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Abstract

Abstract of “Learning Task-Specific Grasps” by Matthew Stephen Corsaro, Ph.D., Brown Univer-

sity, May 28, 2023.

Grasping is one of the most important open problems in robotics; the very point of a robot is to

exert force on the world to achieve a goal, and most such exertions require the robot to execute a

grasp first. For a home robot to be effective, it must load a dishwasher with breakable plates; for

a repair robot to be effective, it must operate tools; for a caretaker robot to be effective, it must

perform chores for those with illnesses. All of these activities require manipulating objects, which

in turn requires grasping them effectively. Additionally, to be useful, the robot must be able to

perform these tasks on objects it has never seen before, in applications where manipulation failures

can be very costly. Deploying a robot to such an environment, where exact operating conditions

are unknown and vary between instances, is therefore challenging because systems and algorithms

developed in a lab may perform poorly when introduced to a novel environment. A robot must

quickly learn to manipulate new objects it encounters using limited prior knowledge.

In this dissertation, I examine robot grasping in three contexts. First, I propose a general grasp

detection system that enables a multi-finger gripper to use multiple types of grasps to pick objects

of varying sizes from dense clutter. For example, precision grasps are necessary for precisely picking



small objects from the surface of a table using fingertips, while power grasps stably hold large objects

by enveloping them with the gripper’s fingers. Given a visual representation of the scene, the system

proposes a set of potential candidate grasp poses. These poses are evaluated using a neural network

model that takes as input point clouds centered at a grasp pose and returns the probabilities that a

grasp of each type would succeed at the given pose. This system is trained using a dataset generated

in simulation and evaluated on a real robot. Explicitly modeling grasp type boosted the system’s

object removal rate by 8.5% over the highest performing baseline.

Next, I propose a framework for specializing a generic grasp detector to a task-oriented grasp de-

tector. A generic grasp detector detects a stable grasp, which is sufficient for picking up an object

but may not be sufficient for manipulating it. For example, a stable grasp very close to the fulcrum

of a door handle will make it hard to turn, while grasping far from the fulcrum will make it easier.

A task-oriented grasp detector is a classifier that predicts which grasp poses serve as initial states

that enable a given manipulation controller to complete a task. As these classifiers are instance de-

pendent, they cannot be trained in simulation and transferred to the real world. Instead, they must

be trained directly in the task for which they are required. To this end, I introduce the Augmented

Task-Oriented Grasp Detection Network (ATOG), which learns to predict which grasp poses allow

a robot to successfully manipulate an object from a single-digit-sized training set. ATOG achieves

this via a deep architecture built on an existing network that has been pre-trained to predict gen-

eral grasp stability. Given a partial point cloud containing the local geometry around a grasp pose

and the pose’s relation to the object, ATOG predicts whether the grasp will enable the robot to

successfully execute a motor skill. I evaluate ATOG in four simulated domains; it outperforms the

nearest baseline by up to 6.5%.

Finally, I propose a learning algorithm that learns a task-oriented grasp detector for a given task
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while simultaneously learning the manipulation policy that the grasp must enable. Learning a pol-

icy to control a robot to perform a specific task is difficult because of the large action space and

potentially sparse reward signal. This learning process can be simplified by bootstrapping the policy

with a grasp controller and learning after a grasp has been executed. For instance, a robot would

execute a grasp on the back side of the handle of a hammer, then learn a control policy that raised

the hammer over a nail and struck the head down onto the nail. Though bootstrapping with a grasp

controller simplifies the policy learning process, a task-oriented grasp classifier still must learn which

grasp poses enable the policy to succeed. This joint learning problem is challenging due to the entan-

glement between the task-oriented grasp detector and the manipulation policy, which changes over

time as it is learned; selecting different grasps changes the initial states of the manipulation policy,

while a grasp pose that one policy fails the task from could enable an updated policy to complete

the task. My proposed Grasp-Aware Reinforcement-Learning Agent (GARLA) overcomes a key

obstacle to robot learning with grasping, enabling a robot to quickly learn both how to manipulate

an object and where to grasp the object to begin the manipulation. With GARLA, a robot could

be deployed to a novel environment and learn to manipulate novel objects within a small number of

attempts.
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Chapter 1

Introduction

Robots have great potential to change society. Increasingly intelligent automation will enable robots

to perform mundane or dangerous industrial tasks, and increase the rate at which items are shipped

from warehouses. More importantly, robots can help people. Care robots will assist the elderly or

those with disabilities to complete routine tasks, enabling them to be more independent of others.

In order to complete the challenging manipulation tasks posed by industry and best assist humans

in varying home contexts, robots must quickly learn to operate in new environments, developing

robust policies to interact with different objects. For instance, home assistive robots must open

cabinets, put away groceries or clothes, prepare food, and load a dishwasher with breakable plates

and glasses. These tasks are difficult because they require precise multi-step manipulation policies

where the robot must stably grasp a variety of objects to avoid dropping them or allowing them to

slip while manipulating them; dropping a salt shaker into a pot of boiling water and being unable

to retrieve it would ruin dinner.

Learning to stably grasp objects and learning to manipulate after grasping are both difficult

but important sub-problems that are often studied independently. Grasping in and of itself is a

challenging and important open problem in robotics. It is the most essential skill for pick and place

tasks and a prerequisite for many other manipulation tasks, such as tool use [42]. Grasping is often

1
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Figure 1.1: Several difficult household manipulation tasks assistive home robots must complete.
They must prepare complex meals, load and unload a dishwasher with delicate plates and glasses,
unpack a dense bag of groceries, and manipulate articulated objects such as cabinet doors.
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Figure 1.2: A robot grasping an object from a cluttered scene in order to place it in a box.

studied in the context of picking. It is treated as a computer vision problem, often called grasp

detection, where algorithms return grasp poses and the robot executes a grasp at the desired pose

with a simple policy [95]. As many robots are equipped with localized vision sensors, the they can

use motion planning to move their end effectors directly to a grasp pose with a Cartesian pose

command [35].

Grasp detection can be extended past the simple pick and place domain to perform task-oriented

grasping. Task-oriented grasps are grasps that enable a robot to perform some downstream task

besides pick and place after grasping an object. Task-oriented grasps are executed with a simple

policy that moves the end effector to the Cartesian pose specified by the grasp; the robot uses a

more complex policy or controller to complete the task. For instance, a robot must grasp a door

handle to open the door, grasp a spatula to flip a pancake, or grasp a pitcher to pour liquid. After

executing a grasp to complete these tasks, a more complex manipulation controller is required to

perform the opening, flipping, or pouring actions. Importantly, stable grasps that enable a robot

to pick and place an object may not enable it to complete a given task; a task-oriented grasp must
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stably hold the object, but must also afford the robot the ability to complete the task. The grasp

cannot cause the robot to obstruct a segment of the object necessary to complete the task, and

must allow the robot to properly manipulate the object after grasping as required. For instance,

when tasked with pouring liquid from a bottle, a grasp on the top of the bottle could enable a

two-armed robot to stably lift it, but would obstruct the robot from unscrewing the cap with its

other gripper once lifted. The sub-task of opening the bottle, however, would require a grasp on the

cap. Task-oriented grasps for pouring from the bottle must again leave the top unobstructed. Stable

grasps that enable the robot to complete one task may prove unsuitable for other tasks. In the case

of a robot that must hammer a nail, appropriate task-oriented grasps would be located along the

handle of the hammer so its head would be free to hit the nail. These grasps must enable the robot

to strike the face of the hammer downwards, further constraining the set of potential task-oriented

grasps. If a multi-finger robot was tasked with using a more complex tool such as a drill, not only

would it have to grasp the back side of the handle to properly position the tip, it would also require

a free finger to operate the trigger. When selecting a task-oriented grasp, the robot must consider

the stability of a given grasp as well as whether the grasp enables it to complete the given task.

