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Abstract

AlphaZero, an approach to reinforcement learning that cou-
ples neural networks and Monte Carlo tree search (MCTS),
has produced state-of-the-art strategies for traditional board
games like Chess, Go, and Hex. While researchers and game
commentators have suggested that AlphaZero uses concepts
humans consider important, it is unclear how these concepts
are represented in the network. We investigate AlphaZero’s
representations in Hex using both model probing and behav-
ioral tests. We find that the MCTS search initially finds im-
portant concepts, and then the neural network learns to en-
code these concepts. Concepts related to short-term end-game
planning are best encoded in the final layers of the model,
whereas concepts related to long-term planning are encoded
in the middle layers of the model.

Introduction
Domain experts have observed that AlphaZero (Silver et
al. 2016), a reinforcement learning approach that combines
Monte Carlo tree search (Brügmann 1993) with neural net-
works, uses, but does not master, identifiable game concepts.
For example, despite being exceptionally strong overall, Al-
phaZero appeared unable fully to project the implications
of a ladder—a relatively simple concept in the game of
Go (Tian et al. 2019).

An agent’s good performance can mask flaws in neural
network systems generally (Poliak et al. 2018b; Gururangan
et al. 2018), and reinforcement learning systems in particu-
lar (Witty et al. 2018; Zhang, Wu, and Pineau 2018). By vi-
sualizing which features of the environment an agent relies
upon, e.g., via saliency maps (Simonyan, Vedaldi, and Zis-
serman 2014) or attention (Mott et al. 2019), researchers can
infer whether or not a reinforcement learning agent is using
appropriate features, and therefore generalizes effectively.
These techniques can help determine if the agent is behaving
appropriately, say by attending to enemy sprites. However, it
is difficult to interpret the agent’s behavior as a whole from
these findings because these methods work on a per image
basis. Understanding how a model represents relevant con-
cepts can better help us understand its decisions (Kim et al.
2018), and further, let us make predictions about its behav-
ior (Lovering et al. 2021).
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A characterization of which concepts an agent “un-
derstands” summarizes that agent’s abilities, and where
those abilities fall short. We use two techniques–model
probing (Alain and Bengio 2017; Conneau et al. 2018;
Poliak et al. 2018a; Marvin and Linzen 2018; Tenney,
Das, and Pavlick 2019; Sinha et al. 2021) and behavioral
tests (Linzen, Dupoux, and Goldberg 2016; McCoy, Pavlick,
and Linzen 2020; Warstadt et al. 2020; Gauthier et al. 2020)–
to interpret AlphaZero’s behavior at a conceptual level.
Probing classifiers measure if model activations can be used
to discriminate between concepts: In natural language pro-
cessing, they are used to determine if deep learning mod-
els encode linguistic concepts. These classifiers can be used
analogously to determine if reinforcement learning agents
encode tactical and strategic conceptual information (Anand
et al. 2019; McGrath et al. 2021). However, probing perfor-
mance alone is insufficient to determine that these concepts
play an important role in decision making: Information may
be encoded but not used (Lovering et al. 2021). We address
this issue in our work by also examining agent behavior over
game concepts. To do so we use behavioral tests, which eval-
uate an agent’s decisions in a situation tailored to require
the understanding of a specific concept. Using both probing
classifiers and behavioral tests, we can study how internal
representations and external behavior relate.

We leverage both of these concept-level evaluation meth-
ods to interpret AlphaZero (AZ) trained to play Hex. Hex
is a board game similar to Go, which we introduce below.
We probe for concepts that are traditionally taught to new
players of Hex. Given a dataset of boards with and without
a specific concept, like bridge (Figure 2a), we train a clas-
sifier over AZ’s neural network activations to determine if
the concept is encoded. We also test if the model behavior
aligns with the expectations of this concept—a behavioral
test. Applying these methods, we investigate how concepts
are represented within AZ, when concepts are learned dur-
ing training, and where concept are represented within AZ’s
neural network.

We analyze the top performing model from Jones (2021),
and find that (1) concepts that pertain to short-term end-
game planning are best represented in the final layers of the
network, whereas concepts that pertain to long-term plan-
ning are best represented in earlier in the network; (2) con-
cepts appear to originate with MCTS—with MCTS overrid-



Figure 1: An example winning board from the game of Hex.
To win, a player must use their pieces to form a connected
chain between the edges matching their color. In this ex-
ample, black connects the two black edges and wins. Hex
boards also can be of larger height and width; we evaluate
AlphaZero on a 9x9 board.

ing the neural network’s policy prediction early in training—
but later in training these concepts are incorporated directly
into the model’s network. Investigation into how concept
representations causally impact resulting model behavior is
a rich direction for future work.

