly match an object with its 3D model, iterativly refining pose-estimates until a

(typically local) minimum error—between model and observation—is achieved. Some

approaches, such as DeepIM (Li et al., 2018b), blend inference-based methods with other

techniques to create hybrid systems.

These methods are not, however, designed to predict the pose of a novel object—they

22

work only when the observed object has been previously encountered. There has been

less work on category-level pose estimation—predicting the pose of novel objects given a

canonical notion of pose for each object category (Sun et al., 2018; Su et al., 2015b; Fidler

et al., 2012). Category-level pose estimation is significantly more challenging than its

instance-level counterpart because an exact model of the observed object unavailable. This

difficulty is exacerbated if an object has unusual shape or a category of objects possesses

significant shape variation. Most existing category-level pose estimation algorithms (Sun

et al., 2018; Su et al., 2015b) treat pose estimation as a classification problem, discretizing

orientations into discrete bins and predicting a particular pose bin. The current state-of-the-

art method for category-level pose estimation (Sun et al., 2018) is capable of discrete pose-

estimation into 15 degree bins with roughly 50 percent accuracy, insufficient performance

for reliable robot operation.

2.5 3D Shape Completion

3D object completion consists of inferring the full 3D geometry of a partially observed 3D

object. Initial work in this area focused on model repair; objects were mostly observed but

contained holes and other small patches of missing information. By exploiting surrounding

geometry and symmetry properties, these approaches could repair small gaps but were not

designed to patch large missing portions of objects (Attene, 2010). More recently, symme-

try exploitation methods have been proposed that rely on global-scale object symmetry to

estimate the shape of unobserved object regions (Schiebener et al., 2016; Song and Xiao,

2016). Unlike hole filling approaches, symmetry methods can reconstruct large missing

portions of objects but fail when when their symmetry heuristic is not applicable.

In robotics, database-based methods are highly popular. These approaches construct a

large database of complete, object scans; when a novel object is encountered, it is used as

a query into the database—the system attempts to retrieve an object in the database with

23

similar structure or features to the query. Commonly used features for matching include

local point features (B. Drost and Ilic, 2010), shape features (L. Nan and Sharf, 2012),

global features (Kim et al., 2013b), or a mixture of local and global features (Kim et al.,

2012; Li et al., 2015; Bore et al., 2017). Because the database explicitly contains high

quality models of object instances, extremely accurate information on the query object is

available if an exact match exists in the database. This is very effective for tasks such

as partially specified object completion (Li et al., 2015). A significant drawback exists,

however, if an exact match is not found; while some approaches still attempt to find a

nearest match in such a case (Li et al., 2015; B. Drost and Ilic, 2010), the results will

be poor if the query object is sufficiently different from any in the database. Because

instance-based database models are necessarily discrete—containing only a finite number

of exemplars—these models will yield poor results if coverage of the object space is

insufficiently dense. Furthermore, because the database is explicitly composed of training

examples, it necessarily scales with the size of the training input. On moderately sized

datasets this may not be an insurmountable issue, but it can become a problem as both

the size of the class model and query latency increase with the training size. Hybrid

approaches have also been proposed that attempt to perform shape completion locally and

use the completed object as a database query to obtain a final estimate (Dai et al., 2017),

but these methods require a large and dense object model database.

Parts-based 3D object representations—which represent objects via a dictionary of

parts and use single geometric structures to represent objects as a combination of pieces

(D. Huber and Hebert, 2004; R.B. Rusu and Hsu, 2010; Marini et al., 2006; Kim et al.,

2013a)—have some applicability to 3D shape completion as well. One advantage of

parts-based approaches is compactness—a shared dictionary of common parts means that

maintaining a database of all previously seen objects is unnecessary. Work exists that

proposes using symmetry and prior information to reconstruct hidden portions of objects

using arranged parts (Shen et al., 2012; Sung et al., 2015), but requires structured training

24

data that includes a parts list. Parts-based approaches tend work well when objects contain

similar parts arranged in differentways andwhen part information is available in the training

data, and poorly when there is more variation in a class and symmetry assumptions fail

to hold. Complex models consisting of numerous parts may also become computationally

intractable to reason about as the number of possible configurations is exponential in the

number of parts, so such models may need to be represented with low fidelity.

The current state-of-the-art in 3D object completion consists of deep regression meth-

ods. These approaches take as input a partially observed object, either from an RGB image

(Tulsiani and Malik, 2015; Kar et al., 2015; Choy et al., 2016; Tatarchenko et al., 2016;

Soltani et al., 2017; Tulsiani et al., 2017; Wu et al., 2017; Tatarchenko et al., 2017; Sun

et al., 2018), or partially-observed shape data (Wu et al., 2015; Dai et al., 2017). These

methods learn to map partially observed input to 3D shape via a supervised training regime

and produce either an explicit shape prediction—generally via voxels—in canonical pose,

or a multiview representation from a collection of fixed viewpoints (Tatarchenko et al.,

2016). A variety of objective functions have been suggested for use during network train-

ing, with the most common being the l2 loss, which for voxel-models is the Frobenius

norm in voxel space. Although adversarial losses have also been used (Wu et al., 2016),

using GAN-based architectures (Goodfellow et al., 2014), they have not shown significant

benefits over explicit reconstruction loss (Wu et al., 2017; Sun et al., 2018). While CNN

approaches have advanced the state-of-the-art in 3D shape completion, they tend to be

data hungry, requiring a large number of training examples, and can struggle with pro-

ducing high-resolution output, although Dai et al. (2017) attempt to address this issue by

maintaining an explicit database of known high-resolution objects which are used to refine

direct produced estimates, and Tatarchenko et al. (2017) propose a network architecture

which produces an octree-based voxel output, making direct high-resolution predictions

more efficient.

25

2.6 Integrated Approaches

Integrated approaches that performmultiple object-centric perceptual tasks simultaneously

have historically been quite rare but are slowly gaining attention. By combining multiple

perceptual tasks in a single module, redundant sub-tasks, such as feature extraction, can

be performed once, improving computation efficiency. It has also been demonstrated

that performing tasks such as category-level pose estimation and 3D shape completion

simultaneously can lead to better performance by encouraging consistent predictions and

forcing the learned features to better generalize (Sun et al., 2018). Examples of integrated

approaches include Render for CNN (Su et al., 2015b) which performs pose-estimation and

classification simultaneously, 3DShapeNets (Wu et al., 2015)which performs classification

and 3D completion simultaneously, and Pix3D which performs pose-estimation and 3D

shape completion simultaneously. Our work, BEOs and their extensions, are the first object

representation to simultaneously perform all three tasks with a single architecture. The

current iteration of BEOs—HBEO-MDNs—exhibit state-of-the-art category-level pose

estimation, 3D completion, and classification performance relative to other depth-image

based methods, are competitive with current RGB-based 3D completion methods, and

outperform existing work—of any input modality—on the task of category-level pose

estimation.

26

3

Bayesian Eigenobjects

We set out to design a 3D object representation with the goal of enabling the classification,

category-level pose-estimation, and 3D completion of novel objects from partial observa-

tions. Additional design goals include compact object representations, the capability to

produce high-resolution output, and the ability to learn from a small number (n < 20)

of object exemplars. To this end, we propose a novel 3D object representation, Bayesian

Eigenobjects (BEOs) , designed with these characteristics in mind. BEOs employ Varia-

tional Bayesian Principal Component Analysis (VBPCA) as the basis for a low-dimensional

multi-class object representation. By learning a compact basis for each class, we are able to

represent objects using their projection coefficients—a much more compact representation

than an uncompressed volume. With this representation, novel objects can be localized,

classified, and completed by projecting them onto class bases and then projecting back

into object-space. Our method scales gracefully with the number of objects in each class,

requiring constant per-class computation for projection and reconstruction even as the

number of previously encountered objects increases.

A key feature of our single, unified, object representation is the ability to perform

27

partial-object completion in 3D. Because objects in real environments are rarely completely

visible from a single vantage point, the ability to produce even a rough estimate of the

hidden regions of a novel object can be extremely useful. We applied our method to a

dataset of common 3D objects and were able to successfully estimate the rotational pose

of novel objects, reconstruct partially unobserved objects, and categorize the class of novel

objects. BEOs significantly outperform prior joint classification and completion work in

apples-to-apples comparisons, are significantly faster, and can also jointly estimate object

pose.

3.1 Background: Principal Component Analysis

Principal Component Analysis (PCA) is a widely used statistical technique for finding an

orthogonal basis for data with the first component laying across the dimension of maximum

variance (Wold et al., 1987).

Let X = {x1, x2, ..., xn} be a set of n data points of dimension d. PCA finds an

orthogonal basis, W, such that

xi =Wci + µ ∀xi ∈ X, (3.1)

where ci are the datapoint-specific coefficients for point i and µ is the empirical mean of

the data. For datasets too large to fit in memory, online approximations of PCA have also

been proposed (Boutsidis et al., 2015).

PCA has many uses, including constructing a low-dimensional representation of data

by retaining only the k most principal components—the components capturing the greatest

variation—and projecting points onto the resulting space. Each ci vector then has only

k elements, and W is d × k. A PCA-based method conceptually similar to our work is

face detection via Eigenfaces (Turk and Pentland, 1991). This method uses PCA to learn a

space in which aligned, consistently illuminated, and frontally observed faces reside. This

space can then be used to learn a classifier which determines if a sliding window contains

28

a face. PCA has also been used in the analysis of 3D brain imaging (Zuendorf et al., 2003;

Andersen et al., 1999). These methods vectorized a voxelized 3D image of brain activity

and performed PCA to determine independent activation components. As a result, they are

able to recover regions of the brain that co-activate.

3.1.1 Variational Bayesian Principal Component Analysis

BEOs employ Variational Bayesian Principal Component Analysis (VBPCA) to learn

compact bases for classes of objects. VBPCA is an extension of probabilistic PCA (PPCA)

(Tipping and Bishop, 1999) which models each datapoint, xi, as

xi =Wci + µ + εi ∀xi ∈ X, (3.2)

where X is a matrix containing all datapoints such that column i of X is xi, W is a

basis matrix, ci is the projection of xi onto that matrix, µ is the mean of all datapoints,

and εi is zero mean Gaussian noise associated with datapoint i. The model parameters for

PPCAmay be efficiently estimated using expectation-maximization (EM), which alternates

between updating the estimate of each datapoint’s coefficient, ci, and updating W, µ, and

ε . While PPCA is well suited to density estimation and data compression, Bayesian

PCA (BPCA) (Bishop, 1999a) further extends this model by introducing (Gaussian) priors

(parametrized by H) over the elements of µ and W allowing BPCA to model the entire

posterior probability of model parameters:1

p(W,µ,C|X,H). (3.3)

Unfortunately, specifying this posterior probability is problematic; VBPCA overcomes this

by approximating the posterior via factorization. As a result, each factor can be iteratively

updated separately, during optimization, while the others are held constant. VBPCA

approximates the posterior probability as:

q(W,µ,C) ≈ p(W,µ,C|X,H), (3.4)

1 Note that column i of C is ci.

29

where q(W,µ,C) is a factored posterior approximation:

q(W,µ,C) =
d∏

i=1
q(µi)

d∏
i=1

q(wi)

n∏
i=1

q(ci). (3.5)

This approximation allows us to use EM to perform VBPCA in the same way it is employed

for PPCA. For a more detailed explanation, please refer to Bishop (1999b).

VBPCA can be conceptualized as a probabilistically regularized version of PPCA,

providing the advantages of PPCA (including intrinsic density estimation) with increased

resilience to over-fitting due to the prior. This property makes it especially well suited

for situations where the dimensionality of the problem is high compared to the number of

datapoints, i.e. n � d (Bishop, 1999b), as is true in our case.

3.2 Overview

The BEO framework constructs a generative model for each class of objects and then uses

that model to enable inference about novel partial-object queries. BEOs are learned via

a collection of aligned and fully observable 3D object meshes. At inference-time, BEOs

receive a partially observed voxel object as input and predict its 3D shape, class, and

orientation. Figure 3.1 illustrates an overview of this process.

VBPCAAlign and
Voxelize

Learned
Object-Class

Subspace

Query Object

Partial
View

Point in k
Dimensional
Object-Class

Space

Project Onto
Object Subspace

Complete
Object

Classify and Estimate Pose

Training
Objects

Top: The training process. Bottom: An example query.

Figure 3.1: A high-level overview of the BEO process.

30

3.2.1 Class Models: Eigenobject Construction via VBPCA

BEOs are learned from a library of known objects of several classes, with each object

consisting of a complete 3D scan; see Figure 3.2 for an example collection of aligned and

voxelized car models. Each voxelized object is flattened into a 1-dimensional length d

vector and treated as a single point in d dimensional voxel space. These points form the

dataset upon which we perform VBPCA to find the subspace, Ws and mean µs specific to

class s.

Figure 3.2: A collection of aligned and voxelized cars.

Given Ws and µs, a novel object, o, of class s, can be projected onto learned space:

os
′ =Ws

T (o − µs). (3.6)

Conversely, any point in the space of Ws can be converted back into flattened voxel form

via

ôs =Wsos
′ + µs. (3.7)

We refer to ôs as the “completed” version of o and os
′ as the “projected” version of o (with

respect to class s).

We need not store or query an entire object database; instead, we need only store Ws

and µs for each class of objects (∀s ∈ S). We can also represent any object in a given class

using a single coefficient vector of dimension ks. In practice, the number of bases for each

31

class is far less than the dimensionality of each datapoint (ks � d), providing a compact

representation.

3.2.2 Object Classification

An essential part of many robot tasks is novel-object classification. Let the learned BEO

models for multiple classes be denoted θ1, θ2, ..., θm, where m is the number of classes

and θs = {Ws,µs}, and let the novel query object be denoted oq. We wish to estimate the

class label, l̂q, of oq by selecting l̂q from set S.

Our classification method leverages the trained low-dimensional space to learn a com-

pact density model for each class; while such a density model is infeasible in 3D space

as even size 303 objects contain tens of thousands of variables, it is possible in this much

smaller projected space where each class is modeled as an anisotropic Gaussian.

From the learned subspaces for each class, we construct a single larger subspace upon

which objects across all classes lie:

W = [W1, ...,Wm,µ1, ...,µm].

W is a d×(k1+ . . .+ km+m)matrix with rows corresponding to dimensions in voxel space

and columns to basis vectors. BecauseWmay be low-rank, which will introduce additional

variables to estimate without increasing the expressiveness of our model, we find a matrix,

W′, with orthonormal columns that span the range of W. This can be straightforwardly

accomplished by letting W′ = U′ where USVT = W is the singular value decomposition

of W and U′ is formed by retaining only the first rank(W) rows of U.

After learning the shared subspace, density models for each class can be found by

estimating the mean and covariance of m multivariate Gaussian distributions, each of

dimensionality rank(W). Estimation of the mean is straightforward:

ō′s =
∑

o′s∈O′s

o′s
ns
, (3.8)

32

where ns is the number of training objects in class s and O′s is the rank(W) by ns matrix

of projected training objects in class s.