After executing a task-oriented grasp, the robot must learn a policy to complete the task. Unlike

the simple controllers that could enable robots to grasp objects, these manipulations often cannot

be performed by specifying one Cartesian goal for the robot’s end effector. Instead, they require

the robot to bring the object to a goal state while respecting the constraints that govern the object.

When pouring liquid, a policy that tips the container upside-down before transporting it to the goal

would cause the liquid to spill. If a robot had to shut off a sink, rotating a faucet handle in the

wrong direction would cause the flow of water to increase rather than stop. Rotating the handle

too much with significant force would cause it to break. Learning to manipulate the world through

interaction is more difficult than learning to select a grasp to attempt. While a robot could select

and execute a grasp on an object before manipulating it, a successful manipulation could consist of

multiple steps that change based on the state of the robot and its environment. For instance, a robot
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must push a lever down when grasping from the top, or pull it when grasping from the bottom. To

open a door, the robot must learn to turn the handle to unlatch the door before pulling or pushing

it open. In order to feasibly learn to manipulate the world, robots must leverage existing strategies

to grasp objects before learning to use them to complete tasks.

In this dissertation, I first detail a system that enables robots to learn where and with which

grasp type they should stably grasp an object. Next, I extend this system to the task-oriented case,

where the robot must learn where to stably grasp objects to perform a downstream task. Finally,

I build towards integrating this task-oriented grasp classifier with a reinforcement-learning agent to

simultaneously learn which grasps enable task success while learning how to manipulate the object

to complete the task. My thesis statement is:

With a classifier that learns from limited data and weighting that considers uncertainty, we can

train a task-oriented grasp classifier jointly with a manipulation policy to efficiently learn to

manipulate objects.

It is vital for robots to learn to perform complex manipulation tasks quickly in the real world. In

particular, robots must learn which grasps enable them to execute a given manipulation controller

within a small number of attempts. In order to do this, structure should be inserted into a robot’s

actions. Rather than learn a complex manipulation policy that grasps and manipulates an object, a

robot must learn distinct abstract skills, such as grasping. This dissertation is a study of empowering

robots to quickly and effectively learn to manipulate objects through grasping.

1.1 Contributions

When a robot is introduced to a new environment, it must quickly learn to manipulate the objects

around it. In this dissertation, I propose a method for simultaneously learning task-oriented grasp

detection and durative-contact manipulation. This system utilizes existing motion planning tech-

niques to execute a grasp, rendering grasping a vision-based detection problem. After detecting a
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suitable grasp pose and moving the end effector to it, the system executes a manipulation controller

to complete the task. The main challenges such a system faces are learning to classify grasp poses

from few labeled examples and jointly learning grasp pose classifiers and a manipulation policy.

By augmenting a grasp-detection network to learn to detect task-oriented grasps from few labeled

examples and proper weighting based on changes in the policy, I can train a task-oriented grasp

classifier jointly with a manipulation policy to efficiently learn to manipulate objects in the real

world.

In this dissertation, I make three major contributions. First, in Chapter 3, I introduce the

Multi-Modal Grasp Pose Detector that allows a robot arm equipped with a multi-finger gripper

to clear a pile of clutter using multiple types of grasps for different objects. I empower a robot

to utilize different types of grasps, such as precision grasps for small objects and power grasps for

heavy objects, with a new deep neural network architecture that predicts whether each possible

type of grasp would succeed at a given grasp pose. Through extensive real-robot experiments, I

demonstrate that a robot equipped with multiple types of grasps clears clutter from a table more

effectively than one that uses few grasp types. Then, in Chapter 4, I describe an Augmented Task-

Oriented Grasp Detection Network that is efficiently trained from limited labeled data to detect

grasps for more complex manipulation tasks given a manipulation policy. This classifier leverages

a pre-trained generic grasp classifier to predict whether a given pose would enable a manipulation

policy to succeed. As this small classifier is trained only with the grasp pose and a predicted grasp

quality score, it can be trained efficiently from few examples. Finally, in Chapter 5, I define an

algorithm for jointly training a task-oriented grasp classifier and a manipulation policy. This is

a difficult non-stationary learning problem because the labels used to train a grasp classifier can

change as the simultaneously learned policy evolves. By weighting examples based on predictions

from the policy, my Grasp-Aware Reinforcement-Learning Agent selects grasps to learn a more

optimal policy. A robot equipped with these tools will enter a new environment and quickly learn

to perform complex manipulation tasks.



Chapter 2

Background

Intelligent robots process information obtained from their surroundings and perform actions that

change their environments to achieve a goal. In order to precisely manipulate the world around

them, it is imperative that robots effectively grasp tools, handles, actuators, household items, and

other manipulands (objects that are the targets of manipulation). Grasping is the most important

skill an intelligent robot possesses, as most healthcare, household, warehouse, and factory tasks

require manipulation.

Given an object to grasp, a robot must determine which areas on the object afford it the ability

to grasp. The robot must select a pose in one of these areas that it can move its gripper to. A

pose p = (o, d) consists of an orientation o and a position d. A position d ∈ R3 is the vector from

the origin of a defined frame of reference to a point in three dimensions, where the magnitude of

this vector is the Euclidean distance between the two points. An orientation o ∈ SO(3) can be

represented by a 3× 3 special orthogonal rotation matrix, which is a matrix with a determinant of

one where all columns are orthogonal to each other, all columns have norms of one, and the transpose

of the matrix is equal to the inverse of the matrix [8]. This matrix represents the three-dimensional

rotation that transforms the reference frame’s orientation to the orientation o. The pose p ∈ SE(3)

is represented as a transformation matrix from the special Euclidean group in three-dimensions.

7
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This pose could be defined in the robot’s end effector’s frame of reference, which may originate at a

fixed point at the center of a robot’s gripper’s palm with an orientation where one axis of rotation

is orthogonal to the plane of the palm, another is parallel to the gripper’s closing direction, and

the third is the cross product of the two. An arbitrary position d and orientation o represented

in the robot’s end effector’s reference frame describe exactly how the gripper should translate and

rotate to reach the corresponding pose p. Grasp pose detection, a problem studied throughout this

dissertation, involves detecting poses at which the robot can place its gripper and close its fingers

to successfully grasp an object.

