
Autonomous Robots
https://doi.org/10.1007/s10514-018-9740-7

Representing, learning, and controlling complex object interactions

Yilun Zhou1 · Benjamin Burchfiel2 · George Konidaris3

Received: 15 February 2017 / Accepted: 2 April 2018
© The Author(s) 2018

Abstract
We present a framework for representing scenarios with complex object interactions, where a robot cannot directly interact
with the object it wishes to control andmust instead influence it via intermediate objects. For instance, a robot learning to drive
a car can only change the car’s pose indirectly via the steering wheel, and must represent and reason about the relationship
between its own grippers and the steering wheel, and the relationship between the steering wheel and the car. We formalize
these interactions as chains and graphs of Markov decision processes (MDPs) and show how such models can be learned from
data. We also consider how they can be controlled given known or learned dynamics. We show that our complex model can be
collapsed into a single MDP and solved to find an optimal policy for the combined system. Since the resulting MDP may be
very large, we also introduce a planning algorithm that efficiently produces a potentially suboptimal policy. We apply these
models to two systems in which a robot uses learning from demonstration to achieve indirect control: playing a computer
game using a joystick, and using a hot water dispenser to heat a cup of water.

Keywords Robotics · Task representation · Task learning · Markov decision process

Y. Zhou: Research completed while the author was at Duke University.

This is one of several papers published in Autonomous Robots compris-
ing the “Special Issue on Robotics Science and Systems”.

This research was supported in part by DARPA under Agreement
Number D15AP00104, and by the National Institutes of Health under
Award Number R01MH109177. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The content is solely
the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health or DARPA.

B Yilun Zhou
yilun@mit.edu

Benjamin Burchfiel
bcburch@cs.duke.edu

George Konidaris
gdk@cs.brown.edu

1 Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, Cambridge, USA

2 Duke Robotics, Duke University, Durham, USA

3 Department of Computer Science, Brown University,
Providence, USA

1 Introduction1

As robots become more physically capable of interacting
with the world by manipulating the objects in it, their appli-
cations will demand more powerful representations of the
effects of those interactions. Such representations will be
essential for robots to determine how to act in the world
in order to achieve their goals. While there has been a
great deal of research on reasoning about directly manipu-
lating objects—for example opening a door (Meeussen et al.
2010) or grasping and folding a towel (Maitin-Shepard et al.
2010)—many real-world situations aremore complex.Often,
the object a robot directly manipulates is not the object of
interest; the robot must use one object to indirectly affect the
state of some other object(s).

Consider teaching a robot to drive a car. The robot’s direct
interaction with the environment is via the steering wheel.
In this task, we are not trying to teach the robot to move
the steering wheel to a specific position, or even to follow a
specific steering-wheel trajectory. Instead, we are using the

1 This paper extends our previously published conference paper (Zhou
and Konidaris 2016). That paper focused on introducing the model
and presenting methods for estimating its parameters, while here we
additionally discuss two control methods and their trade-offs in terms
of computational complexity and optimality guarantees.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9740-7&domain=pdf
http://orcid.org/0000-0002-7085-3880

Autonomous Robots

steering wheel to control the car. Although controlling the
car is the primary objective of our actions, that can only be
achieved though interaction with an intermediate object (the
steering wheel). The robot cannot learn only the interaction
with the intermediate object (because that ignores the state
of the car), but we cannot ignore it either (because it is the
only way to control the car).

A representation that is aware of this interaction structure
would facilitate learning in at least two ways. First, learn-
ing each part of the interaction could be done independently,
in an appropriate state space: when the robot learns how its
grippers rotate the steering wheel, it need not care about the
car position; when it learns how the wheel controls the car,
it need not even be in the driver’s seat (observing a human
driver is sufficient). Second, learned knowledge can be trans-
ferred even if parts of the task change: if the robot must now
steer a ship, it need only focus on the interaction between the
steering wheel and the ship, without having to re-learn how
to rotate the wheel. This transfer of knowledge could sub-
stantially reduce the time required to learn everyday tasks.

We therefore introduce a framework for representing such
complex interactions as chains ofMarkov decision processes
and show how such a chain can be learned from data.We then
extend the framework to handle more general object interac-
tion graphs, which express interaction relationships that may
change over time. For example, a robot may pour cold water
from a bottle into an electric kettle, boil the water, and then
pour thewater back into the bottle. In thefirst stage of the task,
the robot uses the bottle to affect the state of the kettle (i.e.
amount ofwater inside), but in the final stage, it uses the kettle
to affect the state of the bottle. To facilitate this, we introduce
the use of activation classifiers and deactivation classifiers as
representations of the circumstances under which an interac-
tion between two objects becomes active or inactive. We also
consider how these models can be controlled given known
or learned dynamics. We show that our complex model can
be collapsed into a single MDP and solved to find an optimal
policy for the combined system. Since the resulting MDP
may be very large, we also introduce a planning algorithm
that efficiently produces a potentially suboptimal policy. We
use our framework to create robot systems that use learning
by demonstration to operate a computer game using a joy-
stick, and re-sequence learned skills to operate a hot water
dispenser to warm a cup of cold water.2

2 Background

Control learningproblems are oftenmodeled asMarkovdeci-
sion processes (MDPs) (Sutton and Barto 1998) which can

2 A video explaining the model and showing both experiments is avail-
able at https://www.youtube.com/watch?v=TJlxXX1v6S4.

be described by a tuple {S, A, T , R} where S is a set of (pos-
sibly continuous) states, A is a set of (possibly continuous)
actions, T : S × A × S → [0, 1] is a transition function that
yields probability of an action causing a transition from one
state to another, and R : S× A× S ⊆ R is a reward function
that maps a transition to a real-valued reward. A solution to
an MDP takes the form of a policy π : S × A → [0, 1]
that returns the probability of taking a particular action in a
given state, in order to maximize the return (expected sum
of discounted reward):

argmaxπ Eπ

[∞∑
t=0

γ t rt

]
, (1)

where 0 < γ ≤ 1 is a discount factor expressing a preference
for immediate over delayed reward. If the agent has a model
of T and R it can generate a policy by planning; if it does
not, it must learn one by taking exploratory actions in its
environment.