Unfortunately, estimating the population covariance is more difficult. The simplest

approach uses the sample covariance matrix:

Σs =
1

ns − 1
Ō′sŌ′s

T
,

where Ō′s is created by subtracting ō′s from each column in O′s. Unfortunately, this method

works poorly in practice. Although W′ is far smaller than full 3D object-space, it is

still fairly large, easily several hundred dimensions. As a result, accurately estimating

the covariance for each class with only several hundred datapoints points per class is

problematic. We utilize a combination of two forms of covariance shrinkage to regularize

the estimated covariance matrix. Starting with Σs, we first shrink it by adjusting its

eigenvalues towards their mean, finding Σ′s. Next, we further regularize Σ′s by regressing

it towards Σ′s−2, the so-called “two parameter covariance matrix". Diagonal elements of

Σ′s−2 are all equal to the mean variance in Σ′s while non-diagonal elements of Σ′s−2 are all

equal to the mean off-diagonal covariance in Σ′s. The final estimate for the covariance of

a given class is thus

Σ′′s = λΣ
′
s + (1 − λ)Σ′s−2. (3.9)

The precise calculation of the optimal shrinkage amount, λ, and the eigenvalue shrinkage

amounts used in Σ′ are described in detail in Ledoit and Wolf (2015), Daniels and Kass

(2001), and Schäfer and Strimmer (2005).

Once probability density functions for each of the classes have been learned, classifica-

tion is performed in a maximum a posteriori fashion. Given query object oq, its projection,

o′q, onto W′, and P(s), the prior probability of class s, the most probable class label, l̂q, is

l̂q = arg max
s∈S

P(s)D(o′q |s)∑
sj∈C P(s j)D(o′q |s j)

, (3.10)

33

where D(o′q |ci) denotes the density of the learned PDF, found using equations 3.8 and

3.9, for class s at location o′q,

D(o′q |s) =
1√

(2π)a |Σs |
exp

(
−

1
2
(o′q − ō′s)TΣ−1

s (o′q − ō′s)
)
, (3.11)

where a denotes rank(W′) for readability.

Unlike methods that operate directly on objects, there is no need to tune 3D features

for individual classes. Furthermore, our approach can accommodate significantly higher

resolution objects than competing DNN methods; in our experiments BEOs were able to

model objects of size 2733, which contain over twenty million voxels, while constructing

a DNN with such high-dimensional input is infeasible.

3.2.3 Pose Estimation

Like classification, pose estimation is necessary for many robotic manipulation and plan-

ning tasks, especially object manipulation. While it is relatively straightforward to acquire

a rough estimate of an object’s position given an object detection and segmentation, deter-

mining orientation is more difficult. Here, we do not assume we have a model of the query

object, making our pose estimation task far more difficult; we cannot simply match the

query object to its exact model. We must instead determine its pose relative to a canonical

class-specific baseline. We accomplish using a try-verify approach, also known as pose

estimation by search (Narayanan and Likhachev, 2016). These approaches use a generative

model of the object and sample multiple poses to find one that is maximally likely or

minimizes scene error.

Let R(oq) = {o1
q, o2

q, ...o
p
q} be query object oq in p orientations. To estimate the true

orientation of oq, r̂q, one possible solution is

r̂q = arg min
or

q∈R(oq)
| |oq − or

q | |2. (3.12)

34

This can result in ambiguity however, particularly with only partially specified query

objects. This estimator ignores learned class properties; a cabinet, for instance, might

project well onto the space of toilets because toilets have a large rectangular back but such

a toilet would be highly unusual. Using only Equation 3.12 does nothing to address this,

motivating an alternate approach, conceptually based on the density estimator, Equation

3.11, used in classification:

r̂q = arg max
or

q∈R(oq)

P(r)D(o′rq |s)∑
rj∈R P(r j)D(o

′rj
q |s)

, (3.13)

whereR is the set of possible poses being searched over and P(r) is the prior probability

of pose r .

Equation 3.13 selects the MAP pose estimate; an advantage of this estimator is its

sensitivity to the misalignment of important geometry. Consider the example of a bathtub:

while mostly symmetrical around their z-axis, bathtubs have a spout at one end which

provides key information for pose estimation. An approach based on Equation 3.12 weights

error equally in all places while the density method can respect that some regions contain

more information than others.

If a high resolution orientation is required, there may be a large number of candidate

poses. Fortunately, each candidate rotation can be calculated independently and thus the

process is straightforwardly parallel; it is possible to distribute the workload to multiple

processors or accelerate it via GPU. Our experiments investigate both full 3DOF pose

estimation as well as 1DOF rotation about the z axis.

3.2.4 Partial Object Completion

In real-world environments, robots almost never have entire views of the objects they

encounter. Even with the prevalence of multiple-sensor multiple-modality perception on

modern robots, obtaining a complete 3D view of an encountered object requires sensing

35

from multiple sides. If robots are to be mobile and operate outside of laboratory environ-

ments, it is unreasonable to expect that they will always perceive objects from numerous

vantage points before reasoning about them.

The alternative is to infer, from a partial model of an object and prior knowledge, what

the remaining portions of a query object may be. BEOs provide this ability because they

offer a generative representation of objects in a class. Each learned basis provides an

object-class manifold; if we can find the point on this manifold that best corresponds to a

given partially-observed object, projecting back into voxel object-space yields a prediction

of the unobserved portions of that object.

Similarly to Li et al. (2015), we assume that the partial query objects consist of filled,

empty, and unknown pixels. Let d′ denote the number of known (filled and empty) elements

of oq. It is useful to define a d′ by d binary selection matrix Vq such that Vqoq = wq

where wq is a length d′ < d vector consisting of only the known elements of oq. Vq can be

created by constructing a size d identity matrix and then removing all rows corresponding

to unknown elements of oq (e.g. if the ith element of oq is unknown then the ith row of

the identity is removed). Let o′q denote the smallest error projection of oq onto basis W′.

The error induced by an arbitrary projection o′iq with respect to oq is

E(o′iq) = | |Vq(W′o′iq) − wq | |
2
2 . (3.14)

The gradient of this error with respect to o′iq is thus

E
′

(o′iq)do′iq = 2W′T VT
q[Vq(W′o′iq) − wq]. (3.15)

This error function is convex; to find the projection that minimizes E(o′iq), we set the

gradient to 0 and solve for o′q.

Aqo′q = bq (3.16)

where

Aq =W′T Vq
T VqW′ (3.17)

36

and

bq =W′T Vq
T wq. (3.18)

When projecting for classification and pose estimation, we found it helpful in practice

to employ gentle lasso regularization (Tibshirani, 1996) when solving for o′q,

o′q = arg min
o′iq

| |Aqo′iq − bq | |2 + λ | |o′iq | |1 , (3.19)

using λ = 10−5.

Once we have obtained our projection estimate, o′q, we can complete the object using

Equation 3.7. The completed object, ôq, minimizes the error between itself and the known

portion oq while predicting the unknown portions of oq.

3.2.5 BEOs: Joint Pose, Class, and Geometry Estimation

BEOs can be employed to perform all three operations (pose estimation, classification, and

geometric completion) simultaneously. This full process consists of simultaneous pose

estimation and classification followed by completion and requires maximizing the joint

probability over both pose and class. Because both classification and completion are quite

sensitive to misalignment, we use a two step approach to pose estimation. In practice,

Equation 3.13 is unreliable when used to estimate global orientation for an object with

unknown class. To address this, we employ a hierarchical coarse to fine approach; while

we employ Equation 3.13 during the fine-tuning phase, we employ a different method for

the initial coarse estimate.

We define a coarse error based on the L2 distance between an object and its back-

projected version as,

e(oq, ôr
q) = 1 −

||oq − ôr
q | |2

|oq |
, (3.20)

where a score of 1 denotes a perfect match and a score of 0 indicates that all voxels differ

between the object and its back-projection. Intuitively, projecting an object, given its true

37

orientation, onto its class subspace and then re-projecting it back into voxel-space, should

result in a re-projection that closely matches the initial object. An initial estimator might

simply find the class and orientation minimizing e(oq, ôr
q).

In practice, Equation 3.20 works well for objects of the same class, but often fails when

applied to objects of very different shape, making it unsuitable for comparing disparate

objects across multiple classes. To combat this, we leverage a more nuanced representation

of error based on the 3D Euclidean Distance Transform (EDT) (Maurer et al., 2003). From

oq and ôq we compute the EDT for each object, D and D̂ respectively. Each distance

transform forms a 3D matrix, with the same dimensions as the object from which it

was created, and entry in the distance transform is the Euclidean distance between its

corresponding voxel in the original object and the closest filled voxel. As a result, entries

that correspond to filled voxels have a value of 0 while entries that correspond to voxels

far from filled portions of the object have high value. By computing the 2-norm of the

difference between distance fields, we can create a more robust measure of inter-object

distance:

e′(oq, ôr
q) = | |D − D̂r

q | |2. (3.21)

Because it implicitly captures shape differences between two objects, this distance provides

a more robust means of object comparison than Equation 3.20. Refer to Figure 3.3 for an

illustration of an example EDT.

During the first, coarse, step, we use EDT error from Equation 3.21 to coarsely estimate

the object’s pose. We then finely discretize the rotation space in a region around the initial

coarse estimate and rely on a modified version of Equation 3.13,

{r̂q, l̂q} = arg max
or

q∈R(oq), s∈S

P(r)D(o′rq |s)P(s)∑
rj∈R

∑
s∈S P(r j)D(o

′rj
q |s)P(s)

, (3.22)

to obtain our final rotation estimate and classification label by marginalizing over both

possible poses and possible classes. Note that o′rq denotes query object oq, in pose r ,

38

Figure 3.3: An example EDT (right) of a 2D square (left).

projected onto W′. Because Equation 3.22 is unreliable when used to estimate global

orientation but performs well in a region close to the correct pose, employing it only

during the fine-tuning step proves effective.

3.3 Experimental Results

We characterize the performance of our approach using the ModelNet10 dataset (Wu et al.,

2015), which consists of 4889 (3991 training and 908 test) aligned 3D objects, each of size

303, spread across 10 classes: Bathtubs, Beds, Chairs, Desks, Dressers, Monitors, Night

Stands, Sofas, Tables, Toilets. During VBPCA, we automatically selected a basis size

capturing 60 percent of variance, between 30 and 70 components per class. and used zero-

mean unit-variance Gaussian hyperparameters for regularization. We also illustrate some

example high-resolution completions, obtained from 20 USB charging plugs which were

manually scanned in our lab using aMakerBot 3D scanner and from two additional synthetic

classes sourced from ShapeNet (Chang et al., 2015). We employed coordinate descent

congealing (Learned-Miller, 2006) to roughly align the objects in each class, manually

inspecting and refining the alignment as required—objects sourced from ModelNet and

ShapeNet and were pre-aligned, while our manually scanned objects required alignment.

39

3.3.1 Classification and Object Completion

To provide a direct comparison with competing approaches, we assume the pose of each

single-viewpoint query object is known and that the task consists of estimating the object’s

class label and full 3D geometry. We evaluate against 3DShapeNets (Wu et al., 2015),

as well as a baseline which measures similarity to the mean training object in each class

and selects the class with the most similar mean element. Completion performance was

measured by calculating the Euclidean error between the true geometry of the query object

and the estimated completion. For each of the 908 test objects, test queries were created

using a single top-down depth view. Table 3.1 summarizes the classification performance

of each of these methods while Figure 3.4 contains their completion errors and query

times.2 We observed that the comparatively simple baseline method conflates several

geometrically similar classes quite badly and both 3DShapeNets and the baseline had

significant trouble with tables, likely because the top down view makes these challenging

to distinguish from dressers and nightstands. It should also be noted that whileModelNet10

is a popular benchmark for full-object 3D classification, our experiments explore single-

view classification performance, a different task.

0 200 400 600 800
0

100

O
cc

ur
en

ce
s

BEO

0 200 400 600 800

Completion Error

0

100

O
cc

ur
en

ce
s

ShapeNet
Completion Error

0 200 400 600 800
0

100

O
cc

ur
en

ce
s

Ours

0 200 600 800
0

100

O
cc

ur
en

ce
s

3DShapeNets

400
Completion Error

0.5 1 1.5 2 2.5 3
0

50

O
cc

ur
en

ce
s

BEO

0.5 1 1.5 2 2.5 3

Classification and Completion Time (s)

0

500

O
cc

ur
en

ce
s

Classification and Completion Time (s)

0.5 1 1.5 2 2.5 3
0

50

O
cc

ur
en

ce
s

Ours

0.5 1 1.5 2 2.5 3
Classification and Completion Time (s)

0

500

O
cc

ur
en

ce
s

3DShapeNets

Figure 3.4: Completion errors and query time.

2 Mean error and time are indicated by circular dots.

40

Ground Truth

Partial View
(Top)

3DShapeNet
Completion

BEO
Completion

Ground Truth

Partial View
(Top)

3DShapeNet
Completion

BEO
Completion

Figure 3.5: A sampling of BEO object completions.

In both classification accuracy and reconstruction error, BEO significantly outperforms

3DShapeNets, achieving nearly 20 percent greater classification accuracy. 3DShapeNets

particularly struggled with tables, misclassifying them as night stands or dressers in nearly

all instances due to their flat horizontal tops. While our BEO approach also exhibited this

behavior to a lesser degree, in many instances it was able to leverage the small differences

in the size and aspect ratios of these objects to successfully classify them. Furthermore,

41

Table 3.1: ModelNet10 classification accuracy.

Unknown pose corresponds to 1DOF pose-estimation about the z-axis.
Known Pose Bathtub Bed Chair Desk Dresser Monitor Night Stand Sofa Table Toilet Total

BEO 48.0 95.0 93.0 46.5 64.0 91.0 55.8 92.0 75.0 80.0 76.3
Baseline 70.0 94.0 0.0 17.4 67.4 78.0 75.6 88.0 0.0 82.0 56.7
3DShapeNets 76.0 77.0 38.0 22.1 90.7 74.0 38.4 57.0 1.0 79.0 54.4

Unknown Pose Bathtub Bed Chair Desk Dresser Monitor Night Stand Sofa Table Toilet Total

BEO 4.0 64.0 83.0 16.3 51.2 86.0 36.0 49.0 76.0 46.0 54.5

42

although our query times exhibit some fluctuation because each query requires solving

a variable-size system of equations, our method is approximately three times faster than

3DShapeNets.

BEO-based 3D completion differs significantly from themethod used by 3DShapeNets;

while 3DShapeNets first classifies an object and then performs completion, BEOs project

objects onto the BEO subspace and then classifies them. As a result, 3DShapeNets exhibits

bimodal completion performance; when it misclassifies an object, its completion results

degrade significantly. BEOs do not exhibit this behavior, sometimes completing an unusual

object (with respect to the training set) in a reasonable way, even while misclassifying it.