In this chapter, I define three problems addressed in this dissertation: grasp detection, task-

oriented grasp detection, and manipulation policy learning. Grasp detection is the process of detect-

ing poses at which a robot can achieve a stable grasp on an object to lift it, which is vital for pick and

place tasks. Task-oriented grasp detection involves detecting grasps that enable a robot not only to

stably grasp a manipuland, but also perform some downstream task with it after achieving a grasp.

However, learning a policy for manipulating these objects, such as a hammer, after grasping them to

perform a task is also a difficult problem. After formally defining each problem, I present a survey

of existing works that provide possible solutions for that problem. Detailed analyses comparing my

systems to these related works are provided in Sections 3.2, 4.2, and 5.2.

2.1 Grasp Pose Detection

2.1.1 Problem Definition

Grasp pose detection algorithms return a Cartesian pose g ∈ SE(3) consisting of a position and an

orientation in 3-dimensional space. The input to a grasp pose detection system is often some sort

of localized visual representation of a scene, V . This visual input could, for instance, be a depth

image, which is a matrix where each value represents the distance from the sensor to an obstacle for

the corresponding pixel, or point cloud, which is a set of 3D points, as shown in Figure 2.1. V is
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Figure 2.1: An example of a point cloud that may be passed as input to a grasp pose detector.

localized when the extrinsic transformation from the robot to the sensor with which V is captured

is known; this transformation is calculated through a calibration procedure.

A grasp pose detector uses the information encoded in V to select the grasp pose g. Formally,

this is expressed as

GD : V → g. (2.1)

This pose g corresponds to a grasp for the robot to execute by moving its joints such that its end

effector is positioned at g. Some grasp pose detectors can instead output a discrete set of grasp poses

G with corresponding scores Sg, or a distribution of grasp poses G, and some other algorithm could

select a grasp g from these sets or distributions. A set of joint states that bring the end effector to

the desired g are computed with inverse kinematics, and the robot plans a path that safely brings

it to these states while avoiding collisions with obstacles in the environment. With its end effector
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at the desired grasp pose g, the robot closes its gripper to form a grasp on the object. The robot

then plans a path to some user-specified goal location; often, this consists of a point directly above

the grasp pose to lift the object, then a point above a box or receptacle where the arm can drop the

object.

As the goal for grasp pose detection is to pick an object and drop it in some goal area, the selected

pose g must enable the robot to execute a stable grasp on an object. Therefore, when grasping an

arbitrary object seen in V , the grasp pose detector must analyze the geometry in V that is local to

a given grasp pose.

2.1.2 Related Work

Many of the early approaches to grasp detection approach the problem through planning and by

analyzing forces and moments exerted on the planar projections of graspable objects. Nguyen [70]

generates 3-degree-of-freedom (DoF) grasp poses by identifying sets of potential contacts on objects

whereby grasps could be formed. The system determines whether a set of contacts form force closure

on an object, which is achieved when an arbitrary force and moment can be exerted on the grasped

object and the grasp will not fail without some external work applied to the object. Ferrari and

Canny [22] introduce a geometric grasp quality measure, which maximizes the wrench exerted on an

object by a gripper’s fingers while minimizing the sum of applied forces to keep the gripper’s power

requirements low. They present a simple planning algorithm and provide examples for calculating

the metric with a parallel-jaw and a 3-jaw gripper.

Another class of older grasp detection systems rely on complete 3D models of objects to compute

grasps. Once these algorithms identify and localize an object, they use an analytical grasp solver to

plan a grasp on the corresponding CAD model [40]. GraspIt is a popular simulation tool used to

plan and optimize grasps [60]. GraspIt contains models of many standard robot hands, and includes

a tool to generate hand models from the standard URDF format. Potential grasp candidates can be

evaluated by importing the corresponding full object model and the robot hand model, moving the
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hand to the candidate’s grasp pose, and simulating closure. GraspIt reports a grasp quality metric,

such as the epsilon grasp quality, ϵGWS , introduced by Ferrari and Canny [22]. Weisz and Allen

[101] revisit grasp quality metrics using GraspIt and 3D object models, noting that a grasp is not

best defined by its estimated quality metric, but by an estimate of the stability of a grasp quality

metric. If an object moves slightly or the robot does not execute a grasp exactly at the desired pose,

a grasp estimated to succeed could fail. The metrics evaluated on its neighbors must be considered

to ensure a grasp is stable. Algorithms that rely on simulation-in-the-loop are not robust enough to

plan grasps on novel objects for which no CAD model exists in their database. Though some recent

work has combined a neural-network-based object reconstruction pipeline with an analytical grasp

solver, reconstruction can fail on novel object classes and when objects are cluttered closely together

[99]. Instead of using deep neural networks to explicitly complete objects before planning grasps,

neural networks can be used to plan grasps given some partial representation of graspable objects.

With the rise of deep learning, deep neural networks have been employed to perform data-driven

grasp detection, where a system leverages a large body of labeled data to choose how to make a new

grasp. This body of work is summarized well in several surveys [9, 68]. Redmon and Angelova [77]

developed one of the first data-driven grasp detection systems. Their most basic network performs

regression to predict a single grasp, represented by a position and orientation in the X-Y plane and

a gripper width and height. The input to this convolutional neural network is an RGB image, and

they assume a method for mapping from pixels to points in 3D space is available. They introduce

a modified network architecture that jointly predicts a single optimal grasp as well as the class

of object on which the grasp would be performed. The final network augmentation, MultiGrasp,

instead assumes that after discretizing the image into cells, an optimal grasp could be found in each

cell. The network predicts the grasp in each cell along with the probability that the selected cell

contains a globally optimal grasp.

With recent advances in deep learning, data-driven grasp detection pipelines become successful.

One common framework involves training a deep neural network end-to-end to predict a single
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optimal grasp given a representation of the scene. Works in this line often train their system using

real robot data. Levine et al. [45] first train a network to predict whether a task-space action

would lead to a successful grasp directly from monocular color images. The more recent QT-Opt

system utilizes self-supervision and reinforcement learning to train a network to learn a Q-function

whose state representation is a monocular image of a bin of objects [32]. One major issue with

these frameworks is the amount of real robot data they require. Their dataset was collected over

a period of four months by seven robot arms running self-supervised experiments concurrently;

it took over 800 robot hours. Additionally, the input to their system is a color image without

depth information captured from a fixed viewpoint. The system would likely perform poorly if the

environment was modified. Furthermore, an end-to-end system that learns to grasp an arbitrary

object in the scene would not be useful as a general grasping skill. If a particular item was desired,

a network modification would be necessary to force the system to focus on that object.

Another common data-driven grasping framework returns a set of ranked possible grasps. Rather

than detect a grasp end-to-end, a number of grasp candidates are first proposed. Each candidate

is evaluated in the system’s next phase. Additional pruning could be integrated into either half of

this framework. For instance, if a specific object in a scene was desired, grasp candidates could be

generated exclusively on that object once it was detected and segmented. Dex-Net and Grasp Pose

Detection (GPD) are two of the most influential systems that employ this paradigm [55, 95].