In learning from demonstration (LfD) (Argall et al. 2009),
a robot is given demonstrated trajectories obtained by exe-
cuting an expert’s policy, and must be able to reproduce the
policy. There aremultiple possible strategies here, depending
on how much the robot knows about the MDP. For exam-
ple, if the robot does not know the transition or reward
function, it may try to learn the policy directly, using the
state-action pairs in the demonstrated trajectories as labeled
training examples in a supervised learning setting. If the robot
knows the transition model but neither knows nor observes
the reward function, it could produce a policy that tries to
follow the demonstrated trajectories, or use inverse reinforce-
ment learning (Abbeel and Ng 2004) to try to recover the
reward function. If the robot is given the reward function,
it may also use the state-action-reward tuples in the demon-
stration trajectories as labeled training data to learn the MDP
transition and reward functions, and then solve the resulting
MDP.

Task representation and learning in the context of both
MDPs and in the specific setting of learning from data have
received a great deal of attention, butwhen applied to robotics
this is almost always in the service of directly manipulating
objects of interest. To the best of our knowledge, we are the
first to explicitly consider object-object interactions in the
same manner as robot-object interactions.

3 Interaction chains

We now present a model that captures scenarios in which a
robot’s interactionswith one object cause changes in the state
of another; that other object may cause changes to further
objects, until we reach a particular object of interest. We

123

https://www.youtube.com/watch?v=TJlxXX1v6S4

Autonomous Robots

thereforemodel the complete dynamics—from the object the
robot is currently manipulating, to the object of interest—as
a chain (Sect. 4 generalizes our model to a graph, which can
capture more complex interactions).

An interaction chain thus consists of N objects O1, O2,

. . . , ON , where O1 is the robot. Each Oi has an associated
MDP Mi ≡ {Si , Ai , Ti , Ri }, where Si is the set of states for
Oi , Ai is the set of “actions” (explained below),

Ti : S(t)
i × A(t+1)

i × S(t+1)
i → [0, 1]

is a transition function that encodes the transition dynamics
at level i , and

Ri : S(t)
i × A(t+1)

i × S(t+1)
i → R

is a reward function. Note that we use A(t+1) to denote the
action resulting in the transition from S(t) to S(t+1).

In the chain model, we assume that interactions only
exist between successive objects Oi−1 and Oi , for all i ∈
{2, . . . , N }. For such an interaction, we call Oi−1 the prede-
cessor object and Oi the successor object. The interactions
aremodeled by coupling theirMDPs so that the state of object
i−1 affects (or controls) the state of object i , and thus serves
as the action of Mi , i.e.:

S(t)
i−1 ≡ A(t)

i i = 2, . . . , N . (2)

S1 describes the state of the robot, and A1 describes the
motor control actions available to it. Changes in the robot
state (along with the passive dynamics at each level) are ulti-
mately the source of all state transitions in our model, as
objects interact with each other through the chain. We make
no particular distinction between the robot and other objects,
except that the robot is the root of the chain and cannot be
controlled by other objects.

In the car-driving task, S1 ≡ A2 is the state of the robot
(e.g. gripper position), S2 ≡ A3 is the state of the steering
wheel (e.g. rotation angle), and S3 is the state of the car (e.g.
pose and speed). Figure 1 shows the interaction chain for this
example.

There are two reasons for using MDPs to define each
primitive interaction. First, it is reasonable to assume the
Markov property is present in each individual interaction.
For example, the turning angle of the car only depends on
the current state of the steering wheel, rather than a history
of the steering wheel rotation. This assumption is common
in robot manipulation models and can be expected to hold
in most situations. In addition, as we will show in subse-
quent sections, we can construct control algorithms for an
MDP-based model (which specifically rely on the Markov
property holding for the transition function). With a suitably
constructed state feature set, our model can fully account for

robot

steering wheel

car

Fig. 1 The interaction chain for the car driving example

dynamic effects by simply include the appropriate derivative
features (e.g. velocity for a moving object).

During implementationwe discovered a subtle point about
timing: since most physical systems are continuous in nature
but we are using discrete time, we found that when modeling
the interaction between successive objects Oi−1 and Oi , as a
practical matter the action causing the transition from s(t)

i to

s(t+1)
i is better predicted by s(t+1)

i−1 than by s(t)
i−1. Recall that

the state of the predecessor object serves as the action of the
successor object. Thus for Oi−1 and Oi , we have Si−1 ≡
Ai . Therefore, for two consecutive time points, t and t + 1,
we have four states: s(t)

i−1, s
(t)
i , s(t+1)

i−1 , s(t+1)
i . It may seem

natural to credit s(t)
i−1 for making the transition in Oi from

s(t)
i to s(t+1)

i . However, it is actually better to treat s(t+1)
i−1

as the action for the transition. For example, consider the
interaction between the robot and the steering wheel. When
the robot holds the steeringwheel, s(t+1)

robot , the hand position at

time t + 1, instead of s(t)
robot, best predicts s

(t+1)
wheel , the steering

wheel rotation angle at time t + 1. More generally, at time
t , it is difficult to predict the action in effect for the duration
between time t and t + 1, which is revealed at time t + 1.
The discreteness of our systemexplainswhy robotmovement
during the experiment appeared “jerky.” For continuous time
MDP, we could integrate the transition function with respect
to time to obtain the state evolution.

Using this notation, Fig. 2 shows a state transition diagram
modeling both time and object level. Nodes that do not have
arrows represent initial conditions or robot actions; all others
have two incoming arrows representing the two inputs to the
transition function. The top row denotes the robot actions.