Figure 3.5 illustrates some sample completions from BEOs and 3DShapeNets and is best

viewed digitally with zoom.

3.3.2 Pose Estimation

0 50 100 150 200

Rotation Error (Degrees)

0

500

O
cc

ur
en

ce
s

BEO 1DOF

0 50 100 150 200
0

100

200

O
cc

ur
en

ce
s

ICP 1DOF

0 50 100 150 200

Rotation Error (Degrees)

0

100

200

O
cc

ur
en

ce
s

ICP 1DOF

0 50 100 150 200

Rotation Error (Degrees)

0

100

200

O
cc

ur
en

ce
s

BEO 3DOF

0 50 100 150
0

50

100

O
cc

ur
en

ce
s

ICP 3DOF

0 50 100 150

Rotation Error (Degrees)

0

50

100

O
cc

ur
en

ce
s

ICP 3DOF

Mean error is indicated by circular dots.

Figure 3.6: Pose estimation error for BEOs and an ICP baseline.

To evaluate pose estimation performance, we performed experiments in both 1DOFwith

1 degree of precision and 3DOF with 20 degrees of precision using the density estimator

from Equation 3.13. As 3DShapeNets cannot estimate pose, we compared against an ICP

approach that warps the query object to the class-mean. In 1DOF experiments, each query

43

object was given a random orientation obtained by sampling uniformly from [0, π). In

3DOF experiments, each query object’s orientation was given by by sampling a quaternion

uniformly at random from the surface of the 4D hypersphere. As above, queries consisted

of a single viewpoint looking down along the z-axis.

We found that while BEOs dramatically outperformed ICP—which tended to get stuck

in local minima—BEO pose-estimation performance is significantly worse in 3DOF than

it is in the smaller 1DOF case, likely due to the scaling challenges endemic to explicitly

enumerating the search-space of poses.

3.3.3 Joint Pose, Class, and 3D Geometry Estimation

0 50 100 150

Pose Estimation Error (Degrees)

0

500

O
cc

ur
en

ce
s

0 500 1000 1500 2000

Completion Error

0

100
O

cc
ur

en
ce

s

Figure 3.7: Full system performance.

We next evaluated our entire procedure of joint pose estimation, classification, and

3D completion. Input query objects were obtained by randomly rotating objects about

their z-axis and extracting a single top-down view. While BEO performance degraded

somewhat in this more challenging instance, we achieve equal classification performance

with 3DShapeNets without employing knowledge of the object’s pose. Table 3.1 contains

our classification performance in this setting while Figure 3.7 shows our pose estimation

and completion performance as well as an example query.

44

3.3.4 High Resolution Output and Limited Training Data

To demonstrate our approach’s applicability to small training set sizes and high resolution

output, we conducted experiments on three additional datasets, two synthetic and one

composed of physical objects. The physical-object dataset contained 20wall USB charging

plugs—aligned to canonical orientation with the prongs directed upward—scanned on a

MakerBot 3D scanner. The scanned mesh files were voxelized into 254×254×254 objects,

forming the dataset. The other two datasets were both sourced from ShapeNet (Chang et al.,

2015) and consisted of of a random sampling of standing grandfather clocks and tabletop

lamps. Both the lamp and clock datasets were randomly split into two sub-groups for

training and testing. The lamp training set consists of 40 lamps while the lamp test set

consists of 10. The clock training set consists of 35 clocks and the clock test set consists

of 8. Objects in both the lamp and clock classes were voxelized into size 273 × 273 × 273

objects. The clock and lamp class manifolds were then learned with 17 components while

Left: ground truth. Center: partial observation. Right: BEO completion.

Figure 3.8: Example BEO Completions.

45

the plugs used 10. Figures 3.9 and 3.8 illustrate several example completions with a

Plug Dataset

Query Plug True Shape Partial Observation Estimated Shape

Figure 3.9: Example high-resolution completion from a small training dataset.

voxelized visualization. At lower resolutions, recovering fine detail such as the shape of

the USB plug prongs would be impossible. Note that due to the very small training-set

size, not all completions are fully successful, but even in these failure cases, much of the

low-frequency object structure is reproduced.

46

3.4 Discussion

We found that by using Variational Bayesian Principal Component Analysis to construct a

low-dimensional multi-class object representation, we were successfully able to estimate

the 3D shape, class, and pose of novel objects from limited amounts of training data. BEOs

outperform prior work in joint classification and completion with queries of known pose,

in both accuracy and classification performance, while also being significantly faster and

scaling to higher resolution objects. Furthermore, BEOs are the first object representation

that enables joint pose estimation, classification, and 3D completion of partially-observed

novel objects with unknown orientations. A primary benefit of BEOs is their ability to

perform partial object completion with limited training data. Because objects in real

environments are rarely observable in their entirety from a single vantage point, the ability

to produce even a rough estimate of the hidden regions of a novel object is mandatory.

Additionally, being able to classify partial objects dramatically improves the efficiency

of object-search tasks by not requiring the agent to examine all candidate objects from

multiple viewpoints. Significantly however, BEOs require that observed objects be not

only segmented, but also voxelized, a task that is generally quite onerous in practice.

Furthermore, while pose estimation in 1 degree of freedom is reasonable using BEOs,

because BEOs rely on pose-estimation by search, the process becomes infeasibly slow

in higher dimensions. In the following chapter, we introduce an extension of BEOs that

alleviate some of these limitations while also improving performance.

47

4

Hybrid Bayesian Eigenobjects

4.1 Introduction

While Bayesian Eigenobjects provides a useful foundation for object-centric perception,

they have several important limitations, including that pose-estimation is significantly

slower than realtime and a requirement that partially-observed input be voxelized. We now

present an extension ofBEOs, HybridBayesianEigenobjects (HBEOs), that addresses these

limitations, and improves performance. In contrast to BEOs, HBEOs use a learned non-

linear method—specifically, a deep convolutional network (LeCun and Bengio, 1995)—to

determine the correct projection coefficients for a novel partially observed object. By

combining linear subspace methods with deep convolutional inference, HBEOs draw from

the strengths of both approaches.

Previous work on 3D shape completion employed either deep architectures which

predict object shape in full 3D space (typically via voxel output) (Wu et al., 2015, 2016;

Dai et al., 2017; Varley et al., 2017; Sun et al., 2018) or linear methods which learn linear

subspaces in which objects tend to lie as we proposed for BEOs; however both approaches

have weaknesses. End-to-end deep methods suffer from the high dimensionality of object

48

space; the data and computation requirements of regressing into 50, 000 or even million

dimensional space are severe. Linear approaches, on the other hand, are fast and quite

data efficient but require partially observed objects be voxelized before inference can

occur; they also lack the expressiveness of a non-linear deep network. Unlike existing

approaches, which are either fully linear or perform prediction directly into object-space,

HBEOs have the flexibility of nonlinear methods without requiring expensive regression

directly into high-dimensional space. Additionally, because HBEOs perform inference

directly from a depth image, they do not require voxelizing a partially observed object,

a process which requires estimating a partially observed object’s full 3D extent and pose

prior to voxelization. Empirically, we show that HBEOs outperform competing methods

when performing joint pose estimation, classification, and 3D completion of novel objects.

4.2 Overview

HBEOs use an internal voxel representation, similar to bothWu et al. (2015) and BEOs, but

use depth images as input, avoiding the onerous requirement of voxelizing input at inference

time. Like BEOs, HBEOs learn a single shared object-subspace; however, HBEOs learn a

mapping directly from depth input into the learned low-dimensional subspace and predict

class and pose simultaneously, allowing for pose, class, and shape estimation in a single

forward pass of the network.

The HBEO subspace is defined by a mean vector, µ and basis matrix, W. We find an

orthonormal basis W′ = orth([W,µ]) using singular value decomposition and, with slight

abuse of notation, hereafter refer to W′ as simply W. Given a new (fully observed) object

o, we can obtain its embedding o′ in this space via

o′ =WT o, (4.1)

a partially observed object will have its embedding estimated directly by HBEONet, and

49

any point in this space can be back-projected to 3D voxel space via

ô =Wo′. (4.2)

While HBEOs share the underlying subspace representation with BEOs, they have signifi-

cant differences. Specifically:

• HBEOs operate directly on (segmented) input depth images.

• HBEOs use a learned non-linear mapping (HBEONet) to project novel objects onto

an object subspace instead of Equation 3.19.

• HBEOs predict the subspace projection jointly with class and pose using a single

forward pass through a CNN.

Figure 4.1 illustrates the complete training and inference pipeline used in HBEOs; note

that portions above the dotted line correspond to training operations while the bottom area

denotes inference.

4.2.1 Learning a Projection into the Subspace

HBEOs employ a convolutional network (HBEONet) to jointly predict class, pose, and a

projection into the low-dimensional subspace given a depth image. HBEONet consists of

four shared strided convolutional layers followed by three shared fully connected layers

with a final separated layer for classification, pose estimation, and subspace projection.

Figure 4.2 provides an overview of HBEONet’s structure, note that each convolution has

a stride of 2x2 and pooling is not used. The non-trained softmax layer applying to the

class output is not pictured. This shared architecture incentivizes the predicted class, pose,

and predicted 3D geometry to be mutually consistent and ensures that learned low-level

features are useful for multiple tasks. In addition to being fast, HBEOs leverage much more

nuanced information during inference than BEOs. When BEOs perform object completion

via Equation 3.19, each piece of object geometry treated as equally important; a voxel

50

Training Meshes

Novel Object
Observed via Depth

Estimated 3D
Geometry

Combined Object-
Subspace

Voxelize and
VBPCA

Voxelize and
VBPCA

Depth Renderer

Training
Depth Images

CNN
(HBEONet)

Training

Inference
Back-Projection

Class:
Toilet

Pose:
R3

HBEOs replace the projection step used in BEOs with a CNN that directly predicts BEO
shape projections, class, and 3DOF pose.

Figure 4.1: Overview of the HBEO framework.

51

Input Depth Image
240 x 320 x 1

Strided Convolution
ReLu

120 x 160 x 32

Filter Size: 6, 6

Strided Convolution
ReLu

60 x 80 x 64

Filter Size: 6, 6

Strided Convolution
ReLu

30 x 40 x 128

Filter Size: 4, 4

Strided Convolution
ReLu

15 x 20 x 128

Filter Size: 4, 4 Batch Normalization

Fully Connected
ReLu

1 x 1 x 357

Fully Connected
Linear

1 x 1 x 347

Fully Connected
ReLu

1 x 1 x 10
Class

Pose

Projection

Network
Output

HBEONet layers with approximately 15 million total parameters.

Figure 4.2: The architecture of HBEONet.

52

representing the side of a toilet, for instance, is weighted equivalently to a voxel located in

the toilet bowl. In reality however, some portions of geometry are more informative than

others; observing a portion of toilet bowl provides more information than observing a piece

of geometry on the flat side of the tank. HBEONet is able to learn that some features are

far more germane to the estimated output than others, providing a significant performance

increase. Because HBEONet predicts subspace-projections instead of directly producing

3D geometry (like end-to-end deep approaches), it need only produce several hundred or

thousand dimensional output instead of regressing into tens or hundreds of thousands of

dimensions. In this way, HBEOs combine appealing elements of both deep inference and

subspace techniques.

4.2.2 Input-Output Encoding and Loss

HBEOs take a single pre-segmented depth image (such as that produced via a Kinect or

RealSense sensor) at inference time and produce three output predictions: a subspace

projection (a vector in Rd), a class estimate (via softmax), and a pose estimate (via three

element axis-angle encoding).

The loss function used for HBEONet is

L = γcLc + γoLo + γpLp, (4.3)

where Lc, Lo, and Lp represent the classification, orientation, and projection losses

(respectively) and γc, γo, and γp weight the relative importance of each loss. Both LO and

LP are given by Euclidean distance between the network output and target vectors while

LC is obtained by applying a soft-max function to the network’s classification output and

computing the cross-entropy between the target and soft-max output:

Lc = −
∑
c∈C

yclog(ŷc) (4.4)

where yc is the true class label, and is 1 if the object is of class c and 0 otherwise, and ŷc

is the HBEONet-predicted probability (produced via softmax) that the object is of class c;

53

minimizing this classification loss can also be viewed as minimizing the Kullback-Leibler

divergence between true labels and network predictions.

4.3 Experimental Evaluation

We evaluated the performance of HBEOs using the ModelNet10 dataset (Wu et al., 2015)

as we did in the previous chapter. To obtain a shared object basis, each object mesh inMod-

elNet10 was voxelized to size d = 303 and then converted to vector form (i.e. each voxel

object was reshaped into a 27, 000 dimensional vector). VBPCA was performed separately

for each class to obtain 10 class specific subspaces, each with basis size automatically

selected to capture 60 percent of variance in the training samples (equating to between

30 and 70 retained components per class). We also employed zero-mean unit-variance

Gaussian distributions as regularizing hyperparameters during VBPCA. After VBPCA,

the class specific subspaces were combined using SVD (via Equation 3.2.2) into a single

shared subspace with 344 dimensions.

We then generated roughly 7 million synthetic depth images of size 320 by 240 from

the objects in our training set by sampling multiple random viewpoints from each of the

3991 training objects. The ground truth subspace projection for each training object was

obtained using Equation 4.1 and fed to HBEONet during training1 along with the true pose

and class of the object depicted in each depth image.

We compared HBEOs to vanilla BEOs as well as a baseline end-to-end deep method

(3DShapeNets). An apples-to-apples comparison here is somewhat difficult; HBEOs, by

their very nature, reason over possible poses due to their training regimewhile 3DShapeNets

do not. Furthermore, BEO results in 3-DOF for combined classification and pose estimation

proved to be computationally infeasible. As a result, we report 3DShapeNets results

with known pose and BEO results with both known pose and 1-DOF unknown pose as

1 HBEONet was implemented using TensorFlow 1.5 and required roughly 2 training epochs (16 hours on
a single Nvidia GTX1070 GPU) to converge. The encoded and compressed depth-image dataset required
roughly 200GB of storage space.

54

Table 4.1: ModelNet10 classification accuracy.

Queries are top-down views and accuracy is reported as a percentage.
Known Pose Bathtub Bed Chair Desk Dresser Monitor Night Stand Sofa Table Toilet Total

BEO 48.0 95.0 93.0 46.5 64.0 91.0 55.8 92.0 75.0 80.0 76.3
3DShapeNets 76.0 77.0 38.0 22.1 90.7 74.0 38.4 57.0 1.0 79.0 54.4

Unknown Pose Bathtub Bed Chair Desk Dresser Monitor Night Stand Sofa Table Toilet Total

BEO (1-DOF) 4.0 64.0 83.0 16.3 51.2 86.0 36.0 49.0 76.0 46.0 54.5
HBEO (3-DOF) 91.3 86.4 84.1 57.6 79.7 97.9 81.3 75.4 72.3 92.3 81.8

55

comparisons to HBEOs full 3-DOF results.