Concepts in Hex
We study AlphaZero (AZ) agents trained to play Hex (Gard-
ner 1961), a game where two players take turns filling cells
until one player builds a chain across the board. Unlike Go,
there are no captures; once a cell is filled with a piece, the
pieces stays there for the remainder of the game. In Figure 1,
white connects from left to right, and black from top to bot-
tom. Hex cannot end in a tie (Gale 1979), and given perfect
play, black, the first player, will win (Gardner 1961).1

In Hex, certain templates, i.e., patterns of cells, have been
recognized as useful. While the properties of concepts are
debated (Margolis, Laurence, and others 1999), here, in a
board game setting, we consider a concept to be a useful
template that generalizes across board configurations. For
our purposes, “understanding” a concept amounts to recog-
nizing it and leveraging its implications during gameplay.

Concept Taxonomy
From Seymour (2019) and King (2004), we identify nine
concepts, summarized in Figure 2. Broadly, we categorize
these concepts as being positive or negative. Positive con-
cepts prescribe which actions to take, whereas negative con-
cepts prescribe which actions not to avoid.

Positive Concepts With the goal of Hex being to build a
chain across the board, it is helpful to recognize when cells
are virtually connected, that is, even in response to perfect
adversarial play, the cells are guaranteed to connect (Hay-
ward et al. 2005; Pawlewicz et al. 2014). All the positive
concepts favor the player that owns the concept on the board.

We use three types of positive concepts. Internal concepts
are templates that appear within the interior of the board.
The bridge (Figure 2(a)) is the simplest such concept. The
larger internal templates – crescent, trapezoid, span (Fig-
ure 2(b,c,d)) – provide several possibilities to connect a

1Hex is often played with a “swap rule” that makes the game
more even between black and white. See Jones (2021), whose im-
plementation we use, for further discussion on the swap rule which
was not included to simplify the game implementation.

player’s pieces. Edge concepts virtually connect a single cell
to an edge. Ladders in Hex are similar to ladders in Go. In
Figure 2(g,h), black attempts to connect to the bottom edge.
A bottleneck (Figure 2(g)) prevents black from connecting,
whereas an escape (Figure 2(h)) allows black to connect.

Negative Concepts Negative concepts include empty
cells that are to be avoided in play. Dead cells (Figure 2(i))
cannot impact the outcome of the game regardless of the
player that fills the cell. It is often difficult to compute if a
cell is dead (Bjornsson et al. 2006), but there are templates
in which dead cells can be identified. If a player can make a
cell dead, such as A in Figure 2(j)), it is captured.

Long-term vs Short-term Concepts
Concepts have different move implications depending on the
condition of the board. We find that whether or not the con-
cept is connected to the edge of the board has the most sig-
nificant impact on AlphaZero’s representations (Figure 5). If
a concept is connected, it means the owner of that concept
can win the game if it understands how to use that concept.
For example, in Figure 4(d), the bridge is connected, and all
that is required is a short-term understanding of the concept
and the board. If a concept is disconnected, it still pertains
to the long-term strategy.

AlphaZero’s Gameplay
AlphaZero (AZ) uses both neural networks and MCTS to
produce a policy. The neural network produces a value es-
timate of the board, and a policy distribution over which
action to take next. AZ’s MCTS creates an updated pol-
icy distribution based on roll-outs of possible next moves.
Neither the network’s loss, nor MCTS’s structure, encour-
age winning quickly (Silver et al. 2017). AZ selects actions
that most likely result in a win regardless of the number of
actions necessary to achieve that win. This is in contrast to
MoHex (Huang et al. 2014; Pawlewicz and Hayward 2014;
Pawlewicz et al. 2015), a state of the art Hex agent, which
is hard-coded to select the move that forms the shortest con-
nection between the winning player’s pieces at the end of the
game (Arneson et al. 2018). Figure 3 shows an example of
AZ delaying the game. These delays impact how we can test
AZ’s behavioral understanding of concepts. To determine if
AZ uses a concept, we present AZ with a situation where us-
ing the concept is the only way to win. If AZ fails to do so,
we can be confident that it does not understand the concept.