3.1 Learning amodel

Learning amodel of a chain ofMDPs involves approximating
the transition functions for all individual levels. The data
required for learning takes the form of transition samples
from a particular level of the chain:

123

Autonomous Robots

…

…

…

...

...

...

Fig. 2 The forward transition graph for an interaction chain

(
s(t)
i , a(t+1)

i , s(t+1)
i

)
,

and can be obtained from human demonstration or by the
agent itself, or as a mix of both at different levels. Learning a
complete model will require sufficient data at all levels of the
chain, but a key advantage here is that a model of a particular
level can be retained if the levels above it, or more than one
level below it, change. The same is not true for the level
immediately below it: if level i changes, then the learned
model of level i + 1 is no longer useful, since its actions
depend on the state descriptor at level i .

The control algorithms we use later require an inverse
transition function, which maps a state transition pair
(s(t)
i , s(t+1)

i) to an action a(t+1)
i ≡ s(t+1)

i−1 in the hope that this
action can successfully result in the desired state transition.
This function can obtained by either analytically or numer-
ically inverting the learned (forward) transition function or
by directly learning it from data. Due to non-invertibility
(actions are not unique) and stochasticity (action effects are
not deterministic) in some systems, the inverse transition
function may have to be an approximation.

3.2 Control

In this section, we present two methods to control a chain
of MDPs. The first finds an optimal solution (policy) to the
entire chain by collapsing it to a single MDP at the cost of
having to solve that large MDP, while the second allows for
a trajectory to be specified at a particular level (e.g., by plan-
ning solely at that level) and then controls all lower levels
to attempt to follow it. This trajectory following approach,
based on a feedback controller, serves as both an approxi-
mation to the optimal full MDP solution and a standalone
algorithm allowing trajectory-level control.

3.2.1 Solving for the optimal policy

Given a fully specified chain of MDPs with known reward
and transition functions, we wish to find an optimal policy
that maximizes the expected sum of discounted total rewards
accrued by the robot across all objects:

E

[∞∑
t=1

(
γ t

n∑
i=1

r (t)
i

)]
. (3)

Recall that r (t)
i denotes the immediate reward received by the

robot at time t from level i of the composite MDP, and that
the agent can only select actions at level 1.

We now show that a single, flat, MDP can be constructed
from the chain of MDPs such that an optimal solution to the
collapsed MDP is also an optimal solution to the chain of
MDPs. Because the collapsed MDP is simply an MDP like
any other, existing methods such as value iteration may be
used to solve it in a straightforward fashion.

We define the state set for the collapsedMDP as the Carte-
sian product of the states in each level of the chain of MDPs:

S∗ =
n∏

i=1

Si ,

while the action space consists of only the actions from the
first level of the chain of MDPs—those belonging to the
robot:

A∗ = A1.

To derive the transition function, we make use of a conve-
nient property of the chain of MDPs: the transition at level i ,
T (s(t)

i , a(t+1)
i , s(t+1)

i) is independent of the state of all other

levels given a(t+1)
i and s(t)

i . Due to this factorization in the
chain ofMDPs and according to Fig. 2, the transition function
for the collapsed MDP is:

T∗(s(t)∗ , a(t+1)∗ , s(t+1)∗)

= Pr
(
s(t+1)
1 , . . . , s(t+1)

n |s(t)
1 , . . . , s(t)

n , a(t+1)
1

)
= Pr

(
s(t+1)
1 |s(t)

1 , a(t+1)
1) · Pr(s(t+1)

2 |s(t)
2 , s(t+1)

1

)
. . .

· Pr
(
s(t+1)
n |s(t)

n , s(t+1)
n−1

)

= T1
(
s(t)
1 , a(t+1)

1 , s(t+1)
1

)
·

n∏
i=2

Ti
(
s(t)
i , s(t+1)

i−1 , s(t+1)
i

)
.

The reward function is the sum of the reward functions
at each level of the chain, naturally following the objective
described in Eq. 3:

123

Autonomous Robots

R∗(s(t)∗ , a(t+1)∗ , s(t+1)∗) = R1(s
(t)
1 , a(t+1)

1 , s(t+1)
1)

+
n∑

i=2

Ri (s
(t)
i , s(t+1)

i−1 , s(t+1)
i).

Note that because the action at level i corresponds to the state
at level i + 1 in the chain of MDPs, it is only necessary to
explicitly consider actions at the lowest level when creating
the collapsed MDP. Actions at higher levels (in the chain)
are implicitly captured in the state space of the collapsed
MDP. This formulation preserves the full expressiveness of
the state space in the chain while only preserving actions
the robot can directly execute. This removes the underactu-
ated nature of the chain, which makes solving for an optimal
policy vastly easier; value or policy iteration can be applied
straightforwardly to the collapsed MDP. Because the state
space, rewards, and transitions are preserved, a solution to
the collapsed MDP must correspond to an optimal policy in
the chain. Furthermore, because the reward and transition
functions are factored by chain MDP level, it is trivial to pre-
compute portions of the collapsed MDP that are expected to
stay constant. For instance, if level i of the chain is expected to
change frequently (perhaps it refers to a particular tool being
used) but the lower levels (1, . . . , i − 1) and upper levels
(i+1, . . . , n) are expected to stay fixed, levels (1, . . . , i−1)
and (1 + 1, . . . , n) can be collapsed separately and stored.
When level i changes, the full collapsedMDP can be quickly
computed from the new MDP at level i and the two precom-
puted pieces.

One drawback to the collapsed MDP representation is
the high dimensionality of the joint state space it creates.
However, there are some conditions on individual transition
and reward functions that, if met, can reduce the joint state
space by discarding some state variables. Specifically, we
can remove level i entirely from the collapsed MDP if

∀ai ∈ Ai ,∀s(t)
i , s′(t)

i , s(t+1)
i ∈ Si ,

Ti
(
s(t)
i , a(t)

i , s(t+1)
i

)
= Ti

(
s′(t)
i , a(t)

i , s(t+1)
i

)
Ri

(
s(t)
i , a(t)

i , s(t+1)
i

)
= Ri

(
s′(t)
i , a(t)

i , s(t+1)
i

)
.