4.3.1 Classification

Despite HBEOs being required to solve a harder problem than 3DShapeNets and BEOs,

classification performance was significantly better than both of them, outperforming (with

unknown 3-DOF pose) 3DShapeNets and BEOs with known pose. Table 4.1 illustrates

these results; HBEOs operating on data with unknown pose in 3-DOF has less than half

of the misclassification rate of BEOs operating on data with only a single unknown pose

DOF. One classification advantage HBEOs possess over BEOs is their ability to perform

forward projection jointly with classification. Because BEOs first project into the learned

subspace and then classify objects, small details which do not significantly affect shape,

but are germane to determining object type, may be missed. This is particularly evident

in the case of disambiguating desks, dressers, and nightstands: three classes which have

similar overall shape and where small details are important for determining class. Because

HBEOs learn to perform classification and subspace projection jointly, they perform much

better in this scenario.

4.3.2 Pose Estimation

We evaluate the pose estimation performance of HBEOs by comparing with BEOs and

an ICP baseline (see Figure 4.3). In the HBEO case, class, pose, and 3D geometry are

estimated jointly as described in the preceding sections. Due to performance constraints,

it was infeasable to directly compare to BEOs. Instead, we provided BEOs with the

ground truth class and only required the BEO pipeline to estimate pose and 3D shape.

The ICP baseline was also provided with the ground truth class and attempted to estimate

pose by aligning the partial input with the mean training object in that class. Despite not

having access to the input query’s class, HBEOs significantly outperformed both BEOs

and the baseline method, achieving a mean pose error less than half that of BEOs. Part of

56

the advantage HBEOs enjoy over BEOs is their direct prediction of pose; because BEOs

employ pose estimation by search, they can only sample candidate poses at a relatively

course resolution in 3-DOF due to computational constraints, even with known class.

HBEOs do not suffer from this drawback as they predict pose parameters directly in a

single inference step.

0 50 100 150 200
Pose Error (Degrees)

0

200

400

O
cc

ur
en

ce
s

HBEO 3-DOF

0 50 100 150 200

Pose Error (Degrees)

0

100

200

O
cc

ur
en

ce
s

BEO 3-DOF

0 50 100 150
0

50

100

O
cc

ur
en

ce
s

ICP 3DOF

0 15050 100
Pose Error (Degrees)

0

50

100

O
cc

ur
en

ce
s

ICP 3-DOF

Mean error is indicated by circular dots.

Figure 4.3: Pose estimation error in 3-DOF.

4.3.3 3D Completion

0 200 400 600 800 1000 1200
Completion Error

0

100

200

O
cc

ur
en

ce
s

HBEO 3-DOF

0 500 1000 1500 2000

Completion Error

0

100

O
cc

ur
en

ce
s

BEO 1-DOF

0 200 400 600 800
0

100

O
cc

ur
en

ce
s

BEO Known Pose

0 200 400 600 800

Completion Error

0

100

O
cc

ur
en

ce
s

ShapeNet
Completion Error

0 200 400 600 800
0

100

O
cc

ur
en

ce
s

Ours

0 200 600 800
0

100

O
cc

ur
en

ce
s

3DShapeNets Known Pose

400
Completion Error

Figure 4.4: 3D completion error.

We follow the shape-completion evaluation methodology proposed in the previous

chapter by extracting the (unsigned) Euclidean Distance Transform (EDT) (Maurer et al.,

2003) from both the completed objects and the target objects. Given D and D̂ denoting the

EDT of the target and estimated objects, our completion score is again:

e′(o, ôr) = | |D − D̂| |2. (4.5)

57

Figure 4.5: Sample completions from the ModelNet10 test set.

58

This EDT-based metric is sensitive to shape change but far less sensitive to small misalign-

ment than Equation 3.20 which measures pairwise voxel correspondence.

Figure 4.4 illustrates the object completion performance of HBEOs relative to BEOs

and 3DShapeNets, using the Euclidean Distance Metric defined in Equation 3.20. HBEOs,

when performing inference directly from depth imageswith unknown 3-DOF pose, perform

competitively with BEOs operating on perfectly voxelized and aligned input with known

pose and significantly outperforms 3DShapeNets (with known pose) and BEOs (with

unknown pose in a single DOF). Figure 4.5 illustrates several example HBEO object

completions. In our experience, BEOs become brittle when the query object has unknown

pose due to the alignment sensitivity of voxel representations. A small error in estimated

pose causes a voxel representation to change dramatically while depth images change in a

much smoother fashion. Because of this phenomenon, HBEO completion performance is

far more robust to pose estimation errors.

4.3.4 Inference Runtime Performance

Table 4.2: Comparison of mean runtimes.

Method Mean Runtime

3DShapeNets (Known Pose) 3.57s
BEO (Known Pose) 1.13s
BEO (1-DOF Pose) 672.97s
BEO (3-DOF Pose) 3529.88s
HBEO (3-DOF Pose) 0.01s

Comparing timing performance between methods can be difficult; differences in pro-

gramming language and hardware can affect methods differently. For our testing, HBEOs

were implemented in Python (with HBEONet trained using TensorFlow) while BEOs and

3DShapeNets are both implemented in Matlab. As a result, direct comparison of runtimes

should be taken with a grain of salt, and small (i.e. 2x or 3x) speed differences between

algorithms are not necessarily meaningful in this context. Furthermore, the HBEONet

59

portion of HBEOs is fully GPU accelerated while portions of 3DShapeNets and BEOs are

not. Nevertheless, large speed differences (an order of magnitude or more) do highlight

gross computational efficiency differences between approaches. Table 4.2 shows mean

run-time performance of 3DShapeNets (for inference on objects of known pose) as well

as BEOs and HBEOs. Critically, because HBEOs perform inference in a single forward

pass of the network, they are able to estimate pose in 3-DOF without incurring the large

speed penalty that the BEO approach of pose estimation by search produces. While the

speed of BEOs can be tweaked to some degree (by adjusting the coarseness of the pose

discretization), HBEOs are orders of magnitude faster in the full 3-DOF setting. HBEOs

are fast enough for realtime use while BEOs—in 1-DOF or 3-DOF—are not.2

4.3.5 Pure Classification Evaluation

To provide context for the classification performance of HBEOs, we compared a modified

version of HBEOs, with convolutional layers replaced by the convolutional portion of

EfficientNet (Tan and Le, 2019), to a single-purpose depth-based classification network

based on EfficentNet-b3. Both networks were identical with the exception of the final layer,

which consisted of a softmax classification layer for the pure EfficentNet approach and the

original HBEO output layer (used in the preceding section) for the HBEO approach. Note

that because the original EfficentNet architecture is designed for RGB input, not depth, we

reduced the number of input channels from three to one. At the time of writing (though

not at the time of original HBEO publication), EfficentNet constitutes the state-of-the-art

in pure classification performance, with the b3 version achieving over 81 percent top-1

ImageNet accuracy.

We evaluated bothmodels on theModelNet10 dataset used above, from both a top-down

and side perspective. Ultimately, we found that the inclusion of pose and shape estimation

had no significant effect on classification performance despite the vast majority of the

2 Algorithms were evaluated on a 4-core Intel CPU with 32GB of RAM and an Nvidia GTX1070 GPU.

60

network being common to all three tasks in the HBEO case. As a result, we are able to

perform all three tasks while retaining (though not exceeding) state-of-the-art classification

performance. Table 4.3 illustrates these results.

Table 4.3: EfficientNet classification comparison.

Top-View Classification Accuracy (percent)

EfficientNet (Tan and Le, 2019) 83.3
EfficientNet-HBEO 82.2

Side-View Classification Accuracy (percent)

EfficientNet (Tan and Le, 2019) 86.6
EfficientNet-HBEO 87.3

4.3.6 Pix3D Evaluation

We also examined the shape completion and pose estimation performance of HBEOs

against several RGB-based approaches on the recently released Pix3D dataset3 (Sun et al.,

2018). While this is not a like-to-like comparison with the depth-based HBEOs, it provides

additional context due to the relative paucity of recent depth-based 3D completionmethods.

Note that Pix3D is heavily class imbalanced, with the only well-represented class consisting

of chairs. As a result, performance evaluation on this dataset should be taken as somewhat

of a noisy sample because methods are evaluated only on the chair class.

We trained HBEOs on the ShapeNet chair class similarly to the above experiments and

evaluated on the 2894 non-occluded chairs in Pix3D. For each chair in the dataset we create

a masked depth image, using the provided 3D object model, from the same perspective

as the included RGB image. Table 4.5 contains the discrete pose estimation accuracy of

our system while table 4.4 contains shape completion results. Because Pix3D and Render

for CNN provide discrete pose predictions, we discretize the output of our system for

comparison. Although HBEOs performed slightly more poorly than recent RGB-based

3Until the release of Pix3D in 2018, there existed no suitable dataset to compare depth-based andRGB-based
shape completion and pose-estimation approaches.

61

Table 4.4: Pix3D shape completion performance.

Intersection over Union (IoU); higher is better.
Method IoU

3D R2N2 (Choy et al., 2016) 0.136
3D-VAE-GAN (Wu et al., 2016) 0.171
DRC (Tulsiani et al., 2017) 0.265
MarrNet (Wu et al., 2017) 0.231
Pix3D (Sun et al., 2018) 0.282
HBEO 0.258

shape completion approaches, they provided significantly better pose estimates. While

the causes for this performance difference are not immediately obvious, some poses may

be ambiguous in 2D RGB space while more easily distinguishable using a depth image.

Consider observing a chair directly from the front: it may be unclear in the RGB image

if the observed surface is the chair’s front or rear while depth-values trivially distinguish

these two cases. It is also notable that the highest performing RGB shape completion

approaches explicitly estimate object surface normals, while HBEOs do not, which may

also be a contributing factor to their shape estimation performance differences. We have

also noticed that BEO-based approaches seem to struggle most with objects consisting of

thin structure (chairs being a particularly adversarial example) which we hypothesize is

due to training-time object alignment; objects with thin details, such as chairs, are more

sensitive to misalignment than objects with thicker geometry, such as cars and couches.

Table 4.5: Discretized Pix3D pose estimation performance.

Pose-bin classification accuracy (higher is better).
Azimuth Elevation

Number of Bins 4 8 12 24 4 6 12

Render For CNN (Su et al., 2015b) 0.71 0.63 0.56 0.40 0.57 0.56 0.37
Pix3D (Sun et al., 2018) 0.76 0.73 0.61 0.49 0.87 0.70 0.61
HBEO 0.87 0.76 0.69 0.53 0.96 0.91 0.71

62

4.4 Discussion

Compared to their predecessors, BEOs, HBEOs aremuch easier to use in real-world settings

because they perform inference in realtime and do not require voxelized input—instead

operating directly on depth images. Fusing a learned linear-subspace with a convolutional

projection module, HBEO representations retain the many of the advantageous properties

of BEOs, including a low-dimensional representation and applicability to limited-data

training regimes, while allowing for more robust inference with less brittleness to training-

object misalignment or to pose-estimation errors. Experimentally, we found that HBEOs

significantly outperformed BEOs—across all tasks—and constitute the state-of-the-art for

depth-based 3D completion and pose-estimation. While on the Pix3D datataset of chairs,

HBEOs do not quite achieve the shape completion performance of several RGB-based

methods, their pose-estimation performance is state-of-the-art across all input modalities.

63

5

Probabilistic Pose Estimation with Silhouette Priors

5.1 Introduction

While HBEOs jointly predict pose and 3D object shape, they do not explicitly reason about

consistency between input observations, predicted shape, and predicted pose. We propose

incorporating such a consistencymetric into the pose-estimation process to incentivize pose

estimates which are consistent with the object’s predicted shape and observed silhouette.

This approach leverages the unique capabilities of unified object representations by using

shape estimates to improve pose prediction. We also introduce the use of Mixture Density

Networks (MDNs) for this task, both because they provide a principled way to incorporate

shape-consistency into pose estimation and because MDNs are well suited to model object

symmetry and artifacts endemic to our chosen axis-angle pose representation.

Recent work in category-level pose estimation consists primarily of discrete pose esti-

mators (Sun et al., 2018; Su et al., 2015b; Fidler et al., 2012), which treat pose estimation

as a classification task by predicting a single pose bucket (with width around 15 degrees).

While BEOs and HBEOs produce continuous pose estimates, none of these approaches

explicitly verify that their estimates of shape and pose are consistent with the observed

64

depth or RGB input. Our proposed approach predicts a distribution over possible object

poses—from a single segmented depth-image—and constructs a pose consistency prior

based on agreement between the predicted object silhouette and input image. To acom-

plish this, we modify the HBEO framework to produce a multimodal distribution over

poses instead of a point-estimate, and develop an efficient 2D pose-consistency score by

projecting shape-pose estimates back into the input image. This consistency score pro-

vides the basis of a prior probability over poses and allows the use of a sampling-based

approximation to themaximum a posteriori estimate of 3D pose. We evaluate our approach

empirically on several thousand 3D objects across three classes from the ShapeNet dataset

(Chang et al., 2015) and on roughly three thousand chairs from the Pix3D dataset (Sun

et al., 2018). Our results show a dramatic decrease in gross pose error (ε > 15◦) compared

to the previous state-of-the-art, HBEOs, and ablation analysis demonstrates a significant

performance contribution from both the density prediction and input-verification compo-

nents of our system. Furthermore, by dynamically varying the number of samples used

to produce a pose-estimate, our approach becomes an any-time method; while it signif-

icantly outperforms existing methods with only a few samples, it produces increasingly

high-quality pose estimates given a longer time budget.

5.1.1 Background: Mixture Density Networks

Mixture Density Networks (MDNs) were first proposed by Bishop (1994) as a method

for predicting multimodal distributions, rather than point-estimates, when using neural

networks for regression. Let x be inputs to the model and y be the desired regression

target; a conventional regression network predicts ŷ directly from x while anMDN predicts

a conditional density function P(y |x).

MDNs model P(y |x) as a mixture of parameterized distributions with a common

choice being themultivariateGaussianmixturemodel (MV-GMM)with probability density

65

function:

p(y|θ) =
c∑

i=1
αiN(y |µ i,Σi), (5.1)

where θi = {αi, µ i,Σi} is the mixing coefficient, mean, and covariance of component i.

The network predicts these mixture parameters by learning the function θ = f (x) while a

conventional regression network learns y = f (x). As a result, if y ∈ Rn, a network that

directly predicts y would have size n output while an MV-GMM-MDN would produce

output of size c(n2 + n + 1), where c is the number of mixture components. To reduce the

output size of MDNs, it is common to assume a diagonal covariance for each component,

in which case the output size becomes c(2n + 1). During training, each gradient update

seeks to minimize the negative log-likelihood of observed data:

loss(y, θ) = −ln
c∑

i=1
αiN(y |µ i,Σi). (5.2)

MDN networks have some significant advantages over direct regression, including

non-unimodality and measurable uncertainty. While direct regression learns to predict the

conditional mean of the data, MDNs learn tomodel the shape of the underlying distribution.