Mahler et al. [55] introduce Dex-Net 2.0 and train a grasp quality convolutional neural network

to score planar grasps to be performed by a two-fingered gripper. The input to this network is

an RGBD image with overlaid finger contact points. The grasps used to train this GQ-CNN are

generated using wrench space analysis on a dataset of 3D object models primarily collected from

the 3DNet dataset. These grasps are labeled with the epsilon grasp quality metric. Improvements

to this system include Dex-Net 3.0 [56], which adds an additional network for evaluating proposed

suction grasps, and Dex-Net 4.0 [57], which introduces a POMDP framework. However, this system

is limited because it can only score planar two-fingered grasps and suction grasps. Since it operates
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on depth images, it cannot make predictions based on input from an arbitrary number of views.

Additionally, the candidates it proposes are 3-degree-of-freedom (DoF) grasps, not full 6-DoF poses.

Gualtieri et al. [28] describe an algorithm that first generates 6-DoF candidate grasp poses. These

candidates are represented as a series of images, where average heightmap projections that contain

observed and occluded points, as well as estimated surface normals, are generated from multiple

captured point clouds. For each of the three pairs of axes of a given grasp pose pose, a set of images

is created by projecting the local points onto the plane formed by the axis pair. One grayscale image

is an averaged heightmap of the observed points, another is an averaged heightmap of the occluded

points, and a third three-color channel image represents the average surface normals; this is a total

of 5 channels per axis pair with a single grasp represented by a 15-channel image. These images are

fed into a convolutional neural network that predicts the probability that the grasp will succeed.

During training, these images are generated using the real point clouds from the BigBIRD data

set. Each training image is labeled with whether or not the corresponding grasp forms a “softened”

frictionless antipodal grasp, which is determined analytically using BigBIRD’s 3D object models.

Once a set of candidate grasps have been classified, an optimal grasp is selected using a geometric

heuristic. After examining the utility of pretraining on simulated data and using prior knowledge

about object category, the algorithm is validated on a Baxter robot by attempting to grasp items

from a pile of ten densely cluttered objects. This system is limited in that the analytic metrics used

to label grasps can only be applied to two-finger, parallel-jaw grippers. Furthermore, the heightmaps

that the neural network learns from are an inefficient and lossy representation.

Since the release of these seminal works, several improvements have been made to the proposal-

evaluation grasp detection pipeline. Liang et al. [47] introduce the PointNet deep neural network

architecture to the GPD paradigm. Rather than project point clouds onto a set of images on which

a classifier is trained as GPD does, PointNetGPD learns to predict whether a grasp would succeed

from the point cloud directly. This more efficient learning framework increases test-set classification

accuracy and the grasp success rate when grasping singulated or cluttered objects on a real robot.
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While GPD projects a partial point cloud into a set of heightmaps to use as input to its deep

neural network, complete object geometry is useful for analyzing grasps so all potential contact

points can be analyzed. GPD estimates complete object geometry with a heuristic that fills in

regions occluded from the sensors’ views. With the two separate views employed, it can often be

assumed that the obstructed regions behind an object contain the back sides of these objects. The

three occluded heightmap channels are a rudimentary representation of completed objects. Instead,

several works have explored methods to use completed object models to perform grasp pose detection

more accurately. Varley et al. [99] present a method that first reconstructs an object using a deep

network that operates on occupancy grids; a partial point cloud of an object is converted to an

occupancy grid that is fed into the network, and the network outputs a completed occupancy grid.

The system produces a mesh from this occupancy grid that is then passed to GraspIt, where a

grasp is planned analytically. However, this system does not take uncertainty and model errors into

consideration; if an object is completed incorrectly, grasps planned with incorrect geometry would

likely fail. Lundell et al. [54] address this uncertainty and also plan grasps on completed object

models using GraspIt. Their system handles uncertainty through dropout layers in their completion

network architecture and Monte Carlo sampling, enabling the network to output a set of potential

completed object shapes. When selecting a grasp, the system computes grasp quality metrics across

all possible object models, selecting a grasp that is likely to succeed but unlikely to fail completely

if the geometry estimate in one model is wrong.

Other works have integrated completion models with data-driven grasp detection frameworks

to increase prediction accuracy and grasp success rate. Namely, der Merwe et al. [16] propose

a deep neural network that jointly reconstructs objects and estimates grasp quality. An object

reconstruction sub-network is first trained to reconstruct an object from a partial point cloud. Given

a partial point cloud and a query point, this network outputs a signed distance function (SDF) value

representing the distance to the predicted surface of the object. This SDF representation enables the

system to reconstruct objects without converting the point cloud to a voxel grid or mesh, and enables
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the network to learn geometric gradients that make grasp learning more efficient. Once this branch of

the network is trained to reconstruct objects, the section of this sub-network that processes the point

cloud is re-used to predict grasp success with a new dataset. Given a point cloud, a possible grasp

configuration, and the size of the point cloud, this branch of the network outputs the probability

that the grasp would succeed. Like PointNetGPD, this framework utilizes a deep neural network

architecture that operates directly on point clouds. A grasp is selected by performing optimization

back through the network to find a grasp that is stable while enforcing collision constraints with the

known and predicted object geometry. Yang et al. [108] train one network to propose a grasp pose

from partial object geometry and another to reconstruct a complete point cloud from this partial

geometry. To execute a grasp, they refine the predicted grasp by projecting it onto the predicted

reconstructed point cloud. However, the grasp proposal network does not benefit from the object

reconstruction network architecture.

Some authors have examined ways to improve upon GPD’s simple grasp proposal heuristic. This

heuristic, which proposes grasps by sampling points from the cloud and aligning the gripper with the

estimated normal and curvature directions, produces a variety of potential grasp poses, but relies on

the grasp classification network to predict which of the many potential candidates would succeed.

One of the first systems to train a deep neural network to predict and refine grasp candidate poses was

presented by Mousavian et al. [63]. Their framework learns a latent representation of a grasp space

using a variational auto-encoder. When executing a grasp, this grasp sampling network proposes

grasps by selecting random values in the latent space and reconstructing a grasp given a point cloud.

These sampled grasps are evaluated with an evaluation network and refined using the calculated

gradients from this network. Sampling grasps in this latent space rather than Euclidean space, then

refining them with an evaluation network, enables a robot to grasp objects more effectively than

GPD. Sundermeyer et al. [89] follow up on this work by instead representing parallel-jaw grasps with

a lower-dimensional contact point representation that is continuous, bound to the object geometry,

and unambiguous. Their network directly outputs a distribution of possible grasp poses, and the
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system selects a grasp based on kinematic feasibility and the confidence values associated with

each generated grasp. ten Pas et al. [96] describe a method for efficiently generating reliable grasp

poses that outperforms Graspnet [63]. Their grasp proposal deep neural network predicts a set of

orientations that would lead to a successful grasp centered at a given sampled point. This network

outperforms Graspnet in both precision and detections per second, and when paired with a grasp

classification network, the system outperforms GPD in precision-at-high-recall.