Essentially, the condition on Ti mandates that the next
state s(t+1)

i is only dependent on the action a(t+1)
i (and not

on previous state si (t)), and the condition on Ri mandates
that reward only depend on action taken and the next state.
When these two conditions are met, it is easy to see that ai
can directly serve as an action for the (i + 1)-th object by
replacing the original ai+1 ≡ si . In addition, the condition
on reward function ensures that regardless of the previous
state, the received reward is the same.

The condition on the reward function is usually met, but
satisfying the condition on transition function is rarer. One
example for which the condition on transition function is met

is the steering wheel in the car-driving task. The robot grip-
per position serves as the action for steering wheel. When
we assume that the robot gripper is always holding the steer-
ing wheel, the gripper position (action for steering wheel)
is sufficient to predict next steering wheel angle regardless
of previous steering wheel angle. Thus, we can discard the
steering wheel angle variable and directly use the gripper
position as the action for the car.

However, if the previous steering wheel angle does affect
next angle, then we cannot discard this level. For example,
if the steering wheel can rotate multiple cycles and the angle
state variable can reflect it (by having the variable going
beyond the [0, 2π] interval), then it is not sufficient to only
use gripper position to determine next state rotation angle.
Instead, the transition function must make use of the previ-
ous angle to determine the correct next angle. In this case, the
steering wheel state variable must be kept in the collapsed
MDP.

3.2.2 Approximate solutions via successive trajectory
following

Since the collapsed MDP outlined in the previous section
has a state space equal to the Cartesian product of individual
state spaces, solving it optimallymay often be impractical. To
work around this problem, we developed a trajectory follow-
ing algorithm built upon a feedback controller. Specifically,
this controller can control the current state s(cur)

i of a specific
object toward a goal si . Then to solve the whole problem
of controlling the chain, we can first compute the optimal
policy for the last object, πn(sn, an), with an ≡ sn−1. From
here, we turn to the trajectory-following controller and con-
trol the robot to move the (n − 1)-th object as directed by
pin .

More generally, if we can afford to solve a larger MDP,
then we can collapse the last k MDPs, which has the action
being sn−k . Then we use the trajectory following algorithm
to control the (n − k)-th object according to the solved opti-
mal policy for the joint last k objects, πn−1. In addition, this
feedback controller may also be used in a standalone manner
if we are given only the trajectory for the last object to follow
(e.g. a path that the car needs to travel on).

Concretely, our trajectory following algorithm employs
inverse transition function, T−1

i : Si × Si → Si−1, such
that for the interaction between object i − 1 and object i , the
function returns an action s(t+1)

i−1 which can cause the desired

transition from s(t)
i to s(t+1)

i (recall the time convention dis-
cussed at the end of Sect. 3).

Note that the returned s(t+1)
i−1 may be impossible to reach

from the current state of object i − 1, s(t)
i−1; for instance,

if the robot can only turn the steering wheel gradually but
s(t)
i−1 and s

(t+1)
i−1 represents two very different angles, the tran-

123

Autonomous Robots

def move_one_step_toward(i , si)
if i == 1 then

control robot toward si for a time unit;
else

s(next)
i = state_plan(i , s(cur)

i , si);

s(next)
i−1 = inv_transition(i , s(cur)

i , s(next)
i);

move_one_step_toward(i − 1, s(next)
i−1);

end

def inv_transition(i , s(t)
i , s(t+1)

i)

return s(t+1)
i−1 most likely for transition s(t)

i → s(t+1)
i ;

def state_plan(i , s(cur)
i , si)

return next state for Oi on the way to si from s(cur)
i ;

Algorithm 1: Feedback Control Algorithm. Superscript of
“(cur)” means current value of the state

def control()
while true do

sn−k = argmaxan−k+1
πn−k(sn−k+1, an−k+1);

move_one_step_toward(n − k, sn−k)
end

Algorithm 2: Using feedback control algorithm together
with policy

sition must be effected over a longer period of time. To
solve this problem, path planning (state_plan function)
is performed at each level of the composite MDP. The result-
ing algorithm move_one_step_toward, may be called
successively to achieve trajectory following and is given in
Algorithm 1.

Algorithm 2 summarizes how to incorporate this con-
troller into a solved policy πn−k . The trajectory following
algorithm sacrifices the optimality guarantee to gain fast
computation time. However, if individual interactions have
reasonably simple interaction transitions, then overall feed-
back control can yield satisfactory performance with only
minor deviations from the trajectories to follow. For example,
in our experiment described in Sect. 5.1, when interactions
can be fitted well by polynomial functions, the trajectory is
followed very closely.

In addition, the feedback control algorithm can only han-
dle rewards for top k objects in the chain because while the
partially collapsed MDP is solved with respect to the reward
functions for the top k objects, the trajectory following algo-
rithm for controlling the remaining objects are unaware of the
reward function. In many cases, this constraint is acceptable
since we typically care more about the behavior of objects
higher up in the chain. For instance, that the car reaches the
destination is more important than how steering wheels are
rotated and howmuch energy is expended in robot actuation.

robot

door on/off
button

food

power level
knob

Fig. 3 The interaction graph for the microwave oven example

4 Interaction graphs

The chain model presented in Sect. 3 can only describe sit-
uations in which objects are arranged in a chain, but many
real-life scenarios are more complex. Consider, for example,
operating a microwave oven (consisting of a door, an on/off
button, and a power level knob) to heat food. The door must
be open to place and retrieve food and closed for the oven to
operate. The on/off button starts and stops the oven, and the
power level knob changes the heating speed. All three com-
ponents can influence the temperature of the food (the door
influences the temperature by preventing it from changing
when open), however, they do not interact with each other.
Moreover, in addition to interacting with the components of
the microwave, the robot can directly modify properties of
the food such as its position and orientation. We must there-
fore extend the interaction chain to a graph where each node
represents an object (a collection of state variables that can
be simultaneously manipulated), and a directed edge from
node i to node j represents the fact that the state of node
i (possibly jointly with states of other nodes) can (but not
necessarily always does) affect the state of node j . Figure 3
shows the interaction graph for themicrowave oven example.