In contexts where the target is ill-posed (i.e. there are multiple valid mappings from x to y),

the mean over good solutions may not actually be a reasonable solution itself. Figure 5.1

illustrates this in a simple univariate scenario; the function learned by direct regression with

a least-squares loss is unable to accurately represent the underlying data. MDNs also allow

multiple solutions to be sampled and provide a measure of confidence for each sample via

the predicted conditional PDF. This explicit likelihood estimate provides a natural avenue

for incorporating prior information into estimates in a straightforward and principled way.

66

Y

X

Blue: training points. Red: f (x) learned through direct regression.

Figure 5.1: Ill-posed regression example.

5.2 Predicting Pose Posteriors

We improve pose estimation in two primary ways: 1) predicting multimodal pose distri-

butions instead of point-estimates and 2) incorporating a prior probability dependent on

agreement between predicted pose, shape, and the input depth-image. We construct a

distribution-predicting network using the MDN formulation and show how approximate

maximum likelihood and maximum a posteriori estimates may be obtained via sampling

from its output.

5.2.1 Using Predicted-Shape Priors for Predicting Pose Distributions

In order to incorporate pose priors, we require a probabilistic estimate of pose distribution

conditioned on input observation. To obtain this, we modify the HBEO architecture to

estimate a pose distribution by converting the final layer of the network to a multivariate

GaussianMDN layer. Let zi be the sumof input signals toMDN-output neuron i and assume

predicted components have diagonal covariance. Each covariance value is estimated using

67

a translated exponential-linear unit (ELU) at the final layer:

σii =

{
zi, ifx > 0
α exp(zi) + ε, if x ≤ 0

}
.

This translated ELU ensures that elements along the diagonal of the predicted covariance

matrix will be strictly positive and that the resulting matrix will be positive semidefinite.

Component mean parameters are estimated straightforwardly with a linear layer and com-

ponent mixing coefficients, α ∈ A, are estimated with a softmax layer, ensuring A forms a

valid discrete probability distribution:

αi =
ezi

Σc
j=1ezj

.

We fixed the number of components to c = 5 and used equation 5.2 to calculate the pose

portion of our loss function:

losspose(y, θ) = −ln
5∑

i=1
αi

exp
(
−1

2 (y − µi)
TΣi

−1(y − µi)

)
√
(2π)k |Σi |

, (5.3)

where θ are the distribution parameters predicted by the network for input image x and y is

the true pose of the object depicted in x. We maintain the same structure used in HBEONet

for the lower layers of the network and for the class and shape output layers—softmax and

linear layers, respectively. The full loss for the network is

L(y) = λplosspose(y) + λslossshape(y) + λclossclass(y) (5.4)

where lossshape(y) is a Euclidean loss over subspace projection coefficients, lossclass(y)

is the multiclass categorical cross-entropy loss over possible classes, and λp, λs, λc are

weighting coefficients over the pose, shape, and class terms.1 Beyond allowing multiple

1 In our experiments, we found that λp = λs = λc = 1 yielded good results.

68

possible poses to be sampled, HBEO-MDNs are more robust to training noise and ob-

ject symmetry than HBEOs because they can explicitly model multiple pose modalities.

Furthermore, MDNs naturally compensate for the representational discontinuity present

in axis-angle formulations of pose. As an example, consider predicting only the z-axis

rotation component of an object’s pose. If the true pose z-component is π, and target poses

are are in the range of (−π, π], then the HBEO network would receive a small loss for

predicting pz = π − ε and a large loss for predicting pz = π + ε , despite the fact that both

predictions are close to the true pose. While other loss functions or pose representations

may alleviate this particular issue, they do so at the expense of introducing problems such

as double coverage, causing the network’s prediction target to no longer be well defined.

By comparison, the HBEO-MDN approach suffers from none of these issues and can ex-

plicitly model object symmetry and representational discontinuities in prediction space by

predicting multimodal distributions over pose.

5.2.2 Pose Priors from Shape and Segmentation

Although generative models that predict an object’s 3D shape exist, those that also estimate

object pose do not explicitly verify that these predictions are consistent with observed depth

input and—while the shape estimate produced by such models is noisy—there is valuable

information to be obtained from such a verification. Let D be a segmented depth-image

input to such a model, ô be the predicted shape of the object present in D, and R̂(ô) be the

estimated 3DOF rotation transforming ô from canonical pose to the pose depicted in D.

Assuming known depth camera intrinsic parameters, we can project the estimated shape

and pose of the object back into a 2D depth-image via D̂R = f (R̂(ô)) where the projection

function f (x) simulates a depth camera. Intuitively, if the shape and pose of the observed

object are correctly estimated, and the segmentation and camera intrinsics are accurate,

then ∆D = | |D − D̂R | | = 0 while errors in these estimates will result in a discrepancy

between the predicted and observed depth-images. As prior work has shown pose to be the

69

least reliable part of the pipeline (Sun et al., 2018), we assume that error in R̂ will generally

dominate error in the other portions of the process and thus employ ∆D to refine R̂.

Let T = SDF(D) be the 2D signed distance field (Osher and Fedkiw, 2003) calculated

from D, we define an image-space error score between segmented depth-images as

eR = | |SDF(D) − SDF(D̂R)| | f (5.5)

where SDF(D) considers all non-masked depth values to be part of the object and | | · | | f

denotes the Frobenius norm. Figure 5.2 illustrates the masked depth input and SDF for an

example object: the first column denotes the true 3D object (top), observed depth-image

(middle) and resulting SDF (bottom) while the second and third columns depict estimated

3D object shape, depth-image, and resulting SDF. Note that the SDF corresponding to an

accurate pose-estimate closely matches that of the observed input while the poor estimate

does not. The calculation of error in depth-image-space has several advantages; because

it operates in 2D image space, distance fields are both more efficient to calculate than in

the 3D case and better defined because the observed input is partially occluded in 3D but

fully observable from the single 2D perspective of the camera. Furthermore, by using

the SDF instead of raw depth values, our error gains some robustness to sensor noise and

minor errors in predicted shape. To transform this error into a pose prior, we take the

quartic-normalized inverse of the score, producing the density function

pprior(R̂) =
1

e4
R + ε

. (5.6)

5.2.3 Sampling Pose Estimates

It is possible to obtain approximate maximum likelihood (MLE) andmaximum a posteriori

(MAP) pose estimates by sampling from the pose distribution induced by the predicted θ.

Let R denote the set of n pose estimates sampled the HBEO-MDN network and Ri ∈ R be

70

True Object Poor Pose Estimate Good Pose Estimate

Figure 5.2: Example output of HBEO-MDN net evaluated on a car.

a single sampled pose. From equation 5.1, the approximate MLE pose estimate is

R̂MLE = argmaxRi∈R

c∑
i=1

αiN(Ri |µ i,Σi) (5.7)

while incorporating equation 5.6 produces an approximate MAP pose estimate of

R̂M AP = argmaxRi∈R
1

e4
Ri
+ ε

c∑
i=1

αiN(Ri |µ i,Σi). (5.8)

As n → ∞, equations 5.7 and 5.8 approach the true MLE and MAP pose estimates,

respectively. As a result, HBEO-MDN is a variable-time method for pose estimation, with

prediction accuracy improving as computation time increases.

71

5.3 Experimental Evaluation

We evaluated our approach via an ablation analysis on three datasets consisting of cars,

planes, and couches taken from ShapeNet (Chang et al., 2015) for a total of 6659 training

objects and 3098 test objects. We also compared to two RGB-based approaches on the

Pix3D chair dataset. Depth-based approaches were provided with segmented depth-image

input and RGB-based approaches were given tight bounding boxes around objects; in the

wild, these segmentations could be estimated using dense semantic segmentation such as

MASK-RCNN (He et al., 2017). For the ablation experiments, HBEOs and HBEO-MDNs

were trained for each category of object with 2798 couches, 2986 planes, and 875 cars

used. During training, depth-images from random views2 were generated for each object

for a total of 2.7M training images. Evaluation datasets were constructed for each class

containing 1500 views from 50 cars, 2300 views from 947 planes, and 2101 views from 368

couches. The HBEO and HBEO-MDN models used identical subspaces of size d = 300

for each object class, predicted size 643 voxel objects, and were trained for 25 epochs (both

models converged at similar rates).3

We examined two forms of HBEO-MDN, an ablation that used theMLE approximation

from equation 5.7 (HBEO-MDN Likelihood) and the full method which uses the posterior

approximation defined in equation 5.8 (HBEO-MDN Posterior). The performance of

HBEO-MDN Likelihood illustrates the contribution of the MDN portion of our approach

while HBEO-MDN Posterior shows the efficacy of explicitly verifying possible solutions

against the observed depth-image. To ablate the impact of the generative portion of our

model, we also evaluated two baselines, Random Sample + Oracle, which uniformly

sampled poses from SO(3) and was provided with an oracle to determine which of the

sampled poses was closest to ground truth, and Random Sample + SDF Error, which

2 Azimuth and elevation were sampled across the full range of possible angles while roll was sampled from
0-mean Gaussian distribution with 99-percent mass within the range [−25◦, 25◦].

3 Models were trained using the Adam optimizer with α = 0.001 and evaluated on an Nvidia 1080ti GPU.

72

Table 5.1: ShapeNet pose estimation performance—mean error and runtime

Mean Angular Error (Lower is Better)

Method N Car Plane Couch Runtime

HBEO-MDN Likelihood 5 6.92◦ 11.43◦ 10.84◦ 0.07s
HBEO-MDN Likelihood 25 6.10◦ 10.81◦ 10.77◦ 0.13s
HBEO-MDN Likelihood 100 6.26◦ 10.64◦ 10.80◦ 0.36s
HBEO-MDN Posterior 5 4.83◦ 9.77◦ 9.59◦ 0.12s
HBEO-MDN Posterior 25 3.70◦ 8.45◦ 8.12◦ 0.32s
HBEO-MDN Posterior 100 3.23◦ 8.06◦ 7.50◦ 1.06s
HBEO N/A 9.45◦ 13.29◦ 18.84◦ 0.01s

Table 5.2: ShapeNet pose estimation performance—gross-error incidence rate

Error > 15◦ (Lower is Better)

Method N Car Plane Couch

HBEO-MDN Likelihood 5 3.73 % 10.87 % 9.57 %
HBEO-MDN Likelihood 25 2.67 % 9.78 % 9.09 %
HBEO-MDN Likelihood 100 2.80 % 9.65 % 8.95 %
HBEO-MDN Posterior 5 1.80 % 8.13 % 8.09 %
HBEO-MDN Posterior 25 1.20 % 6.22 % 6.38 %
HBEO-MDN Posterior 100 0.93 % 5.78 % 5.95 %
HBEO N/A 6.87 % 13.57 % 31.27 %

uniformly sampled poses from SO(3) and used equation 5.5 to select a single pose estimate

from these samples.

Figure 5.3 gives the performance of the approach across all three ShapeNet evaluation

datasets as a function of the number of samples used, note that HBEOs do not sample

solutions and thus produce a line with slope of zero. Error ranges indicate the 95 percent

confidence estimate of the mean. Table 5.1 contains performance and inference-time at

various sampling values while Table 5.2 contains the frequency of large pose errors of

at least 15 degrees. HBEO-MDN Posterior substantially outperformed other approaches,

even with a limited sample size.

HBEOs, while having generally inferior performance to both HBEO-MDN varieties,

struggled most significantly on the couch dataset. We hypothesize that this is due to the

73

a: Car Dataset b: Car Dataset (Enlarged)

c: Plane Dataset d: Plane Dataset (Enlarged)

e: Couch Dataset f: Couch Dataset (Enlarged)

Figure 5.3: Mean pose error.

74

symmetry present in couches when viewed from the side, where only small aspects of the

image disambiguate left from right. Because the MDN approaches can predict multimodal

pose estimates, they can better model this symmetry. Interestingly, our baseline of Sample

+ SDF Error performed extremely poorly and only slightly better than selecting a pose

estimate at random. It appears that because shape error is computed using predicted object

shape, and not ground truth, it is too noisy of a signal to be directly useful—it can dis-

ambiguate between highly probable pose-candidates but is not suitable for disambiguating

between arbitrary poses. Furthermore, while pose estimation with HBEO-MDNs is slower

than with HBEOs, the most expensive HBEO-MDN Posterior method can still produce

multiple predictions a second; if more time is available, a higher quality estimate can

be obtained by increasing the number of evaluated samples. For a fixed time budget,

the Posterior version of HBEO-MDNs outperformed the Likelihood variety, even though

approximating the MAP will necessitate using fewer samples than the MLE.

We also compared against two RGB-based category-level pose estimation methods,

Pix3D (Sun et al., 2018) and Render For CNN (Su et al., 2015b) on the Pix3D dataset.

All methods were trained on the ShapeNet chair category and evaluated on the 2894 non-

occluded chairs in Pix3D; Pix3D and Render for CNN used RGB images as their input

while HBEOs and HBEO-MDNs were provided rendered depth-images from the same

viewpoint. Because Pix3D and Render for CNN produce discretized poses, the output

of HBEO and HBEO-MDN was discretized for comparison. Table 5.3 contains these

results for multiple levels of discretization (a larger number of possible views equates to

requiring more pose-estimation accuracy and the entries in the table indicate the proportion

of objects with correctly estimated pose-bin). Our full method, HBEO-MDN-Posterior4

achieved the best performance, along both azimuth and elevation, of all models when the

number of bins was high, with HBEOs performing competitively as the bin size became

larger. Interestingly, HBEOs slightly outperformed HBEO-MDN with very coarse bins

4 HBEO-MDN variants utilized 100 samples.

75

Table 5.3: Discretized Pix3D pose estimation performance.

Pose-bin classification accuracy (higher is better).
Azimuth Elevation

Number of Bins 4 8 12 24 4 6 12

Render For CNN (Su et al., 2015b) 0.71 0.63 0.56 0.40 0.57 0.56 0.37
Pix3D (Sun et al., 2018) 0.76 0.73 0.61 0.49 0.87 0.70 0.61
HBEO 0.87 0.76 0.69 0.53 0.96 0.91 0.71
HBEO-MDN-Likelihood 0.78 0.73 0.70 0.59 0.97 0.93 0.75
HBEO-MDN-Posterior 0.80 0.76 0.73 0.62 0.97 0.93 0.75

(90◦) whichwe hypothesize is due to chair symmetry. While chairs are highly asymmetrical

vertically, some variants of chairs lack arms and are thus fairly symmetrical rotationally.

Because HBEOs learn to pick the average of good solutions, their predictions may be more

likely to fall within 90 degrees of the true solution than HBEO-MDNs—which will tend to

predict a mode of the distribution instead of the mean. This is primarily an artifact of using

a sampling strategy to select a single pose instead of evaluating the entire MDN-predicted

pose distribution.