Probing Tasks and Behavioral Tests
To understand the concepts encoded within AZ, we probe
its internal representations; to evaluate if these concepts are
used, we test its behavior on tailored board configurations.
Each task uses five replicate seeds. By evaluating AZ across
checkpoints and network layers, we understand how and
where the model recognizes these concepts. Specifically, we
evaluate the top-performing agent trained by Jones (2021)
across 21 training checkpoints. Our code and results are pub-
licly available. Furthermore, we release example images of
boards created for our probing classifiers and videos of the
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Figure 2: Hex templates exemplifying game concepts. Concepts within the game of Hex are patterns on the board formed
by a player’s pieces that have known strategic and tactical implications. Positive concepts provide the owner of the concept
multiple ways to connect the pieces within the template together, despite possible attacks from the opponent. An example of
these properties is the bridge (a). If white plays move 1, black still can connect between the two pieces of the bridge by playing
move 2. Negative concepts are board structures that contain open cells that neither player should fill. For example, neither
player should play move A in (i) because it cannot impact the outcome of the game. Arrows indicate that the piece is connected
to the opposite side of the board; the lines show the bridge concept within the other concepts.
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Figure 3: Example end game board demonstrating Alp-
haZero’s inefficiency of last moves. Black is close to win-
ning the game and must decide its next move. Move B ends
the game. For each available move, we measure AZ’s esti-
mate of the action’s value (Action Value) and its log proba-
bility of selecting each action using MCTS (MCTS Logit),
averaged over 100 runs of MCTS. Both A and B have action
values near 1: AlphaZero estimates both moves to result in a
win for black. However, A (red) has the highest MCTS logit,
and therefore highest probability of being selected. While
move A allows AZ to win the game on the next round, it un-
necessarily extends the game. Figure 7 shows that AZ plays
unnecessary moves even at the end of training.

behavioral tests 2.

Representational Probing
Model probing measures how well a model’s learned repre-
sentations encode a concept (Alain and Bengio 2017). Prob-
ing entails training a linear classifier (the probe) over model
activations to predict the presence of the desired concept.
Thus, concepts are defined by a set of examples. The classi-

2The code, results and examples can be found here: https:
//bit.ly/alphatology

fier’s test performance is used to interpret how well the orig-
inal model encoded the concept. We largely follow Tenney,
Das, and Pavlick (2019): For a given board H(0), we extract
activations H(l), l ∈ 1..L for each neural network layer. We
then train linear classifiers P(l), l ∈ 0..L per layer to predict
the presence of a concept in the board, y; these classifiers
are our concept probes.

It is important to compare probing results against a base-
line. We follow Hewitt and Liang (2019)’s procedure to mea-
sure concept selectivity, the delta between probing accuracy
over a concept and random control. To form the random
control, for each board in the probing dataset (H(0), y), we
consistently map each cell in that board to a random cell,
forming H

(0)
s . In this way, the same information is encoded

in the original boards, but we expect the shuffled boards to
be irrelevant to Hex. Next, we train a set of linear probes
P(l)
s , l ∈ 0..L over the control boards H

(0)
s to predict y .

Now, finally, we can compute the concept selectivity by find-
ing the delta in test accuracy between P(l)

s and P(l).
The higher the selectivity, the greater the extent that the

model encodes the concept above what could be explained
by a baseline. In Figure 5, we report the highest probing
accuracy and selectivity across layers.

Implementation Details. Each concept is defined by a
set of boards with and without a concept. We train and eval-
uate probing classifiers over AZ’s encoding of the boards.
To generate boards for each concept, we translate the mini-
mal templates across an empty board. Then, we add random
enemy pieces to the board. Negative instances of a given
concept match the statistics of the positive examples, ex-
cept that the pieces related to the concept template are ran-
domly moved across the board. This is the long-term ver-
sion of a concept. For the short-term concept, we connect
the template to the edges of the board. Each probing dataset

https://bit.ly/alphatology
https://bit.ly/alphatology


has 2500 positive and 2500 negative examples. We generate
multiple probing datasets across a range of conditions: long-
term vs short-term, black to play vs white to play, black with
the concept vs white with the concept. Only long-term vs
short-term conditions impact results.

Behavioral Tests

Where model probing asks if concepts are represented
within the model, behavioral tests asks if the model knows
how to use the concept in gameplay. We measure the how
well AZ’s uses each concept by the percent of tests for that
concept which has passed. To interpret the behavioral tests,
they must have clear behavioral expectations.