We represent an interaction graph as a collection ofMDPs
M = {M1, . . . , Mn}, along with a graph G(M, E) where
directed edges between the MDPs represent relationships of
influence. Since many objects can jointly affect one object,
the action set for object i is now the Cartesian product of all
the state sets belonging to its parents:

Ai ≡
∏

k:(k,i)∈E
Sk . (4)

Whenmultiple objects can jointly interact with one object,
the inverse transition function becomes more complex. To
mitigate this problem, we distinguish between active and
inactive interactions. In an interaction chain, we assume
that all interactions are always “happening”; for example,

123

Autonomous Robots

as long as the robot is holding the steering wheel, any move-
ment of the hand will induce corresponding rotation of the
wheel. In an interaction graph, however, an object may only
affect another in some cases. For example, the robot can only
manipulate one object at a time. The states of objects that are
not being manipulated progress according to their passive
dynamics.

Formally, for object i affecting object j , we distinguish
active transition

Ti, j : S(t)
j × S(t+1)

i × S(t+1)
j → [0, 1]

(note that Si ≡ A j), from inactive passive dynamics

T ′
i, j : S(t)

j × S(t+1)
j → [0, 1],

with the next state in the passive dynamics being purely a
function of previous state.

Activation classifiers α and deactivation classifiers δ gov-
ern the change in interactions from inactive to active, and
from active to inactive, respectively. Each classifier is a func-
tion mapping the states of the two objects into a boolean
denoting (de)activating status. For interaction between object
i and j ,

αi, j : Si × S j → {0, 1},
δi, j : Si × S j → {0, 1}.

An activation classifier returning true denotes the acti-
vation of a previously inactive interaction, andfalsemeans
that the interaction remains inactive. The deactivation clas-
sifier is the reverse: returning true deactivates a currently
active interaction, andfalse allows it to remain active. As a
specific example, in the microwave oven scenario, the inter-
action between the robot and the food is only activated when
the robot reaches and grasps the food.

4.1 Learning

In interaction graph, the both the active and passive transition
functions need to be learned for each interaction for MDP
collapsing. In addition, the inverse (active) transition needs
to be learned for trajectory following control. Moreover, the
activation and deactivation classifiers must also be learned.
To learn the interaction classifiers, the robot must be given
the interaction status between two objects at consecutive time
steps. It is givenbyhand in our example, but could in principle
be learned autonomously by determining whether or not the
passive dynamics of the object have been perturbed.

4.2 Control

4.2.1 Solving for the optimal policy

For the interaction graph, in order to get a collapsed MDP
whose transition function satisfies the Markov property, we
need to additionally augment the state space to include all
interaction activation status variables, Ii, j ∈ {0, 1} for i, j ∈
E (recall that E is the set of edges of the interaction graph,
representing interactions).

S∗ =
n∏

i=1

Si ×
∏

(i, j)∈E
Ii, j .

Then the transition function is

T∗ =
∏

(i, j)∈E
T true
i, j · Qi, j

in which

T true
i, j =

{
Ti, j if Ii, j = 1

T ′
i, j if Ii, j = 0

selects the correct transition (active or passive) according to
the activation status I , and

Qi, j =
{
1 if I (t+1)

i, j and I (t)
i, j are consistent withαi, j and δi, j

0 otherwise

is a boolean function that tests if the activation status indica-
tors transition consistently according to activation classifier
αi, j and deactivation classifier δi, j . In other words, the whole
transition probability will be 0 as long as one next state acti-
vation status is not correct according to the (de)activation
classifiers. The reward function is a summation of individual
rewards, as before.

4.2.2 Trajectory following

Trajectory following for an interaction graph is similar to
that in the chain case, except that the robot must know how
to activate and deactivate interactions. We model actions
that perform the activation and deactivation—reaching states
within the classifiers—as motor skills that can either be
given by the system designer, or learned from demon-
stration. Specifically, from the given or learned classifiers
the robot can find (and reach) states of both the manip-
ulating and manipulated objects that will (de)activate an
interaction.

With (de)activation skills, the inverse transition function
should also output the which interaction it is. For example,
the transition of water amount increasing in the cup has the

123

Autonomous Robots

Fig. 4 Learning at two levels. Left: learning the robot-joystick interaction by playing with the joystick. Right: learning the joystick-car interaction
by observing a human playing the game (Best viewed in color)

interaction of dispensing, while the transition that the cup
position changes has the interaction of robot moving the cup.
The only addition to the trajectory following algorithm is that
when the interaction switches (e.g. from hand moving cup
to pressing a button), the previous interaction must be deac-
tivated and the next interaction activated before the control
algorithm loops.

5 Experiments

We present two experiments across two different domains
to demonstrate the interaction chain and graph models as
applied to real-world robot tasks. In both experiments, the
interaction chain/graph structure and low-level state features
are known a priori.

5.1 The car game

The car game domain involves a robot operating a joystick
that controls a car in a custom-made video game. The inter-
action chain diagram was shown previously in Fig. 1, with
the steering wheel being replaced by the joystick. We use a
mix of autonomous learning and learning from demonstra-
tion to show that the robot can learn to control the car to
follow complex trajectories.

Because of the small movements and high sensitivity of
the joystick, the robot hand position is extracted directly from
the robot API and the joystick configuration, also retrieved
programmatically, is represented by two axis (left/right and
forward/backward) values in the range of −1 to 1. The posi-
tion of the car is also read programmatically.