5.4 Discussion

We found that explicitly incorporating consistency between observations, predicted 3D

shape, and estimated pose provided significant pose-estimation performance. We also

discovered that modeling pose via a multimodal distribution instead of a point-estimate

significantly improved the reliability of our system, with only a moderate computational

cost. Empirically, HBEO-MDNs significantly improved on the existing state-of-the-art,

providing a significant reduction in average-case pose error and incidence of catastrophic

pose-estimation failure. Furthermore, because we employ a sampling method to obtain a

final estimate from this distribution, the algorithm becomes variable time and our exper-

imental analysis suggests that in most cases, only a very small number of samples—on

the order of three or four—need be obtained to outperform a point-estimate producing

76

approach. With additionally optimization of the sampling method employed, specifically

batching the sampling operation, it should be possible to produce a reasonable number of

pose samples with virtually zero computational overhead compared to producing a single

point estimate. While our 2D input-pose-shape consistency prior does require some cal-

culations, if time is highly constrained, we show that sampling an approximate maximum

likelihood pose estimate–with no consistency prior—still outperforms direct regression.

77

6

Conclusion

In this chapter, we discuss future work in object-centric robot perception and a recent

application of BEOs natural language grounding. We begin by presenting a collaborative

effort to ground natural language object descriptions to partially observed 3D shape (via

depth images); by using BEOs as the underlying object representation, we were able to

train our system successfully with only a small amount of language data describing depth

images obtained from a single viewpoint. We also discuss future work: incorporation of

multimodal input—including both RGB and depth images, joint segmentation prediction,

refinement of perceptual estimates with multiple observations, detection of perceptual

failure, and modeling arbitrary articulated and deformable objects.

6.1 Example BEO Application: Grounding Natural Language Descrip-
tions to Object Shape

As robots grow increasingly capable of understanding and interacting with objects in

their environments, a key bottleneck to widespread robot deployment in human-centric

environments is the ability for non-domain experts to communicate with robots. One of the

most sought after communicationmodalities is natural language, allowing a non-expert user

78

Car 0
Description

Car 1
Description

Small Language Dataset

Joint
Embedding

GloVe
Language

Embedding

Large Shape Dataset

HBEO
Model

HBEO Training Data

HBEOs are trained on non-language annotated data—pictured in the grey box—and the
learned HBEO shape embedding is then used as a viewpoint-invariant compact

representation of 3D shape.

Figure 6.1: An overview of our language grounding system.

to verbally issue directives. In collaboration with several colleagues at Brown University

(Cohen et al., 2019),1 we apply natural language to the task of object-specification—

indicating which of several objects is being referred to by a user. This task is critically

important when tasking a robot to perform actions such as retrieving a desired item.

Our system grounds natural-language object descriptions to object instances by combin-

ing HBEOs with a language embedding (Pennington et al., 2014); this coupling is achieved

via a Siamese network (Bromley et al., 1994) which produces a joint embedding space for

both shape and language. As a result, we are able to train the object-understanding portion

of our system from a large set of non-language-annotated objects, reducing the need for

expensive human-generated object attribute labels to be obtained for all the training data.

Additionally, because the language model learns to predict language groundings from a

1 Primary authorshipwas shared betweenVanyaCohen, myself, andThaoNguyen. My primary contribution
to the work was constructing a viewpoint-invariant object representation using HBEOs and integrating the
perceptual pipeline into the language portion of the system.

79

low-dimensional shape representation, instead of high-dimensional 2.5D or 3D input, the

complexity of the languagemodel—and amount of labeled training data required—is small.

Finally, unlike a single monolithic system which would require human-annotated depth-

images from all possible viewpoints, our approach allows a small number of annotated

depth-images from a limited set of viewpoints to generalize to significantly novel partial

views and novel objects.

We evaluate our system on a dataset of several thousand ShapeNet (Chang et al., 2015)

objects across three classes (1250 couches, 3405 cars, and 4044 planes),2 paired with

human-generated object descriptions obtained from Amazon Mechanical Turk (AMT). We

show that not only is our system able to distinguish between objects of the same class,

even when objects are only observed from partial views. In a second experiment, we

train our language model with depth-images obtained only from the front of objects and

can successfully predict attributes given test depth-images taken from rear viewpoints.

This view-invariance is a key property afforded by our use of an explicitly learned 3D

representation—monolithic end-to-end depth to language approaches are not capable of

handling this scenario. We demonstrate a Baxter robot successfully determining which

object to pick based on a Microsoft Kinect depth-image of several candidate objects and

a simple natural language description of the desired object as shown in Figure 6.3. For

details our language model and some additional experimental results, please see the full

paper (Cohen et al., 2019).

6.1.1 Learning a Joint Language and Shape Model

Our objective is to disambiguate between objects based on depth-images and natural

language descriptions. The naive approach would be to directly predict an object depth-

image given the object’s natural language description, or vice versa. Such an approach

would require language and depth-image pairs with a large amount of viewpoint coverage,

2 We used a 70% training, 15% development, and 15% testing split.

80

an unreasonable task given the difficulty of collecting rich human-annotated descriptions

of objects. Instead, we separate the language-modeling portion of our system from the

shape-modeling portion. Our approach learns to reason about 3D structure from non-

annotated 3D models—using HBEOs—to learn a viewpoint-invariant representation, of

object shape. We combine this representation with a small set of language data to enable

object-language reasoning.

Given a natural language phrase and a segmented depth-image, our system maps the

depth-image into a compact viewpoint-invariant object representation and then produces

a joint embedding: both the phrase and the object representation are embedded into

a shared low-dimensional space. During training, we force this shared space to co-

locate depth-image and natural language descriptions that correspond to each other while

disparate pairs will embed further apart in the space. During inference, we compute

similarity in this joint space between the input object-description and candidate 3D objects

(observed via depth images) to find the nearby object that most closely matches the given

description. This permits a larger corpus of 3D shape data to be used with a small set of

human-annotated data. Because the HBEO module produces viewpoint-invariant shape

predictions predictions from a single depth-image, the human annotations need not label

entire 3D objects, but could instead be collected on images for which no true 3D model

is known. These annotations could also be from only a very limited set of views because

the HBEO shape representation provides for generalization across viewpoints. For our

experiments, we used three classes of objects from ShapeNet: couches, cars, and airplanes

and we collected object natural language text descriptions through Amazon Mechanical

Turk (AMT).

6.1.2 Language Grounding Experiments and Results

We evaluate the ability of our system to retrieve the requested object—specified via a

natural language description—from a pool of three possible candidates and show results

81

Figure 6.2: View-transfer experiment example.

for three training conditions: 1) full-view: a baseline where the language portion of the

system is given a ground-truth 3D model for the object it is observing, 2) partial-view:

the scenario where the system is trained and evaluated with synthetic depth images over

a wide variety of possible viewpoints, 3) view-transfer: the system is identical to the

previous partial-view case, except all training images come from a frontal viewpoint and

all evaluation images are obtained from a side-rear view. In all experiments, the input

HBEO embeddings of our network were trained directly from all meshes in the training

dataset while language-descriptions were generated for a subset of these objects. In

the partial-view and view-transfer cases, HBEONet was trained using 600 synthetically

rendered depth-images, across a variety of viewpoints, from each 3D mesh.

Object Retrieval from Natural Language

To evaluate the retrieval performance of our model, we randomly selected a set of 10

depth-images for each object in our test set. Note that the full-view case used the 3D model

for each object in the test set to provide an oracle-generated BEO projection for that object.

In each retrieval test, we showed the system three different objects along with a natural

language description of one of those objects and we report the resulting object-retrieval

accuracy of our system in Table 6.1. We also evaluated the robustness of our method to

substantial viewpoint differences between testing and training data by training our language

model with only frontal views while evaluating model performance based only on rear-side

views. Figure 6.2 shows an example training (left) and testing (right) depth-image from

82

our view-transfer experiment for a car instance; the underlying HBEO representation maps

these substantially different viewpoints to the similar locations in the HBEO subspace.

Table 6.1: Object Retrieval Results (Percent Correct)

Object Class Full-view Partial-view View-transfer Human-baseline
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1

Couch 60.6 87.1 58.6 86.3 57.6 85.1 77.3
Car 74.6 93.8 73.5 93.4 72.2 93.1 76.0

Airplane 66.7 92.8 67.0 92.5 68.3 92.7 69.3

We also compare the performance of our system to a human baseline for the retrieval

task. Humans are expert symbol grounders and are able to ground objects from incomplete

descriptions rather well from an early age (Rakoczy et al., 2005). We showed 300 human

users (via AMT) three objects and one language description, where the language was

collected from AMT for one of the objects shown, and asked them to pick the object to

which the language refers. These results are also shown in Table 6.1. We found human

performance to be similar to our system’s top-1 retrieval accuracy.

6.1.3 Picking Objects from Depth Observations and Natural Language Descriptions

We implemented our system on a Baxter robot: a mechanically compliant robot equipped

with two parallel grippers. For this evaluation, we obtained realistic model couches

(designed for use in doll houses) to serve as our test objects and used the same (synthetically

trained) network used in the prior experiments, without retraining it explicitly on Kinect-

generated depth-images. We passed a textual language description of the requested object

into our model along with a manually-segmented and scaled Kinect-captured depth-image

of each object in the scene. The robot then selected the observed object with the highest

cosine-similarity with the language description and performed a pick action on it. Our

system successfully picked up desired objects using phrases such as “Pick up the couch

with no arms”.

83

The system receives object depth images, the natural language command “Pick up the
bent couch”, and correctly retrieves the described couch.

Figure 6.3: Our language grounding system on the Baxter robot.

Additional Remarks

Our system was able to ground natural language descriptions to physical objects observed

via depth image—with close to human-level performance in some instances and with

only a limited amount of language data obtained from a restricted viewpoint—because

our approach decoupled 3D shape understanding from language grounding. By using

HBEOs to learn about the relationship between partially observed objects and their full 3D

structure before introducing the language-grounding problem, the language portion of our

system did not have to learn to reason in 3D, only to ground shape to a low-dimensional

84

feature vector. We believe this application serves as a model for how many robot tasks can

be simplified given a general-purpose perceptual system; allow the perception system to

learn a universally useful object representation and then use that representation for specific

applications instead of retraining the entire system from scratch.

6.2 Future Work

While BEOs and their extensions form the basis of a general object-centric robot perception

system, significant work is still required to enable fully robust perception. In this section,

we discuss some of the promising avenues of exploration for further advancements in the

field.

6.2.1 Multimodal Input

While existing object-centric perception systems typically utilize a single input modality,

real robots are equipped with a variety of sensors which could be leveraged to improve

perceptual accuracy and reliability. Some of the most commonly encountered sensor types

include depth sensors, RGB cameras, event-based cameras, ultrasonic sensors, and tactile

sensors. A particular challenge of multi-modal input is versatility—ideally a perceptual

system should be able to make predictions based on any subset of the sensing modalities

it is trained upon; a perception module that requires ultrasonic input, for example, will be

useless on the large number of robots not equippedwith such a sensor. Further complicating

matters, in an environment where objects may move, temporally aligning sensors that

capture data at different refresh rates is difficult—even before accounting for the effects of

rolling or global shutters and synchronization of the sensors. One straightforward approach

is to train individual perceptual systems for each desired sensing modality and then fuse

the output, possibly via ensemble methods. This naive method has drawbacks however:

a significant amount of training data is required for each type of sensor and sensing sub-

modules are unable to share learned features between themselves. How to optimally fuse

85

multiple input modalities thus remains an open, and critically important, question.

6.2.2 Joint Segmentation

Current object-centric perception assumes the existence of a segmentation algorithm to

pre-process input, either in the form of a pixel-level mask or an object bounding box.

While recent years have seen significant advancements in such methods (He et al., 2017),

segmentation is generally treated as a black box, despite having significant relevance

to physical object characteristics. In the future, segmentation should be incorporated

into object representations: given non-segmented input, image-level segmentation masks

should be jointly estimated along with object shape and pose. This approach would ensure

that shape, pose, and segmentation estimates are consistent, extending the approach taken

by HBEO-MDNs. While HBEO-MDNs ensure that pose estimates are consistent with

predicted shape and 2D masks, a fully joint method would jointly predict all three aspects.

6.2.3 Refining Estimates via Multiple Observations

Robots operating in the physical world obtain observations over a continuous period of

time and generally—if the robot is in motion—from multiple viewpoints. To fully take

advantage of this, perception systems should aggregate belief over time, from various

viewpoints. Possible avenues of exploration includeLSTM-based networks (Hochreiter and

Schmidhuber, 1997), visual-attention-based transformer networks (Girdhar et al., 2019),

and 3D convolutional networks, all of which are well-situated to reason about time-series

data. Filtering approaches, such as Bayesian filters (Särkkä, 2013) could also be useful in

this setting as they can naturally incorporate non-uniform prediction confidences, lending

more weight to more certain observations. If objects besides the robot are moving in the

scene, issues of observation correspondence also present themselves; future object-centric

perceptual systems will have to either implicitly or explicitly estimate object associations

across spatio-temporally separate observations.

86

6.2.4 Detecting Perception Failure

Because no perception system achieves perfect reliability, it is important to explicitly

consider failure modes. In robotics particularly, explicitly reasoning about uncertainty is

valuable; in the case of high-uncertainty, planning can be made more conservative and

actions can be taken to gather more information. Recently, novelty-detection methods have

been proposed to detect classification system failure (Hendrycks and Gimpel, 2016; Lee

et al., 2018); The most straightforward of these methods examines the belief distribution

produced by a classification system and labels relatively uniform distributions as novel

cases while belief distributions with large density concentrations are determined to be

of known class. A simple initial formulation of this is as follows: let C be a discrete

probability distribution, over k possible classes, produced by the classification module

where ci is the predicted probability for class i. H(C) is the entropy of this distribution:

H(C) =
k−1∑
i=0

cilog
1
ci
,

allowing classifier output to be thresholded such that

object_class =

{
argmaxi ci ∈ C, if H(C) < α

unknown, otherwise.

While this particular approach is only applicable to classification tasks, and not regression,

other methods exist, such as Bayesian Neural Networks (Neal, 2012) that are capable of

providing such confidence estimates. Unfortunately, while such theoretical tools exist, their

performance on real systems has tended to lag behind their theoretical promise and a silver

bullet for quantifying prediction uncertainty remains elusive. A lack of prediction stability

over time could also be a useful indicator of inference failure. If the system’s belief about

an objects class, shape, or pose is changing dramatically over time, it is a good indicator

that the model has not produced a reliable prediction. While particular failure mode is only

87

one of multiple possible types of perceptual failure, it may still provide a useful basis for

improving perceptual reliability.