While the aforementioned enhancements to the GPD pipeline help to improve the grasp success

rate for grasp pose detectors, there is a fundamental issue with the problem definition. These

detectors detect one type of grasp specifically for two-finger parallel-jaw grippers, where two plates

are moved toward each other linearly to perform a grasp. Some works study grasping specifically

for multi-finger hands, which are more complex than parallel-jaw grippers. However, these grippers

offer advantages when grasping; they enable the gripper to make contact in more areas to achieve

a more stable grasp, as well as execute different types of grasps, such as power grasps that firmly

grasp large objects or precision grasps that enable a robot to manipulate small objects.

Multi-Finger Grasp Detection

Varley et al. [98] propose one of the first data-driven grasp detectors for multi-fingered grasping.

Their system uses a convolutional neural network to predict the optimal position to place the finger-

tips of a gripper. Planning contact points is not appropriate for all multi-finger grippers, particularly

underactuated grippers.

Kappler et al. [34] published another early multi-finger grasp detection work. Their neural

network predicts the success of a given grasp, and takes as input a collection of heightmaps. Their

experiments show that a network trained with physics-metric based labels outperforms a network

trained with epsilon-based labels on a held-out test set. However, they do not evaluate their system

on a real robot. Schmidt et al. [82] train a convolutional neural network to predict a grasp pose

for a multi-fingered hand directly given a depth image. They define a penalty metric for a grasp



17

candidate, and score each generated candidate prior to labeling each grasp in their training set.

Each training example is labeled with the single lowest-cost grasp. Predicting a single grasp given a

depth image could be problematic if executing the predicted grasp proved to be infeasible because

of occluded obstacles.

Ku et al. [43] detect grasp points for the index finger and thumb of the Robonaut 5-fingered

gripper by locating features in a neural network that are used for object classification, and mapping

them back to depth data. They generate a dataset containing 144 point clouds, RGB images, and

hand and finger poses by manually placing a robot hand around a set of six cylindrical and six

rectangular objects. Hierarchical convolutional neural network features are discovered by tracing

filter activations throughout an Alexnet-based network that had been trained for the Imagenet

classification task. Features of interest are tracked backwards through the network to the RGB

images, and then mapped out to the point cloud. Thumb and index finger poses are then mapped

from the feature positions within the point cloud. This system only uses two of the available

five fingers, and introduces human bias since the examples are all manually generated hand poses.

Zhou and Hauser [110] train a neural network to predict the probability of grasp success for an

underactuated, three-fingered gripper. Their deep neural network predicts the probability of a

successful grasp given a depth image and a grasp pose. Their optimization-based grasp detection

system is evaluated in simulation, but not on a real robot. Lu et al. [53] also predict grasp success for

a three-fingered gripper using a convolutional neural network. They verified their system by running

experiments on physical robots with two and three-fingered grippers. They posit that one of the

difficulties restricting the success of neural network approaches to multi-fingered grasping is reliance

on grasp candidate generation procedures. They avoid this issue by performing probabilistic inference

over grasp parameters with the trained network to maximize the probability of grasp success. They

present grasping results with a three-fingered gripper for only six objects, and perform only five

grasps on each of these objects.
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Shao et al. [83] propose a network that takes the point cloud of an object along with a repre-

sentation of the gripper geometry that predicts a set of contact points for each fingertip to make

contact. This design enables a network trained to detect grasps for one specific gripper or set of

grippers to be transferred to a new gripper without retraining the network. However, since this

network only outputs fingertip configurations, it only enables a fully actuated gripper to execute

precision grasps. Similarly, the network defined by Liu et al. [50] that enables multi-finger grippers

to grasp objects is only capable of detecting precision grasps. This network takes in a set of depth

images and performs regression to predict a grasp configuration for a given high-DoF gripper. It

learns to execute precision grasps using a differentiable grasp metric that also teaches it to avoid

grasps in collision.

Song et al. [87] propose a multi-level network to detect grasps for multi-finger grippers. This

network detects objects and their graspable parts, filters a set of top-down grasp poses, selects an

optimal grasp to execute, and predicts the pre-grasp configuration of the gripper that best executes

this grasp. Liu et al. [49] propose a network that predicts high-DoF grasp configurations directly

from an occupancy grid of an object. Their consistency loss term ensures that the network predicts

a stable grasp from a pool of candidate grasps, while the collision loss term ensures that the grasp

is not in collision with the object. However, by regressing to a single grasp, the system could fail

by returning an unreachable or infeasible grasp. Wu et al. [103] propose a reinforcement-learning

system where the actions consist of executing a multi-finger grasp or zooming in on the input image

to narrow down the area of attention for potential grasps. This attention mechanism increases the

grasp success rate, but predicting a single grasp could again result in failure if the selected grasp

was infeasible.

Each of the works detailed so far in this section enable a multi-finger robot gripper to effectively

grasp objects. However, none of them take advantage of one of a multi-finger gripper’s most unique

abilities and explicitly model grasp type. Grasp types are described in detail in Section 3.3.2. Grasp

types are useful when a robot is tasked with grasping a variety of objects. For instance, small objects
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close to the surface of a tabletop require a precision grasp using the gripper’s fingertips, while heavy

objects that may slip out of the fingertips require a power grasp where the fingers and palm cage the

object with high stability. Deng et al. [15] propose a grasp pose detection system for a multi-finger

gripper that detects up to six types of grasps. It does this by predicting which type of grasp would

best grasp each area of an object, then selecting the optimal grasp location and executing a grasp of

the corresponding type. However, the network that predicts the optimal grasp type is trained using

human-labeled data. Rather than rely on data containing human biases, robots should learn when

to apply different grasp types through interaction. Santina et al. [80] use transfer learning to train a

network to select appropriate grasp primitives for grasping an object. This system is trained using

first-person videos of humans executing grasps on a variety of objects. Similarly, human biases are

embedded in this system.

Lu and Hermans [52] train two classifiers to predict power and precision success probabilities

from a shared embedding for a 4-finger Allegro Hand. This embedding is generated by reducing

the size and dimensions of a voxel grid of the object using principal component analysis. With this

low-dimensional representation, a simple Bayesian network is trained and used to find an optimal

grasp pose. Each classifier is evaluated separately on singulated objects on which power grasps are

always preferred. The system never chooses when to utilize each grasp type in the evaluation.

The prior works described throughout this section effectively enable robots to grasp objects using

multi-finger grippers. However, most do not explicitly model grasp type, and assume these complex

grippers are capable of executing one type of grasp. Several works instead investigate how complex

grippers can leverage their grasp types to grasp and lift objects more effectively. Some of these works

are trained to predict optimal grasp type only from human-labeled data. Others train a system to

evaluate grasps of different types from a shared embedding space, but do not leverage this system

to effectively grasp objects. In order to operate most effectively in various home environments and

grasp both small and large objects from clutter, robots must make effective use of all of their grasp

types. To this end, in Chapter 3, I present a system that enables a robot to grasp objects of varying
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sizes by jointly detecting an optimal grasp pose and grasp type.