Because AlphaZero (AZ) does not win in a minimal num-
ber of moves, our behavioral tests for positive concepts (Fig-
ure 2) are forced: If AZ can understand the concept and play
the expected moves, AZ wins and passes the test, otherwise
AZ loses the game and fails the test. Success is necessary
but not sufficient to establish that the model has the concept.
A negative result means that AZ is entirely unable to use the
concept, whereas a positive result means that AZ uses the
concept to win games in forced situations.

For negative concepts (Figure 2), we have clear behav-
ioral expectations. Dead and captured cells should never be
filled. Thus, the behavioral test for negative cells checks that
during a selfplay continuation of a board containing a dead
(or captured) cell, the agent does not fill that cell.

Implementation Details. For each concept, we create be-
havioral tests that comprise a board, forcing moves, and ex-
pected moves. For the dead and captured cells there are no
forcing or expected moves, only the moves to avoid. Figure 4
is a visual example of how we generate behavioral tests. To
generate 100 behavioral tests, we translate the concept tem-
plates to a sampled valid board position. We then connect the
concept to the edges of the board. In self-play, there are of-
ten multiple relevant regions on the board that contribute to
a win or loss. However, by focusing the area of gameplay to
a single focal point, we can deliberately test if AZ learns to
use the given concept. To focus the area of gameplay, we add
connections for the other player up to the region of the con-
cept such that the other player wins if the agent fails to pass
the behavioral test. Finally, we add the appropriate number
of random pieces – which do not meaningfully impact the
state of the game – to ensure that the board position is valid.

Limitations

Evaluating AZ in a simple (and cheap) setting that has
been solved (Arneson, Hayward, and Henderson 2011) and
for which perfect-play baselines exist (Huang et al. 2014),
makes it easier to interpret and guide future work. Expand-
ing to other games will prove which trends are particular to
our setting, and which generalize elsewhere. While we find
a consistent relationship between the probing and behavioral
tests, we do not run a counterfactual study. For example,
we do not show that mistakes in recognizing a concept on a
given board, lead to mistakes to use that concept. Future re-
search to design such studies would add to this line of work.

A
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Figure 4: Creating behavioral tests from concept tem-
plates. We build synthetic boards that test if the agent can
use a given concept to win the game. Each concept con-
tains a minimal template representative of a board concept.
In this example, we demonstrate the building of a behavioral
test for the bridge (Figure 2a). The minimal template (a) is
translated to a random position on the board (b). Then both
players’ pieces are connected to their respective edges they
need to utilize to win the game (c). Finally, noise pieces are
added to form a valid board (d). Cells A, B are used to de-
fine the behavioral test. If white plays A, black must play B
to win the game. (Only half a 5x5 board is shown for space.)

Results
To understand which concepts AZ learns, we examine if its
neural network encodes the concepts (probing tests) and if
AZ can use the concepts to win games (behavioral tests).

AlphaZero Recognizes and Uses Concepts
Figure 5 shows that AZ successfully encodes short-term
concepts with high selectivity scores. The long-term concept
scores are also learned with slightly lower scores. By the end
of training, AZ uses all positive concepts to win (Figure 6).

We measure the rate at which the policy network and
MCTS recommend the correct action. Passing rates for
the policy network and MCTS are above zero at halfway
through training. MCTS passing rates increase slightly be-
fore policy network passing rates increase (Figure 6). These
differences in passing rates between MCTS and the policy
network suggest that conceptual information is incorporated
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Figure 5: AlphaZero successfully encodes short-term and
long-term concepts. The concept selectivity, indicated by
the color bars, is the accuracy of a probe trained to identify
a concept, minus the accuracy of a probe trained over a ran-
dom control baseline. The random control randomly maps
board cells so that the same information is encoded, but the
random mapping should be irrelevant to Hex. We report se-
lectivity based on the layer with the highest test accuracy.



from MCTS into the policy network. Because the policy net-
work is trained to match the outputs of MCTS, similar pass-
ing rates are expected.

We additionally record how often the correct action’s log
probability is more than one standard deviation above the
mean (z-score > 1). Interestingly, the relative magnitude of
the the correct action increases at the start of training, long
before the passing rates improve. Thus, it seems that there
is some “pre-conceptual” information learned, which results
in a large increase in passing rates 60% through training .
Below, we investigate if this “pre-conceptual” information
pertains to the structure of the board.