6.2.5 Modeling Articulated and Deformable Objects

Many objects in the real world are not rigid; there are many virtually ubiquitous items in

human homes—such as cabinets, microwaves, doors, pillows, and blankets—that are not

well represented without modeling articulation or deformation. While this problem has

been studied in the context of particular object classes such as human bodies (Ramakrishna

et al., 2014) and human hands (Tompson et al., 2014; Carley and Tomasi, 2015), these

existing methods can only predict the parameters of a parametric object model and cannot

autonomously create such a model. Other work exists which segments an object into

multiple rigid articulating parts, based on multiple input meshes corresponding to that

object in several configurations (Anguelov et al., 2004) or RGBD images (Katz et al., 2013),

but these approaches are either unable to generalize to novel objects or do not reason about

occluded object geometry. Eventually, object-centric robot perception must be capable of

discovering, through multiple observations and possibly interaction, that a particular object

is articulated or deformable and once such a property has been discovered, the underlying

object representation must be general enough to allow modeling of this articulation or

deformation.

6.3 Final Remarks

This work presents a novel framework for representing 3D objects that is designed to be

the foundation of a general-purpose object-centric robot perception system. We proposed

our first contribution, BEOs, as a way to reduce the dimensionality of 3D completion.

Furthermore, we hypothesised that performing classification, pose-estimation, and 3D

completion jointly made sense, from both a computational efficiency perspective and a

performance standpoint, as these tasks are highly interrelated. We found that the BEO

88

approach was data-efficient, able to learn from as few as 20 example objects, and scaled

to high resolutions. We also demonstrated significant 3D shape completion improvements

from the current state-of-the-art.

While BEOs were a step towards general object-centric 3D perception, they did not

fully satisfy all of the requirements for a useful robotic perception system. Critically,

BEOs struggled with pose-estimation in greater than one degree of freedom and required

partially-observed input to be voxelized. Taking inspiration from the increasing perfor-

mance CNN-based shape completion approaches, we extended BEOs to employ a non-

linear convolutional projection module, creating HBEOs (Burchfiel and Konidaris, 2018).

HBEOs retained the linear object subspace described in BEOs, but replaced the analytical

projection step with a CNN capable of estimating class, pose, and a BEO subspace projec-

tion from a single input depth image. HBEOs exhibited higher performance than in every

metric we examined, achieving state-of-the-art for depth-based methods in 3D completion,

category-level pose estimation, and classification. Crucially, HBEOs are able to perform

inference in realtime (roughly 100hz)—ensuring they are fast enough to not become a

bottleneck when running on a real system. We then proposed to explicitly incentivize

consistency between an observed depth image and and the depicted object’s estimated 3D

shape and pose, more fully taking advantage of the close relationship between an object’s

shape and pose, and an observation of that object. The resulting system, HBEO-MDN

(Burchfiel and Konidaris, 2019), also introduced the use of a mixture density network

architecture, producing a distribution over possible object poses instead of a single esti-

mate. This multimodal distribution turned out to improve performance of the system, even

without including our observation-consistency prior, which we hypothesize is due to the

ill-posed nature of pose estimation with symmetrical objects and the artifacts that arise with

axis-angle pose representations. While HBEO-MDNs outperformed HBEOs for category-

level pose estimation, and constitute the current state-of-the-art across input modalities for

this task, the concept behind them is general; any perceptual system capable of generating

89

3D shape predictions and pose estimates can be extended to include an MDN-based pose

distribution and our observation-consistency prior.

One of the main insights we obtained from this work is that the tight relationship

between pose, shape, and object type, benefit general approaches that reason jointly over

these characteristics. With HBEO-MDNs in particular, the pose-estimation performance

gains we observedwould not have been possible if ourmethodwas not jointly estimating 3D

shape. In the future, we suggest extending this principal to fully include 2D segmentation,

class, pose, and 3D shape, estimating a full joint distribution over all of these attributes.

We also gained an appreciation for explicitly representational invariance, in collaborative

work on grounding natural language to 3D shape (Cohen et al., 2019), we took advantage

the invariance of BEO shape representations, with respect to object pose pose, in order

to dramatically reduce the amount of language-annotated training data our grounding

system required. We believe that intelligently decomposing perceptual output into these

selectively invariant representations will reduce the required complexity of higher-level

perceptual systems that upon these representations.

While general-purpose and robust object-based 3D perception remains an open and

challenging problem, this work has taken useful strides towards making such a system a

reality. In the future, we expect general perceptual systems to become increasingly high-

performance and robust, leveraging multiple input sensing modalities, reasoning about

multiple observations from various spatiotemporal locations, and producing full joint belief

distributions—across multiple object attributes—complete with prediction confidences.

We further expect explicitly low-dimensional representations, be they linear or nonlinear,

to continue to play a critical role in realizing such representations by allowing relatively

simple machine learning models—that do not require enormous volumes of training data—

to be employed for higher level reasoning and robot control.

90

Bibliography

Andersen, A. H., Gash, D. M., and Avison, M. J. (1999), “Principal component analysis
of the dynamic response measured by fMRI: a generalized linear systems framework,”
Magnetic Resonance Imaging, 17, 795–815.

Anguelov, D., Koller, D., Pang, H., Srinivasan, P., and Thrun, S. (2004), “Recovering
articulated object models from 3D range data,” inConference on Uncertainty in artificial
intelligence, pp. 18–26.

Attene, M. (2010), “A lightweight approach to repairing digitized polygon meshes,” The
Visual Computer, 26, 1393–1406.

B. Browatzkiand, J. Fischer, G. B. H. H. B. and Wallraven, C. (2011), “Going into depth:
Evaluating 2D and 3D cues for object classification on a new, large-scale object dataset,”
in International Conference on Computer Vision Workshops, pp. 1189–1195.

B. Drost, M. Ulrich, N. N. and Ilic, S. (2010), “Model globally, match locally: Efficient
and robust 3D object recognition,” in Computer Vision and Pattern Recognition, pp.
998–1005.

Bai, S., Bai, X., Zhou, Z., Zhang, Z., and Jan Latecki, L. (2016), “GIFT: A Real-Time and
Scalable 3D Shape Search Engine,” in Computer Vision and Pattern Recognition.

Bakry, A. and Elgammal, A. (2014), “Untangling object-view manifold for multiview
recognition and pose estimation,” in European Conference on Computer Vision, pp.
434–449.

Bergamo, A. and Torresani, L. (2010), “Exploiting weakly-labeled Web images to improve
object classification: a domain adaptation approach,” in Advances in Neural Information
Processing Systems, pp. 181–189.

Besl, P. J. and McKay, N. D. (1992), “Method for registration of 3-D shapes,” Pattern
Analysis and Machine Intelligence, 14, 239–256.

Bishop, C. M. (1994), “Mixture density networks,” Technical report, Aston University,
Birmingham.

91

Bishop, C. M. (1999a), “Bayesian PCA,” in Advances in Neural Information Processing
Systems, pp. 382–388.

Bishop, C. M. (1999b), “Variational principal components,” in International Conference
on Artificial Neural Networks, pp. 509–514.

Bore, N., Ambrus, R., Jensfelt, P., and Folkesson, J. (2017), “Efficient retrieval of arbitrary
objects from long-term robot observations,” Robotics and Autonomous Systems, 91,
139–150.

Boutsidis, C., Garber, D., Karnin, Z., and Liberty, E. (2015), “Online principal components
analysis,” in ACM-SIAM Symposium on Discrete Algorithms, pp. 887–901.

Breiman, L. (2001), “Random forests,” Machine learning, 45, 5–32.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994), “Signature verifi-
cation using a" siamese" time delay neural network,” in Advances in neural information
processing systems, pp. 737–744.

Burchfiel, B. and Konidaris, G. (2018), “Hybrid Bayesian Eigenobjects: Combining Lin-
ear Subspace and Deep Network Methods for 3D Robot Vision,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 6843–6850.

Burchfiel, B. and Konidaris, G. (2019), “Probabilistic Category-Level Pose Estimation via
Segmentation and Predicted-Shape Priors,” arXiv: 1905.12079.

Carley, C. and Tomasi, C. (2015), “Single-frame indexing for 3D hand pose estimation,”
in Proceedings of the IEEE International Conference on Computer Vision Workshops,
pp. 101–109.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015), “ShapeNet: An
Information-Rich 3D Model Repository,” Tech. Rep. arXiv:1512.03012 [cs.GR], Stan-
ford University — Princeton University — Toyota Technological Institute at Chicago.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017), “Deeplab:
Semantic image segmentationwith deep convolutional nets, atrous convolution, and fully
connected CRFS,” IEEE transactions on pattern analysis and machine intelligence, 40,
834–848.

Chen, W., Liu, Y., Kira, Z., Wang, Y., and Huang, J. (2019), “A closer look at few-shot
classification,” arXiv preprint arXiv:1904.04232.

Chen, Z. (2003), “Bayesian Filtering: FromKalman Filters to Particle Filters, and Beyond,”
Statistics, 182.

92

Cheng, Z., Chen, Y., Martin, R. R., Wu, T., and Song, Z. (2018), “Parametric modeling of
3D human body shapeâĂŤA survey,” Computers & Graphics, 71, 88–100.

Choi, C., Taguchi, Y., Tuzel, O., Liu, M. Y., and Ramalingam, S. (2012), “Voting-based
pose estimation for robotic assembly using a 3D sensor,” in 2012 IEEE International
Conference on Robotics and Automation, pp. 1724–1731.

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S. (2016), “3D-R2N2: A unified
approach for single and multi-view 3D object reconstruction,” in European conference
on computer vision, pp. 628–644.

Cohen, V., Burchfiel, B., Nguyen, T., Gopalan, N., Tellex, S., and Konidaris, G.
(2019), “Grounding Language Attributes to Objects using Bayesian Eigenobjects,”
arXiv:1905.13153.

Crow, F. (1987), “The origins of the teapot,” IEEE Computer Graphics and Applications,
7, 8–19.

D. Huber, A. Kapuria, R. D. and Hebert, M. (2004), “Parts-based 3D object classification,”
in Computer Vision and Pattern Recognition, vol. 2, pp. 82–89.

Dai, A., Qi, C., and Nießner, M. (2017), “Shape Completion using 3D-Encoder-Predictor
CNNs and Shape Synthesis,” in Computer Vision and Pattern Recognition.

Dalal, N. and Triggs, B. (2005), “Histograms of oriented gradients for human detection,”
in international Conference on computer vision and Pattern Recognition, vol. 1, pp.
886–893, IEEE Computer Society.

Daniels, M. and Kass, R. (2001), “Shrinkage Estimators for Covariance Matrices,” Bio-
metrics, pp. 1173–1184.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004), “Efficient graph-based image segmen-
tation,” International journal of computer vision, 59, 167–181.

Fidler, S., Dickinson, S., and Urtasun, R. (2012), “3D Object Detection and Viewpoint
Estimation with a Deformable 3D Cuboid Model,” in Advances in Neural Information
Processing Systems 25, pp. 611–619.

Gehler, P. and Nowozin, S. (2009), “On feature combination for multiclass object classifi-
cation,” in International Conference on Computer Vision, pp. 221–228.

Girdhar, R., Carreira, J., Doersch, C., and Zisserman, A. (2019), “Video action transformer
network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 244–253.

Goodfellow, I., Pouget-Abadie, J., Mirza,M., Xu, B.,Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014), “Generative adversarial nets,” in Advances in neural infor-
mation processing systems, pp. 2672–2680.

93

He, K., Zhang, X., Ren, S., and Sun, J. (2016), “Deep residual learning for image recogni-
tion,” inProceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017), “Mask R-CNN,” in Proceedings
of the IEEE International Conference on Computer Vision, pp. 2980–2988.

Hegde, V. and Zadeh, R. (2016), “FusionNet: 3D Object Classification Using Multiple
Data Representations,” rXiv:1607.05695.

Hendrycks, D. and Gimpel, K. (2016), “A Baseline for Detecting Misclassified and Out-
of-Distribution Examples in Neural Networks,” CoRR, abs/1610.02136.

Hochreiter, S. and Schmidhuber, J. (1997), “Long short-term memory,” Neural computa-
tion, 9, 1735–1780.

Hu, J., Shen, L., and Sun, G. (2018), “Squeeze-and-excitation networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141.

Huang, Y., Cheng, Y., Chen, D., Lee, H., Ngiam, J., Le, Q. V., and Chen, Z. (2018),
“GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism,” CoRR,
abs/1811.06965.

J. Glover, R. R. and Bradski, G. (2011), “Monte Carlo Pose Estimation with Quaternion
Kernels and the Bingham Distribution,” in Robotics: Science and Systems.

Joachims, T. (1998), “Text categorization with support vector machines: Learning with
many relevant features,” in European conference on machine learning, pp. 137–142.

Kar, A., Tulsiani, S., Carreira, J., and Malik, J. (2015), “Category-specific object recon-
struction from a single image,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1966–1974.

Katz, D., Kazemi, M., Bagnell, J. A., and Stentz, A. (2013), “Interactive segmentation,
tracking, and kinematic modeling of unknown 3D articulated objects,” in IEEE Interna-
tional Conference on Robotics and Automation, pp. 5003–5010.

Kaufman, A. E. (1994), “Voxels as a Computational Representation of Geometry,” in in
The Computational Representation of Geometry. SIGGRAPH, p. 45.

Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. (2013a),
“Learning part-based templates from large collections of 3D shapes,” ACM Transactions
on Graphics, 32, 70.

Kim, Y., Mitra, N. J., Yan, D. M., and Guibas, L. (2012), “Acquiring 3D Indoor Envi-
ronments with Variability and Repetition,” ACM Transactions on Graphics, 31, 138:1–
138:11.

94

Kim, Y., Mitra, N. J., Huang, Q., and Guibas, L. (2013b), “Guided Real-Time Scanning of
Indoor Objects,” in Computer Graphics Forum, vol. 32, pp. 177–186.

Kirillov, A., He, K., Girshick, R., Rother, C., and Dollár, P. (2019), “Panoptic seg-
mentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9404–9413.

Korn, M. R. andDyer, C. R. (1987), “3-Dmultiview object representations for model-based
object recognition,” Pattern Recognition, 20, 91–103.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012), “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
pp. 1097–1105.

L. Nan, K. X. and Sharf, A. (2012), “A Search-Classify Approach for Cluttered Indoor
Scene Understanding,” ACM Transactions on Graphics, 31.

Laine, S. and Karras, T. (2010), “Efficient sparse voxel octrees,” IEEE Transactions on
Visualization and Computer Graphics, 17, 1048–1059.

Laumond, J. P. et al. (1998), Robot motion planning and control, vol. 229, Springer.

Learned-Miller, E. G. (2006), “Data driven image models through continuous joint align-
ment,” Pattern Analysis and Machine Intelligence, 28, 236–250.

LeCun, Y. and Bengio, Y. (1995), “Convolutional networks for images, speech, and time
series,” The handbook of brain theory and neural networks, 3361, 1995.

Ledoit, O. andWolf, M. (2015), “Spectrum estimation: A unified framework for covariance
matrix estimation and PCA in large dimensions,” Journal of Multivariate Analysis, 139,
360–384.

Lee, K., Lee, K., Lee, H., and Shin, J. (2018), “A simple unified framework for detecting
out-of-distribution samples and adversarial attacks,” in Advances in Neural Information
Processing Systems, pp. 7167–7177.