2.2 Task-Oriented Grasping

2.2.1 Problem Definition

Task-oriented grasp pose detection is a more general version of the grasp pose detection problem.

While grasps selected by a grasp pose detector must enable a robot to pick and place an object,

grasps selected by a task-oriented grasp detector must enable a robot to complete a given task. Not

only must a task-oriented grasp detector detect stable grasps, but the detected grasps must also

enable a robot to perform a downstream task with the grasped object. Task-oriented grasps on a

tool afford a robot the ability to use the tool, while a task-oriented grasp on a door handle enable

the robot to open the door. Objects could have multiple types of task-oriented grasps; a mug, for

instance, would have task-oriented grasps on its handle that enable a robot to pour liquid from it,

while grasps on the body that leave the handle clear enable a robot to hang the mug on a peg.

In the case of general grasp pose detection, a grasp is often considered successful if it achieves

force closure on an object, or if the robot can lift the object without dropping it, sometimes shaking

it, sometimes placing it in a different location. A task-oriented grasp is successful if the robot suc-

cessfully grasps the manipuland and then successfully executes a manipulation control policy. This

policy could be provided to the robot or learned through a data-driven method, but manipulation

control learning is considered outside the scope of task-oriented grasping.

A task-oriented grasp pose detection algorithm TOGPD returns a 6-DoF pose g ∈ SE(3) at

which a grasp would enable the robot to complete a task T given a manipulation controller πM. The

input to a grasp pose detector can be some representation of the scene V , often obtained through

visual sensors. Formally, this is expressed as

TOGPD : V, T, πM → g. (2.2)
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In data-driven task-oriented grasp detection, a labeled dataset of grasp poses Gl is used to train

a classifier sub-system. This dataset could be generated from a robot executing the manipulation

policy πM [109], data generated off-policy [33], or human demonstrations of task-oriented grasps

[39].

As with grasp pose detection, many task-oriented grasp detectors are implemented as two-stage

systems where a set of candidate grasp poses is generated and evaluated, with the grasp corre-

sponding to the highest evaluation score being executed [65, 51, 17]. Here, a grasp pose generation

algorithm GEN generates a set of grasp pose candidates G ⊆ SE(3) given a representation of the

scene: GEN : V → G. Then, a grasp evaluator EVAL assigns a score s to each grasp g ∈ G based

on the task and object representation:

EVAL : g ∈ G,V, T → s ∈ R. (2.3)

The robot executes the grasp pose gmax = argmaxg S, where S is a vector of evaluator scores

corresponding to each grasp pose in G:

EVAL : G,V, T → S ⊆ R. (2.4)

2.2.2 Related Work

As with early task-agnostic grasp detection works [60], where grasp quality is optimized using simu-

lation, some early task-oriented grasp detection works rely on simulation to predict how grasps would

perform in the real world. Dang and Allen [14] define semantic affordance maps, which consist of

an approach direction, a function that extracts features from a depth image, and a set of manually

defined example semantic grasps from the given approach direction. These maps are knowledge

bases built in simulation that map encoded depth images to approach directions and potential se-

mantic grasps. At execution time, a retrieved semantic grasp is refined using a grasp planner within

a simulation environment.
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Many early task-oriented grasping systems rely on human ground-truth labels, which are en-

coded as human demonstrations of manipulation tasks, human-annotated data, or expert-written

heuristics. Faria et al. [19] propose a probabilistic framework that generates models of manipulation

tasks and objects using multi-modal data collected from instrumented human manipulation demon-

strations. Faria et al. [20] follow up on this work by proposing a task-oriented grasp generation

algorithm based on this representation. After detecting objects and assigning them primitive mod-

els, a suitable grasp known to work with that primitive type is selected to be executed using Bayesian

inference with a Bayesian network trained with the human grasp dataset. Balasubramanian et al.

[5] present an early use of kinesthetic teaching, where a human moves a robots arm into a position

they deem suitable for grasping an object to perform a task.

Song et al. [86] introduce task constraints to the grasp generation pipeline. They define four

feature subsets used in a Bayesian Network: the task, object descriptors, action features that describe

the grasp, and constraint functions defined by humans to ensure grasp stability. A mixed Bayesian

network, consisting of Gaussian Mixture Models, learns to predict whether a task is feasible given an

object, action, or constraints. Example grasps are generated in simulation, with a human assigning

ground-truth task labels used to train the model. Bekiroglu et al. [6] define a probabilistic framework

that evaluates grasp stability and task appropriateness. Like Song et al. [86], they train a Bayesian

network, using pre-defined object, action, and haptic features, as well as binary task variables

assigned by a human expert. The network structure is learned, unlike the human-defined network

presented by Song et al. [86]. Like Song et al. [86], the Bayesian network is used to predict whether

a grasp would succeed for a given task.

Prats et al. [73] classify hand preshapes and use planning. This system requires a model of

the articulated object to plan an optimal grasp. Heuristics select a graspable sub-part and action

to be performed before selecting a grasp, defined as a hand preshape and target frame, with an

additional set of heuristics based on the task. Li et al. [46] use shape matching and a human motion

database to select task-appropriate grasps. Given a query object and a database of hand poses,
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feature representations are generated and compared to find a set of potential grasp candidates. An

alignment step generates and prunes a set of transforms that align the pose candidates with the

object geometry. The resulting set of aligned grasp candidates are clustered, and pruned based on

the wrenches that must be exerted on the object to complete the task.

Haschke et al. [30] also consider task wrenches and propose a task-oriented grasp quality metric.

By minimizing the forces required to resist external disturbances while maximizing a given task

wrench, a robot can find optimal stable grasps that afford it the ability to complete given tasks.

Pardi et al. [72] define a system that considers the collision-free post-grasp motion space when

selecting a stable grasp for pick and place and insertion tasks. A given task is represented as a

trajectory of object poses that approach a goal configuration. After generating a set of candidate

grasp poses, a task trajectory is generated for each pose using inverse kinematics and the desired

object trajectory. The grasp candidate that minimizes collisions with a defined set of obstacles is

executed.

Affordances became a popular way to represent object parts that afford robots the ability to

complete a task with the advent of deep learning, as training accurate affordance detectors became

tractable. Chen et al. [11] define affordance coordinate frames, 3D keypoints with an axis that

generalize between object instances. A Faster R-CNN module detects objects in RGB-D images,

and three sub-networks then assign a keypoint, axis, and part association to each object. These

affordance coordinate frames are used as grasp poses and manipulation waypoints in a set of robot

experiments. Monica and Aleotti [62] present a system that detects and segments objects from a

point cloud, then detects a grasp on the desired segment using an off-the-shelf pre-trained grasp

detector [95]. Kokic et al. [38] train a deep neural network (DNN) to detect affordances, object

type, and object orientation given a point cloud and desired task. The output of this network is

used to assign binary labels to each point in the cloud based on whether they afford the robot the

ability to complete the given task. This affordance information, along with the object class and

orientation, are then converted to contact and approach direction grasp constraints that describe
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how a grasp should be executed. Chu et al. [12] propose an affordance detection network that detects

and segments objects. They show that while the network is trained on synthetic images, the domain

transfer module enables it to perform well on real images, and it enables robots to plan task-oriented

grasps.