We learn two interactions: between the robot hand and the
joystick, and between the joystick and the car. We collect the
data for the first interaction (robot to joystick) by having the
robot directly play with the joystick and learn the association
between the hand position and the joystick axis values. The

robot tried about 500 hand positions to learn the relationship
between the hand position and the joystick configuration.
This interaction is not linear as the joystick axis values do
not change linearly with tilting angle.

We used human demonstration for the second interaction
(joystick to car). Both joystick angles and game states are
recorded. While the game runs at 30Hz, we could only con-
trol the robot reliably at 3Hz: beyond this control rate, the
robot would drop control commands and therefore not faith-
fully execute a command sequence. Thus, the training data
are also collected at 3Hz. We generated about 500 transi-
tion pairs. For both levels, the inverse transition function
was learned using polynomial regression. Figure 4 shows
the learning process.

During execution, the robot’s goal was to follow a given
car path as closely as possible. Three complex trajectories
were followed by the robot. Figure 5 shows the followed
trajectories overlaid on the game screen on the left, and the
commanded and executed paths on the right.

We calculated the average distance between demonstrated
and followed trajectories by sampling random points from
the executed trajectory, finding the minimum distance of
each point to the commanded trajectory (also discretized),
and averaging those distances. The paths had average errors
of 0.790, 1.2480, and 1.8662 pixels (on a 800 × 600 game
screen), respectively. Thus, we are able to reproduce the
demonstrated trajectories very accurately on this task.

Due to the modularity of our model, it is readily adap-
tive to change: if the joystick position is changed, the robot
need only translate its hand accordingly; if the robot grip-
per is changed, it need only re-learn how to hold and control
the joystick; if the game is changed, the robot need only re-
learn the interaction between the joystick and the new game.
This occurs because, in both cases, one of the MDPs is left
unchanged.

123

Autonomous Robots

Fig. 5 Trajectory following. Earlier car positions are more transparent. The “road” on the game interface is for visual illustration purposes only
and does not constrain the motion of the car (Best viewed in color)

5.2 The water dispenser

We now demonstrate the use of an interaction graph in a
system where a robot uses a hot water dispenser to turn a cup

of cold water into a cup of hot water. The water dispenser
has a water tank to hold water, a dispense button to dispense
the water in the tank, and a power button to heat the water in
the tank. Figure 6 shows the interaction graph.

123

Autonomous Robots

water
tank

power
button

dispense
button cup

robot

Fig. 6 The interaction graph of the water dispenser experiment

We used an Intel Realsense F200 camera to track the cup
pose and the depression of the power and dispense buttons.
Since it is very challenging to extract information about liq-
uid (such as the water amount in a tilted cup) and computer
vision is not a focus of our work, we pre-computed the water
amount for each cup tilting angle.Wealso estimated thewater
temperature in the tank during heating.

For the robot hand, the state variables included x, y, z
coordinates in the robot frame, and the tilt angle θ neces-
sary for pouring water from cup. We use a binary variable
to model whether the fingers of the hand were open or
closed. The state variables of the cup included its pose vari-
ables (defined similarly to those for the hand, but in the
camera frame), and two real variables between 0 and 1
denoting the normalized amount of water (0 being empty)
and the water temperature (0 being cold). Finally, it has a
change in water level defined to be Δwater_amount(t) ≡
water_amount(t) −water_amount(t−1). Only with the inclu-
sion of this state variable can the interaction between cup and
water tank be Markov. The two buttons each have a level of
depression expressed as an integer between 0 and 6, since
they have a maximum depression of 6 pixels in our camera
setting. The water tank has three variables: water amount,
water temperature, and change in water amount, defined sim-
ilarly as those of the cup.

For the robot-cup interaction, activation occurs when the
cup is inside the hand and the hand is closed; deactivation
occurs when the hand opens. When the interaction is active,
the position and tilt of the cup will follow those of hand.
They are not the same, however, since they are in different
reference frames. The water amount will decrease and the
change in water amount will be negative if the cup is tilted.
The water temperature does not change in this interaction.

For the interactions between the robot and the power/
dispense button, activation occurs when the robot hand is
above the button and deactivation happens at the same posi-
tion. During interaction, the button level will be determined

by the z-coordinate of the hand (its height). For both but-
tons, a depression greater than 3 will trigger heating and
dispensing, respectively. When the dispense button is active,
thewater amount in the tank decreases by 1/16 each time unit
(second) until it reaches 0, since it takes about 16 s to empty
the dispenser. Similarly, when the power button is active the
temperature increased by 1/80 until reaching 1.

Both pouring and dispensing interactions can happen
between the cup and tank, albeit in different directions. The
pouring interaction activates when the cup is above the tank
and the dispensing interaction activates when cup is below
the tank. The key to the transition function is that the water
amounts change in opposite directions. Thus, the Markov
property holds through the change in water amount. Finally,
the new water temperature is an average between the old
temperature and the temperature of the newly added water,
weighted by their relative volumes.

During learning, the robot was tele-operated to complete
a set of tasks that helped it learn all the interactions. Figure 7
visualizes the tele-operation. About ten demonstrations were
given. It should be noted that these skill demonstrations are
unordered. The active and inactive states are hand-labeled.
From these skills, the robot learns a model of the interaction
between the objects.

Given this model, the robot applied our control algorithm
to obtain a cup of hot water when it is given a cup of cold
water, a challenging task that requires multiple object inter-
action steps. Specifically, in execution, the robot must use
the cup to pour the cold water into the water tank, move the
cup to below the tank, press and hold the power button until
the water is boiling, then press the dispense button. Once the
water tank is empty, the robot must retrieve the cup of newly
heated water.

After we modified the control algorithm for the interac-
tion chain model to incorporate activation and deactivation
classifiers (see the Appendix), our system was able to
autonomously achieve the goal using its learned knowledge.
The assembled execution consists of about 1000 discrete con-
trol steps. Figure 8 shows several waypoints in the robot
execution.