Li, Y., Dai, A., Guibas, L., and Nießner, M. (2015), “Database-Assisted Object Retrieval
for Real-Time 3D Reconstruction,” in Computer Graphics Forum, vol. 34, pp. 435–446.

Li, Y., Wang, G., Ji, X., Xiang, Y., and Fox, D. (2018a), “DeepIM: Deep IterativeMatching
for 6D Pose Estimation,” CoRR, abs/1804.00175.

Li, Y., Wang, G., Ji, X., Xiang, Y., and Fox, D. (2018b), “Deepim: Deep iterative matching
for 6d pose estimation,” in Proceedings of the European Conference on Computer Vision
(ECCV), pp. 683–698.

95

Liang, X., Lin, L., Wei, Y., Shen, X., Yang, J., and Yan, S. (2017), “Proposal-free
network for instance-level object segmentation,” IEEE transactions on pattern analysis
and machine intelligence, 40, 2978–2991.

Lin, G., Milan, A., Shen, C., and Reid, I. (2017), “Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1925–1934.

Liu, M., Tuzel, O., Veeraraghavan, A., Taguchi, Y., Marks, T., and Chellappa, R. (2012),
“Fast object localization and pose estimation in heavy clutter for robotic bin picking,”
The International Journal of Robotics Research, 31, 951–973.

Lowe, D. G. et al. (1999), “Object recognition from local scale-invariant features.” in
Interational Conference on Computer Vision, vol. 99, pp. 1150–1157.

Ma, C., Guo, Y., Yang, J., and An, W. (2019), “Learning Multi-View Representation With
LSTM for 3-D Shape Recognition and Retrieval,” IEEE Transactions on Multimedia,
21, 1169–1182.

Marini, S., Biasotti, S., and Falcidieno, B. (2006), “Partial matching by structural descrip-
tors,” in Content-Based Retrieval.

Maturana, D. and Scherer, S. (2015), “Voxnet: A 3D convolutional neural network for
real-time object recognition,” in Intelligent Robots and Systems, pp. 922–928.

Maurer, C. R., Qi, R., and Raghavan, V. (2003), “A linear time algorithm for computing
exact Euclidean distance transforms of binary images in arbitrary dimensions,” Pattern
Analysis and Machine Intelligence, 25, 265–270.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S. (2010), “Recurrent
neural network based language model,” in Eleventh annual conference of the interna-
tional speech communication association.

Narayanan, V. and Likhachev, M. (2016), “PERCH: Perception via Search for Multi-Object
Recognition andLocalization,” in InternationalConference onRobotics andAutomation.

Neal, R. M. (2012), Bayesian learning for neural networks, vol. 118, Springer.

Nguyen, A. and Le, B. (2013), “3D point cloud segmentation: A survey,” in 2013 6th IEEE
Conference on Robotics, Automation and Mechatronics (RAM), pp. 225–230.

Osher, S. and Fedkiw, R. (2003), Signed Distance Functions, pp. 17–22, Springer New
York.

Pennington, J., Socher, R., and Manning, C. (2014), “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543.

96

Qi, C., Su, H., Niessner, M., Dai, A., Yan, M., and Guibas, L. (2016), “Volumetric and
Multi-ViewCNNs for Object Classification on 3DData,” inComputer Vision and Pattern
Recognition.

Quigley, M., Conley, K., P. Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and
Y. Ng, A. (2009), “ROS: an open-source Robot Operating System,” in ICRA Workshop
on Open Source Software, vol. 3.

Rakoczy, H., Tomasello, M., and Striano, T. (2005), “How children turn objects into
symbols: A cultural learning account,” In L. L.Namy (Ed.), Emory symposia in cognition.
Symbol use and symbolic representation: Developmental and comparative perspectives.,
pp. 67–97.

Ramakrishna, V., Munoz, D., Hebert, M., Bagnell, A. J., and Sheikh, Y. (2014), “Pose
Machines: Articulated Pose Estimation via Inference Machines,” in Proceedings of the
European Conference on Computer Vision (ECCV).

R.B. Rusu, G. Bradski, R. T. and Hsu, J. (2010), “Fast 3D recognition and pose using the
Viewpoint Feature Histogram,” in International Conference on Intelligent Robots and
Systems, pp. 2155–2162.

Rios-Cabrera, R. and Tuytelaars, T. (2013), “Discriminatively Trained Templates for 3D
Object Detection: A Real Time Scalable Approach,” in 2013 IEEE International Con-
ference on Computer Vision, pp. 2048–2055.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015), “ImageNet Large
Scale Visual Recognition Challenge,” International Journal of Computer Vision (IJCV),
115, 211–252.

Särkkä, S. (2013), Bayesian filtering and smoothing, vol. 3, Cambridge University Press.

Schäfer, J. and Strimmer, K. (2005), “A shrinkage approach to large-scale covariance
matrix estimation and implications for functional genomics,” Statistical applications in
genetics and molecular biology, 4, 32.

Schiebener, D., Schmidt, A., Vahrenkamp, N., and Asfour, T. (2016), “Heuristic 3D object
shape completion based on symmetry and scene context,” in Intelligent Robots and
Systems, pp. 74–81.

Shen, C. H., Fu, H., Chen, K., and Hu, S. M. (2012), “Structure Recovery by Part
Assembly,” ACM Transactions on Graphics, 31, 180:1–180:11.

Shi, B., Bai, S., Zhou, Z., and Bai, X. (2015), “DeepPano: Deep Panoramic Representation
for 3-D Shape Recognition,” Signal Processing Letters, 22, 2339–2343.

97

Soltani, A., Huang, H., Wu, J., Kulkarni, T., and Tenenbaum, J. (2017), “Synthesizing
3D Shapes via Modeling Multi-view Depth Maps and Silhouettes with Deep Generative
Networks,” Computer Vision and Pattern Recognition, pp. 2511–2519.

Song, S. and Xiao, J. (2016), “Deep Sliding Shapes for Amodal 3D Object Detection in
RGB-D Images,” in Computer Vision and Pattern Recognition.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. (2015a), “Multi-view convo-
lutional neural networks for 3D shape recognition,” in International Conference on
Computer Vision, pp. 945–953.

Su, H., Qi, C. R., Li, Y., and Guibas, L. J. (2015b), “Render for CNN: Viewpoint Esti-
mation in Images Using CNNs Trained with Rendered 3D Model Views,” in The IEEE
International Conference on Computer Vision (ICCV).

Su, J., Gadelha, M., Wang, R., and Maji, S. (2018), “A Deeper Look at 3D Shape Classi-
fiers,” in Proceedings of the European Conference on Computer Vision (ECCV).

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J. B., and Freeman,
W. T. (2018), “Pix3d: Dataset and methods for single-image 3D shape modeling,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2974–2983.

Sung, M., Kim, V. G., Angst, R., and Guibas, L. (2015), “Data-driven Structural Priors for
Shape Completion,” ACM Transactions on Graphics, 34, 175:1–175:11.

Tan, M. and Le, Q. V. (2019), “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks,” arXiv preprint arXiv:1905.11946.

Tatarchenko, M., Dosovitskiy, A., and Brox, T. (2016), “Multi-view 3D models from
single images with a convolutional network,” in European Conference on Computer
Vision (ECCV), pp. 322–337.

Tatarchenko, M., Dosovitskiy, A., and Brox, T. (2017), “Octree Generating Networks:
Efficient Convolutional Architectures for High-resolution 3D Outputs,” 2017 IEEE In-
ternational Conference on Computer Vision (ICCV), pp. 2107–2115.

Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” The Royal
Statistical Society, pp. 267–288.

Tipping, M. E. and Bishop, C. M. (1999), “Probabilistic Principal Component Analysis,”
Journal of the Royal Statistical Society. Series B (Statistical Methodology), 61, 611–622.

Tompson, J., Stein, M., Lecun, Y., and Perlin, K. (2014), “Real-time continuous pose
recovery of human hands using convolutional networks,” ACMTransactions onGraphics
(ToG), 33, 169.

98

Tulsiani, S. and Malik, J. (2015), “Viewpoints and keypoints,” in Computer Vision and
Pattern Recognition, pp. 1510–1519.

Tulsiani, S., Zhou, T., Efros, A., and Malik, J. (2017), “Multi-view supervision for single-
view reconstruction via differentiable ray consistency,” in Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pp. 2626–2634.

Turk, M. and Pentland, A. (1991), “Face recognition using Eigenfaces,” inComputer Vision
and Pattern Recognition, pp. 586–591.

Varley, J., DeChant, C., Richardson, A., Ruales, J., andAllen, P. (2017), “Shape completion
enabled robotic grasping,” in Intelligent Robots and Systems, pp. 2442–2447.

Viola, P., Jones, M., et al. (2001), “Rapid object detection using a boosted cascade of
simple features,” in Proceedings of the IEEE conference on computer vision and pattern
recognition.

Wang, Y., Shi, T., Yun, P., Tai, L., and Liu, M. (2018), “Pointseg: Real-time semantic
segmentation based on 3D lidar point cloud,” arXiv preprint arXiv:1807.06288.

Wold, S., Esbensen, K., and Geladi, P. (1987), “Principal component analysis,” Chemo-
metrics and intelligent laboratory systems, 2, 37–52.

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J. (2016), “Learning a probabilis-
tic latent space of object shapes via 3D generative-adversarial modeling,” in Advances
in Neural Information Processing Systems, pp. 82–90.

Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., and Tenenbaum, J. (2017), “Marrnet: 3D
shape reconstruction via 2.5 d sketches,” in Advances in neural information processing
systems, pp. 540–550.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015), “3D
shapenets: A deep representation for volumetric shapes,” in Computer Vision and
Pattern Recognition, pp. 1912–1920.

Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2017), “PoseCNN: A Convolu-
tional Neural Network for 6D Object Pose Estimation in Cluttered Scenes,” CoRR,
abs/1711.00199.

Yu, H., Yang, Z., Tan, L., Wang, Y., Sun, W., Sun, M., and Tang, Y. (2018), “Methods and
datasets on semantic segmentation: A review,” Neurocomputing, 304, 82–103.

Zhang, H., Fritts, J. E., and Goldman, S. A. (2008), “Image segmentation evaluation:
A survey of unsupervised methods,” computer vision and image understanding, 110,
260–280.

99

Zhang, Z., Fidler, S., and Urtasun, R. (2016), “Instance-level segmentation for autonomous
driving with deep densely connected MRFS,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 669–677.

Zuendorf, G., Kerrouche, N., Herholz, K., and Baron, J. C. (2003), “Efficient principal
component analysis formultivariate 3Dvoxel-basedmapping of brain functional imaging
data sets as applied to FDG-PET and normal aging,” Human Brain Mapping, 18, 13–21.

100

Biography

Benjamin Burchfiel was born in Winchester, Massachusetts, a suburban town just outside

of Boston. Beginning in 2008, Benjmain attended the University of Wisconsin-Madison,

where he received his computer science Bachelor of Science degree in 2012. While an

undergraduate student, Benjamin became interested in AI and computer vision and assisted

in a research project to detect online bullying on social media under the supervision of

Professor Charles Dyer and Professor Xiaojin Zhu.

Benjamin was admitted to the Computer Science Ph.D. program at Duke University in

2013 where he investigated robot learning from suboptimal demonstrations with Professor

Carlo Tomasi and Professor Ronald Parr before joining Professor George Konidaris’ In-

telligent Robotic Lab where he developed his thesis on general object representations for

3D robot perception. In 2014 Benjamin was the recipient of the Department of Computer

Science Excellence in teaching award before receiving his Master of Science degree in

computer science from Duke University in 2016. Benjamin will defend his Ph.D. thesis in

July 2019.

Benjamin’s primary research interests lie in the intersection of robotics, machine learn-

ing, and computer vision with the ultimate goal of enabling the deployment of general-

purpose robots in fully unstructured environments with minimal supervision. Beginning

in the fall of 2019, Benjamin will join Brown University as a postdoctoral researcher in the

department of computer science.

Benjamin’s personal website may be found at benburchfiel.com.

101

benburchfiel.com

	Abstract
	List of Tables
	List of Figures
	List of Acronyms and Abbreviations
	Acknowledgements
	1 Introduction
	1.1 Object-Centric Perception
	1.2 The Bayesian Eigenobject Framework for 3D Object Representation
	1.2.1 Organization and Contributions

	2 Background
	2.1 3D Object Representations
	2.1.1 Voxels
	2.1.2 Distance Fields
	2.1.3 Surface Meshes
	2.1.4 3D Pointclouds
	2.1.5 Parametric Models
	2.1.6 Parts-Based Representations
	2.1.7 Multiview Representations

	2.2 Segmentation
	2.3 Classification
	2.4 Pose Estimation
	2.5 3D Shape Completion
	2.6 Integrated Approaches

	3 Bayesian Eigenobjects
	3.1 Background: Principal Component Analysis
	3.1.1 Variational Bayesian Principal Component Analysis

	3.2 Overview
	3.2.1 Class Models: Eigenobject Construction via VBPCA
	3.2.2 Object Classification
	3.2.3 Pose Estimation
	3.2.4 Partial Object Completion
	3.2.5 BEOs: Joint Pose, Class, and Geometry Estimation

	3.3 Experimental Results
	3.3.1 Classification and Object Completion
	3.3.2 Pose Estimation
	3.3.3 Joint Pose, Class, and 3D Geometry Estimation
	3.3.4 High Resolution Output and Limited Training Data

	3.4 Discussion

	4 Hybrid Bayesian Eigenobjects
	4.1 Introduction
	4.2 Overview
	4.2.1 Learning a Projection into the Subspace
	4.2.2 Input-Output Encoding and Loss

	4.3 Experimental Evaluation
	4.3.1 Classification
	4.3.2 Pose Estimation
	4.3.3 3D Completion
	4.3.4 Inference Runtime Performance
	4.3.5 Pure Classification Evaluation
	4.3.6 Pix3D Evaluation

	4.4 Discussion

	5 Probabilistic Pose Estimation with Silhouette Priors
	5.1 Introduction
	5.1.1 Background: Mixture Density Networks

	5.2 Predicting Pose Posteriors
	5.2.1 Using Predicted-Shape Priors for Predicting Pose Distributions
	5.2.2 Pose Priors from Shape and Segmentation
	5.2.3 Sampling Pose Estimates

	5.3 Experimental Evaluation
	5.4 Discussion

	6 Conclusion
	6.1 Example BEO Application: Grounding Natural Language Descriptions to Object Shape
	6.1.1 Learning a Joint Language and Shape Model
	6.1.2 Language Grounding Experiments and Results
	6.1.3 Picking Objects from Depth Observations and Natural Language Descriptions

	6.2 Future Work
	6.2.1 Multimodal Input
	6.2.2 Joint Segmentation
	6.2.3 Refining Estimates via Multiple Observations
	6.2.4 Detecting Perception Failure
	6.2.5 Modeling Articulated and Deformable Objects

	6.3 Final Remarks

	Bibliography
	Biography