One keypoint-focused line of work began with kPAM, where objects such as mugs are represented

as semantic 3D keypoints [58]. After segmenting an object instance and detecting its class-specific

3D keypoints, an optimizer selects grasp and manipulation actions that move the keypoints to their

specified targets. The abstracted manipulation actions are rigid transformations describing how the

robot should move the object after executing a grasp with a provided grasp planner. kPAM 2.0

extends this semantic keypoint framework to perform more complex manipulation tasks, such as

peg-hole insertion, with the addition of orientation [25]. Orientation simplifies the required problem

definition for simple pick and place tasks, and enables actions to be represented as keypoint velocities

or force/torque values to perform more complex manipulation. kPAM-SC builds upon the original

kPAM formulation with a shape completion module [26]. The planner takes as input completed

object models as well as semantic keypoints to better optimize physical feasibility.

Another keypoint-based work focused on tool use is KETO [75]. The keypoint generation network

predicts grasp, function, and effect keypoints on tools for a given task. The keypoint detectors are

trained through self-supervised exploration. Goals are represented with a given set of environment

points. A set of robust grasp pose candidates are generated, and the one closest to the grasp

keypoint is executed. Manipulation actions are selected that enable the tool to exert the desired

force on the target using an optimization technique inspired by kPAM [58]. Initial sets of keypoints

are generated with a heuristic to train a keypoint generation network, while a keypoint evaluation

network is trained to predict whether manipulation defined by a given set of keypoints would result

in task success.

Other recent data-driven approaches integrate DNNs into their frameworks in other ways. Kokic

et al. [39] train a network to jointly predict human hand pose and configuration and object pose and
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shape from an RGB image. This network is applied to a large set of videos of humans completing

tasks with tools such as knives to generate a dataset of task-oriented grasps on a variety of object

instances. The resulting labeled human grasp dataset is used to train a second network, TOG-T,

to predict the probability that a grasp at a given pose is suitable to complete a given task. A third

network, TOG-S, is used to find a stable grasp in the region of grasps predicted to be suitable for

the task by TOG-T.

Jang et al. [33] propose a dual-stream, end-to-end architecture to perform semantic grasping,

where a user-specified object must be grasped from clutter. Given an RGB image, their network

predicts the joint probability that an action leads to a grasp and that the grasped object is the one

specified by the user. By keeping spatial and semantic information separate, this system optimizes

both grasp stability and task success. The network is trained primarily with off-policy data, and

some labels assigned by a human expert are required.

Detry et al. [17] detect grasp poses suitable for a given task with a two-step system. The first

sub-system proposes a set of geometrically stable grasp candidates by matching object geometry with

a set of grasp prototypes collected through kinesthetic teaching. The second sub-system consists of

a CNN that predicts which pixels in an image contain part of an object where a grasp would be

suitable for task completion. This network is trained with synthetic data generated with human-

labeled object mesh models, where entire objects or partial segments provide suitable grasps for a

given task.

Yang et al. [107] propose a system that performs task-oriented grasps on an object within a pile

of clutter. Given a top-down depth image of a scene containing a pile of elongated tools such a knife,

screwdriver, spoon, fork, wrench, and hammer, a DNN outputs a set of 3-DoF grasp candidate poses,

grasp stability scores, and task scores using Conditional Random Fields. This architecture ensures

the detected grasps are clear of occlusions and interference from other objects in the clutter pile.

Liu et al. [51] present a context-aware grasping engine that predicts whether a grasp is suitable

for a given context. This context includes the label of the task being performed, a point cloud of the
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object, material information from a spectral sensor, and a task-specific object state. The context

and set of grasp pose candidates are augmented with detected segmented part and grasp affordances

to create a semantic representation that is then fed into a semantic grasp DNN.

Xu et al. [106] define affordances as the set of states in which a given parameterized skill is

feasible. Parameterized skills are sequenced to form a plan, which reaches a goal affordance. In this

model-based reinforcement learning framework, they train a latent dynamics model, which predicts

future latent states given sampled skill plans, and an affordance prediction model, which predicts

whether a latent state affords a given skill. The latent dynamics model is used as the deterministic

transition model. The two models are trained jointly over multi-step sequences. The trained models

are used to estimate the cost of a given plan for model-predictive control. The system is evaluated

in several domains. The robot must use tools to retrieve blocks, then stack them, given grasp, place,

hook, and poke parameterized skills. The second evaluation environment is a kitchen domain where

the robot must prepare coffee and tea. The learned task-agnostic affordance representation is shared

between tasks.

Murali et al. [65] present a large dataset of task-oriented grasps for 56 different tasks. This

crowdsource-labeled dataset contains information on whether a given object is suitable for a given

task, as well as whether each proposed grasp on suitable objects would afford a robot the ability

to complete a task. Their proposed network estimates a grasp score from a point cloud with grasp

candidate encoding and a semantic knowledge graph.

Wen et al. [102] propose CaTGrasp to pick small industrial objects from cluttered bins and place

them precisely in receptacles. After segmenting a point cloud of a bin of uniform objects, individual

objects are represented in a canonical representation. A neural network is trained to predict general

grasp quality using simulated data. Affordance heatmaps are also generated using this simulated

data; the contact areas of grasps that enable the robot to complete the placement task are tallied

over all grasp attempts and converted to the canonical representation. Each grasp is assigned a

task-relevance score using both the grasp quality measure and task relevance measure. Zhao et al.
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[109] also perform task-oriented grasps for precise pick and place assembly tasks. They emphasize

the importance of grasp robustness, precision, and task relevance when executing top-down grasps.

They train a Grasp Quality Network to estimate grasp quality, a Grasp Displacement Network to

predict post-grasp displacement, and an Insertion Quality Network to predict task appropriateness.

These three networks are implemented in series to select a stable, precise, task-appropriate grasp.

The existing solutions to the task-oriented grasp pose detection system rely on biased human

data, require large datasets of data collected from task executions, and use affordance assumptions

to perform task-oriented grasping. In order to quickly learn which grasps enable a robot to perform a

given task, I propose a task-oriented grasp detection framework that leverages a pre-trained general

grasp detection network to learn from few labeled examples in Chapter 4.