AZ improves behaviorally upon negative concepts but
does not reach a 100% passing rate. Probing performance
for the negative concepts, shown in Figure 5, is lower than
for other concepts. These results align with evidence that AZ
is prone to waste moves, and suggest that AZ’s loss function
may impact its learning of negative concepts.

Improvements in Behavioral Tests occur before
Improvements in Probing Accuracy
We measure the the order of improvements in our behav-
ioral and probing tasks, recording the checkpoint at which
each task begins to improve and converges. We define a first
improvement as the checkpoint at which the average accu-
racy/passing increases by a threshold from the baseline per-
formance. In order to have the thresholds proportional to the
range each metric, our threshold is 5% for behavioral tests
and 2.5% for probing accuracy. Internal concepts meet our
threshold for improvement at similar checkpoints for both
behavioral and probing tasks. For each concept, our behav-
ioral tests begin to improve before our probing tasks, which
suggests that interaction with the concept is necessary to en-
coding it. Again, this finding is consistent with the structure
of the loss function of AZ, which encourages the policy net-
work output to match MCTS.

Concepts are Absorbed into the Model
Concepts are initially discovered (per our behavioral tests)
via MCTS, before being predicted by the policy head of the
agent. We find an analogous pattern in the concept represen-
tations. Figures 9 and 10 highlight which layer best repre-
sents the concept depends on whether it is a short or long-
term concept. Long-term concepts, by the end of training,
are best represented in the middle layers. Short-term con-
cepts, throughout training, are best represented in the upper
layers of the network. The layer that best represents the net-
work is not the only layer that performs well in our prob-
ing task. Figure 9 shows the test accuracy of our probes for
short-term bridges. Although the last layers perform best,
even the second layer encodes the bridges well.

Cell Embeddings Capture Board Structure
Understanding Hex’s concepts requires understanding the
board’s structure, i.e., which cells connect to which other
cells. AlphaZero (AZ), with its feed forward network archi-
tecture, does not a priori represent this structure. Figure 6,
above, shows evidence that some information is learned be-
fore the model is able to use the concepts. A possibility is
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Figure 6: AlphaZero learns to use the positive concepts.
At each checkpoint, we present AlphaZero with a set of ex-
ample boards that test its ability to use each concept. MCTS
(yellow) and the policy network (red) select actions that pass
our behavioral tests with increasing frequency throughout
training. We additionally report the rate at which the ac-
tion that passes our behavioral test is one standard devia-
tion above the mean (z score > 1) (blue). The Agent Elo
(dark green) measures AZ’s general gameplaying ability; it
increases as AlphaZero starts to use the concepts.
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Figure 7: AlphaZero does not fully “use” the negative
concepts. To pass these behavioral tests, AlphaZero must
avoid playing cells on the board associated with the dead
and captured concepts throughout a selfplay rollout. After
being fully trained, it still plays these wasted moves in 25%
of our behavioral tests.

that AZ spends the initial portions of training building up a
representation of the board, and then uses this representation



to better play the game. However, neighborhood structure is
learned later at the same time as the other concepts.

We investigate if the structure of Hex’s board is repre-
sented in AZ’s first layer using a structural probe (Hewitt
and Manning 2019). A structural probe tests the relation-
ship between neural network activations (or weights). We
extract a cell embedding for each cell from the first layer of
AZ.3 From here, we compute the dot-products between each
cell embedding. The dot-product score between ground-
truth neighbors increases throughout AZ’s training.

Qualitatively, the recovered structure is similar to the
ground truth structure (Figure 11). The last row of Figure 8,
neighbors, shows that improvements on this first concept oc-
cur at a similar time as to other concepts. The threshold for
the initial improvement and convergence is 0.01 NCDG.