6 Related work

There is a large body of literature on building complex
skills via hierarchical learning and execution. Of partic-
ular relevance, Kolter et al. (2008) introduced hierarchi-
cal apprenticeship learning which enables the trainer to
demonstrate skills at different levels of abstraction. For
example, a trainer can demonstrate footstep placement on
rough terrain, and also demonstrate how to do low-level
motor control to locally follow the footsteps for quadruped
locomotion.

123

Autonomous Robots

Fig. 7 The robot learns various interactions through tele-operation
(Best viewed in color). a Pouring water. b Pressing the power button. c
Pressing the dispense button

In general, while hierarchical approaches are concerned
with hierarchical structure that is internal to the robot, we
are concerned with structure that exists in the relationships
between objects in the world. In that sense, hierarchical
approaches could be viewed as vertical (the robot build-
ing new skills on top of old skills), whereas our approach
could be considered horizontal (the robot affecting control
through chains of objects). For example, the layered learn-
ing approach proposed by Stone and Veloso (2000) uses a
collection of machine learning components each of which
either directly controls the agent’s behavior, is used as a

Fig. 8 The robot autonomously sequences learned skills to heat a cup
of water (Best viewed in color). a Pick up the cup. b Pour cold water
to the machine. c Place the cup under the machine. d Press the power
button to boil water. e Press the dispense button to dispense water. f
Move the cup to original position

subskill by another component, or provides input features,
output features, or training examples to another such com-
ponent. This structure could be considered vertical because
it builds structure that is internal to the agent and primar-
ily a means for combatting the complexity of generating
behavior, as opposed to describing external chains of causal
influence. In addition,Konidaris andBarto (2009) proposed a
method to automatically connect individual actions together
to make more complicated and temporally extended actions
(i.e. options). This representation is also vertical in that the
task hierarchy is internal to the robot.

In our interaction graphmodel, demonstrations are broken
into different pieces (e.g. pressing a button, moving a cup,
pouring water, etc.), and each segment can be considered a
taskwith transition dynamics independent from state of other
objects in the absence of collisions. Much work has been
done on automatically breaking unstructured demonstrations
into subskills (Jenkins and Matarić 2004; Kulić et al. 2009;
Chiappa et al. 2009; Chiappa and Peters 2010; Grollman and
Jenkins 2010; Butterfield et al. 2010; Krüger et al. 2010;
Konidaris et al. 2012; Niekum et al. 2015), which could be
applied in our framework to find the individual motor skills
that enable or disable an interaction.

For scenarios with multiple objects, for a pick-and-place
task involving multiple objects, Ekvall and Kragic (2008)
identified spatio-temporal constraints from either teacher

123

Autonomous Robots

instruction or inference and reasoning over multiple demon-
strations. Our activation and deactivation classifier have
similar functions to the constraints in their work. In a similar
vein, Konidaris et al. (2014) used classifiers to represent the
conditions under which a high-level action can be executed,
and used them to construct an abstract representation of a
task.

7 Conclusion and future work

We have introduced a flexible representation that goes
beyond modeling robot-object interactions to account for
object-object interactions, and showed that it can be used
to learn two distinct real-life tasks involving complex object
interactions.

There are several advantages of our model. First, it nat-
urally represents interactions among objects, so that we
can build complex systems capable of achieving their goals
through the use of intermediate objects. In particular, tool use
is an embodiment of this characteristic as tools are examples
of such intermediate objects.

Second, by modeling each object as a separate MDP, we
can factor the joint state space to mitigate against the curse
of dimensionality. Models that are unaware of intermediate
objects must represent—and therefore learn—the compound
interaction of the robot monolithically. Even if individual
interactions are simple, the compound one can be very hard
to model.

Finally, our model can accomplish knowledge transfer.
Since each interaction is represented by an MDP, the trajec-
tory following algorithm can directly use a transferred MDP
rather than learning theMDP from scratch. This step requires
no overhead and directly reduces the total amount of learn-
ing, which can be very significant for low-cost robots with
limited onboard computational resources, or when gathering
experience is costly. Since our work does not require demon-
strations to be given in the correct order, interactions can be
learned at different times and from different sources. In addi-
tion, when equippedwith a database of “primitive interaction
models” as prior knowledge, a robot can be immediately ver-
satile in everyday environments, without too much learning.

One limitation of the work is that the graph needs to be
supplied a priori. Although non-expert users can come up
with the graph in most cases as the graph corresponds to
our common sense of causality, it would still be preferable
for the robot to autonomously discover the interaction graph
structure for a given task. The inclusion of prior knowledge
(e.g. our interactions are causal and it is highly unlikely that
a lamp lighting up will cause a button to depress), accurate
sensing, and active information gathering will likely prove
necessary for learning complex interaction model structures

completely from scratch. In addition, ideas from structure
discovery in Bayesian networks may also be relevant here.

Acknowledgements We thank the anonymous reviewers for their help-
ful suggestions and criticisms. We are grateful for Ying Qi for narrating
the video. The game sprites and pictures appearing in the video are cour-
tesy of www.clipartbest.com, www.clipartsheep.com, www.clker.com,
www.flickr.com, www.iconarchive.com, www.openclipart.org, www.
pd4pic.com, and www.pixabay.com under Creative Commons 0, Cre-
ative Commons Attribution License, or custom license allowing free
non-commercial use with attribution.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Abbeel, P., & Ng, A. (2004). Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the 21st international
conference on machine learning.

Argall, B., Chernova, S., Veloso, M., & Browning, B. (2009). A survey
of robot learning from demonstration. Robotics and Autonomous
Systems, 57(5), 469–483.

Butterfield, J., Osentoski, S., Jay, G., & Jenkins, O. (2010). Learning
from demonstration using a multi-valued function regressor for
time-series data. In Proceedings of the tenth IEEE-RAS interna-
tional conference on humanoid robots.