3AlphaZero’s first layer takes a flattened 1-hot encoding of the
board and matrix multiplies this with a weight matrix. The embed-
ding of each cell can be spliced out of that weight matrix. We only
extract the cell embeddings for the current player.
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Figure 8: Improvements in behavioral tests occur before
improvements in probing accuracy. This boxplot shows
changes in concept representation and use during training.
The checkpoint at which behavioral tasks improve are blue,
and converge are yellow. The checkpoint at which probing
tasks improve are pink, and converge are green. For internal
concepts, the first four rows, the behavioral test improves
before the probing accuracy. Probes to detect ladder escape
concept (Fig. 2h) converge early in training, but the behav-
ioral tests only improve late in training. Improvements in
board structure are orange, and convergence, purple.
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Figure 9: Short-term concepts are best represented in the
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estimate. Bot: This heatmap disaggregates the data in the
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best represented in the top layers and well represented in the
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Related Work
Applying MCTS and neural networks to the Game of
Hex. Jones (2021), whose trained agents we use, studied
scaling laws between various parameters, finding a rela-
tionship between compute, board size, and desired agent
performance. Where Gao, Hayward, and Müller (2017)
and Takada, Iizuka, and Yamamoto (2017) both use value
functions and MCTS to play Hex, Huang et al. (2014)
(MoHex) combine connection detection, pattern matching,
and MCTS, solving Hex for the 9x9 grid.

AlphaZero, anecdotally, uses concepts. Domain experts
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Figure 10: Long-term concepts are best represented in
middle layers. As the accuracy of the probes trained to
recognize each concept improves (gray), the layer with the
highest accuracy (red) falls. Dashed lines show the linear re-
gression of each metric, shading indicates one standard devi-
ation above and below the mean estimate. Bot: This heatmap
disaggregates the data in the bridge lineplot (top left).

have observed that AlphaGo (Silver et al. 2016) and related
agents that combine Monte Carlo tree search (Brügmann
1993) with deep reinforcement learning use identifiable
concepts within board games. In the commentary of Al-
phaGo’s matches against Lee Sedol, Michael Redmond
identified several common gameplay concepts demonstrated
by AlphaGo (DeepMind 2016). Silver et al. (2018) noted
that common joseki were used by AlphaZero during self-
play. Tian et al. (2019) noted that Elf OpenGo only par-
tially mastered ladder sequences within the game. Chess
commentator Antonio Radić detailed how AlphaZero used
zugzwang (Winter 1997) in the course of defeating Stock-
fish (Romstad et al. 2008; Radić 2017). Experts have al-
ready incorporated some of AlphaZero’s innovations into
their play (Nielsen 2019; Sadler and Regan 2019).

Probing neural networks for linguistic concepts. A
wide range of linguistic concepts have been detected in
NLP models using probes (Conneau et al. 2018; Poliak et
al. 2018a; Marvin and Linzen 2018; Tenney et al. 2019;
Hewitt and Manning 2019). There has been some discussion
on what exactly good probing accuracy signifies. Hewitt and
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Figure 11: Dot-product scores between cell embeddings
recover board structure.

Liang (2019) calls for baseline controls, and to measure the
gain in accuracy compared to these baselines.

Understanding reinforcement learning agents trained
to play board games. Anand et al. (2019) compared unsu-
pervised encoders’ ability to represent various features of the
state (e.g., number of opponent sprites). Sadler and Regan
(2019) describes the impact of AlphaZero’s gameplay on
professional chess. Concurrent to our work, McGrath et al.
(2021) also looks at how AlphaZero acquires game knowl-
edge (which we term concepts) in chess. Using similar prob-
ing techniques, and the original (and larger) AlphaZero, they
find that AlphaZero learns to encode many of the prototypi-
cal chess concepts. Related, but not focused on model under-
standing persay, Jhamtani et al. (2018) collect an annotated
set of chess games. This type of resource is similar to what
is used by McGrath et al. (2021) for their probing task.

Discussion
Our analyses suggest that AlphaZero (AZ) both represents
and uses concepts that humans consider important when
playing Hex. Which layer in the network best represents a
concept depends on context: short-term concepts that inform
actions at the end of the game are best encoded in the upper
layers of the model, whereas long-term concepts are best en-
coded deeper in the network. AZ does not win in a minimal
number of moves, often wasting moves once it reaches a se-
cure position. This phenomena may explain why negative
concepts are not as well encoded and used.

Combining both representational and behavioral ap-
proaches to analyze reinforcement learning agents allows
for a fuller understanding of how they learn. Studying the
representations of concepts allows us to ask (and answer) a
rich set of questions about where that concept resides, and
how it compares to other concepts. Studying the behavior of
an agent on a given concept tests that this agent uses this
concept; probing alone may be misleading. Behavioral tests
can also expose heuristics the model may be using. In future
work, finding the causal mechanisms of how an agent rep-
resents a concept and how it uses that concept will further
illustrate how AlphaZero understands gameplay.
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