Chiappa, S., & Peters, J. (2010). Movement extraction by detecting
dynamics switches and repetitions. Advances in Neural Informa-
tion Processing Systems, 23, 388–396.

Chiappa, S., Kober, J., & Peters, J. (2009). Using Bayesian dynamical
systems for motion template libraries. Advances in Neural Infor-
mation Processing Systems, 21, 297–304.

Ekvall, S., & Kragic, D. (2008). Robot learning from demonstration: a
task-level planning approach. International Journal of Advanced
Robotic Systems, 5(3), 223–234.

Grollman, D., & Jenkins, O. (2010). Incremental learning of subtasks
from unsegmented demonstration. In International conference on
intelligent robots and systems.

Jenkins, O., & Matarić, M. (2004). Performance-derived behavior
vocabularies: Data-driven acquisition of skills from motion. Inter-
national Journal of Humanoid Robotics, 1(2), 237–288.

Kolter, J. Z., Abbeel, P., &Ng,A.Y. (2008). Hierarchical apprenticeship
learning with application to quadruped locomotion. In Advances
in Neural Information Processing Systems 20 (pp. 769–776).

Konidaris, G., &Barto, A.G. (2009). Skill discovery in continuous rein-
forcement learning domains using skill chaining. In Advances in
Neural Information Processing Systems 22 (pp. 1015–1023).

Konidaris, G., Kuindersma, S., Grupen, R., & Barto, A. (2012). Robot
learning from demonstration by constructing skill trees. Interna-
tional Journal of Robotics Research, 31(3), 360–375.

Konidaris, G., Kaelbling, L., Lozano-Perez. T. (2014). Constructing
symbolic representations for high-level planning. In Proceedings
of the twenty-eighth AAAI conference on artificial intelligence,
pp. 1932–1940.

Krüger,V.,Herzog,D., Baby, S.,Ude,A.,&Kragic,D. (2010). Learning
actions from observations. IEEE Robotics and Automation Maga-
zine, 17(2), 30–43.

123

www.clipartbest.com
www.clipartsheep.com
www.clker.com
www.flickr.com
www.iconarchive.com
www.openclipart.org
www.pd4pic.com
www.pd4pic.com
www.pixabay.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Autonomous Robots

Kulić,D., Takano,W.,&Nakamura,Y. (2009).Online segmentation and
clustering from continuous observation of whole body motions.
IEEE Transactions on Robotics, 25(5), 1158–1166.

Maitin-Shepard, J., Cusumano-Towner,M., Lei, J., &Abbeel, P. (2010).
Cloth grasp point detection based onmultiple-view geometric cues
with application to robotic towel folding. In Proceedings of the
2010 IEEEconference on robotics and automation, pp. 2308–2315.

Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich,
P., Marder-Eppstein, E., Muja, M., Eruhimov, V., Foote, T., Hsu,
J., Rusu, R., Marthi, B., Bradski, G., Konolige, K., Gerkey, B., &
Berger, E. (2010). Autonomous door opening and plugging in with
a personal robot. In Proceedings of the 2010 IEEE conference on
robotics and automation, pp. 729–736.

Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi, B., &
Barto, A. (2015). Learning grounded finite-state representations
from unstructured demonstrations. The International Journal of
Robotics Research, 34(2), 131–157.

Stone, P., & Veloso, M. (2000). Layered Learning. In: R. López de
Mántaras, E. Plaza (Eds.),Machine Learning: ECML 2000. ECML
2000. Lecture Notes in Computer Science (Lecture Notes in Arti-
ficial Intelligence) (vol 1810). Berlin, Heidelberg: Springer.

Sutton, R., & Barto, A. (1998). Introduction to reinforcement learning
(1st ed.). Cambridge: MIT Press.

Zhou, Y., & Konidaris, G. (2016). Representing and learning complex
object interactions. Robotics: Science and Systems.

Yilun Zhou is a graduate student
in the Computer Science and Arti-
ficial Intelligence Lab (CSAIL) at
Massachusetts Institute of Tech-
nology, starting from September
2017. His research interests
include developing and applying
machine learning algorithms to
improve commonsense reasoning,
robotics and computer vision. He
graduated summa cum laude with
a Bachelor of Science in Engi-
neering degree from Duke Univer-
sity in December 2016, double-
majoring in Electrical & Com-

puter Engineering and Computer Science.

Benjamin Burchfiel is a Ph.D. can-
didate at Duke university work-
ing under Dr. George Kondiaris.
Benjamin holds an M.Sc. in Com-
puter Science from Duke Univer-
sity and a B.Sc. in Computer Sci-
ence from the University of
Wisconsin-Madison. His primary
area of research investigates 3D
object representations for robot-
object interaction while his other
research interests include robotic
Learning from Demonstration
(LFD), robot perception, and effi-
cient robot decision making in

complex, real-world, environments.

George Konidaris is an Assistant
Professor of Computer Science at
Brown. Before joining Brown, he
was on the faculty at Duke, and
a postdoctoral researcher at MIT.
George holds a Ph.D. in Com-
puter Science from the Univer-
sity of Massachusetts Amherst, an
M.Sc. in Artificial Intelligence
from the University of Edinburgh,
and a BScHons in Computer Sci-
ence from the University of the
Witwatersrand. He is the recent
recipient of Young Faculty Awards
from DARPA and the AFOSR.

123

	Representing, learning, and controlling complex object interactions
	Abstract
	1 Introduction
	2 Background
	3 Interaction chains
	3.1 Learning a model
	3.2 Control
	3.2.1 Solving for the optimal policy
	3.2.2 Approximate solutions via successive trajectory following

	4 Interaction graphs
	4.1 Learning
	4.2 Control
	4.2.1 Solving for the optimal policy
	4.2.2 Trajectory following

	5 Experiments
	5.1 The car game
	5.2 The water dispenser

	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References