2.3 Manipulation Policy Learning

2.3.1 Problem Definition

A policy informs an intelligent agent on which action it should take at some point in time given

an observation or a representation of the state of the environment. As described in Section 2.1.1,

in grasp pose detection, the robot executes a simple policy to perform a grasp at a given pose

and then drop an object in a specified goal area. Given this desired pose to place the robot’s end

effector and the kinematics of the robot arm, inverse kinematics returns a set of joint states that

bring the robot’s end effector to the desired grasp pose. The robot uses motion planning to find

a collision-free path to these joint goals, executes this trajectory, and closes its gripper to achieve

a grasp. Inverse kinematics and motion planning are used again to drop the object at the known

goal location, completing the task. With this simple policy, grasp pose detection is reduced to a

computer vision problem.

However, pick and place is only one task that a robot must perform. Interacting with articulated

objects such as doors, switches, and drawers, using a tool, and carefully manipulating delicate or
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deformable objects require more complex manipulation policies that vary based on visual, proprio-

ceptive, and tactile sensor readings. Durative-contact manipulation policies are policies that com-

plete tasks that involve robot manipulation where a robot must sustain contact with a manipuland

throughout the course of manipulation, such as unlatching and opening a door while maintaining

contact with the handle. Hand-coding these policies for each new complex task a robot may be

introduced to is difficult and time-consuming for an expert human operator, and it reduces a robot’s

autonomy. Instead, these policies should be learned.

Formally, a policy π maps an encoding of the state of the agent’s environment s to an action for

it to take: π : s → a. s could contain, for instance, visual information V , proprioception data q,

and tactile data T . Though a robot can execute a simple grasping policy given joint state position

commands, more complex policies require joint velocity and torque commands for a higher degree

of control. The action a could be a combination of desired joint torques, velocities, or positions, and

can also contain actions for a gripper. Controlling the torques or velocities directly enables robots

to use the force required to open a heavy door while also manipulating delicate objects gently.

Learning these manipulation policies from scratch is difficult because the state and action spaces

could be very large and contain continuous values, and the reward signal required for learning them

could be sparse. Abstraction can alleviate this problem. An abstract state space is an augmented

state space that may be more compact to ignore extraneous information and enable the agent to

focus on learning only from task-relevant information. An abstract action space is, similarly, an

augmented action space that provides the agent with a set of actions designed for the task at hand.

In the context of manipulation policy learning, this action-space abstraction can consist of higher-

level actions that, for instance, enable the agent to learn how to move the robot’s end effector to

complete a task. Learning how to move a robot’s end effector to complete a task is an easier problem

than learning how to move a robot’s joints to move its end effector while also learning how the end

effector should be used to complete a task. After defining the state and action space for an agent,

reinforcement learning algorithms can learn a policy to complete a given task.



29

2.3.2 Related Work

In order to learn a manipulation policy πM that maps a state representation s to an action a, a

robot must gain experience through interacting with its environment. It must learn, for any given

state, which action it should select to successfully complete a given task. πM can be learned through

reinforcement learning, where an agent is free to take actions in its environment to gather experience.

A reward signal r is produced by a reward function R : s, a, s′ → r, and signifies whether the agent’s

task was completed, if it made progress towards its goal, or if it made a mistake. This function must

be provided as the agent explores its environment. This reward function enables the agent to learn

which actions to take to bring it closer to a goal state where cumulative reward is maximized [90].

More formally, reinforcement learning algorithms model a task as a Markov Decision Process

(MDP), consisting of a state space S, action space A, reward function R, transition function T that

represents the probability of reaching a state s′ after taking action a in state s, and a discount

factor γ that parameterizes how much an agent should discount reward received over time. This

formulation adheres to the Markov property, which states that the reward received r and state

reached s′ after taking action a in state s is only a function of state s and action a and stochasticity

and not the agent’s history of states and actions. The environment changes over the course of a set

of discrete time steps, and the agent can take an action at each of these steps. The policy π maps

states to actions, or a probability distribution over actions π(a|s) depending on the policy type.

The return obtained during one episode, or sequence of time steps in which the agent attempts to

complete a task, is the weighted sum of discounted future reward with discount factor γ:

ΣT
i=tγ

(i−t)r(si, ai). (2.5)

The agent must learn a policy that maximizes the expected return over the course of each episode.

One traditional approach to policy learning is to learn a Q-function Q : s, a→ q, which maps a

state s and an action a to a Q-value q. This Q-value represents the return expected when taking
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action a in state s and following a policy π until the end of the episode:

Qπ(s, a) = Eπ

( ∞∑
k=0

γkRt+k+1|St = s,At = a

)
. (2.6)

The Q-function obeys the Bellman equation:

Qπ(si, ai) =
∑

si+1∈S

P (si+1|si, ai)

R(si, ai, si+1) + γ
∑

ai+1∈A

π(ai+1|si+1)Qπ(si+1, ai+1)

 . (2.7)

The agent could compute a greedy policy π by optimizing the Q-value over actions when in a state

s. This Q-function could be computed in a tabular fashion for simple problems with discrete state

and action spaces by tracking the rewards obtained over the course of many episodes attempting to

complete the desired task and maximize return. Q-learning is an important algorithm that learns a

Q-function [100]. The Q-learning update rule sequentially updates values in the Q-function table as

the agent gains experience with the update rule

Q(st, at)←− Q(st, at) + α
(
R(st, at, st+1)) + γmax

a
Q(st+1, a)−Q(st, at)

)
. (2.8)

This tabular Q-learning algorithm enables the agent to learn an approximation of the optimal Q-

function Q∗ over time in simple environments with discrete states and actions. However, this is not

feasible for robot manipulation domains with large state spaces and continuous action spaces. In-

stead, Q-functions can be approximated using powerful deep-learning based function approximators.

Deep Q-Networks (DQN), introduced by Mnih et al. [61], are an influential approach to rein-

forcement learning that combine deep-learning techniques with Q-learning. Deep Q-Networks are

Q-functions that map states and actions to returns that are approximated using DNNs. These

networks are trained and evaluated in the popular Atari video game domains, where states are

raw images of the video game screen, actions are combinations of the button and joystick inputs

on an Atari 2600 controller, and reward is provided as the change in score between states. Deep

learning enabled DQN to decipher important information like agent and enemy positions from the

high-dimensional game images directly while also learning policies to achieve high scores in many

of the Atari games. Deep Q-Networks are trained off-policy by collecting and sampling experience
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from a replay buffer of recent experience as the agent learns to play the game. The input to these

networks are a sequence of game frames and the outputs are Q-values corresponding to each possible

discrete action.

Though DQN is well-suited to Atari domains where the state space contains images and the

action space consists of a discrete set of digital button presses, it is not well suited to robot manip-

ulation where the action space is a vector of continuous values, such as joint positions, velocities,

and torques. A naive solution to this would be to discretize a robot’s action space. However, dis-

cretizing into large enough bins to enable precise manipulation for each of a robot’s joints would

lead to an intractably large action space. Furthermore, representing similar actions as separate

discrete possibilities sacrifices structure in the action space. A groundbreaking work that addressed

deep reinforcement learning with continuous action spaces was Deep Deterministic Policy Gradient

(DDPG) [48]. DDPG leverages the dual-network actor-critic paradigm, where a policy or actor net-

work is trained to suggest actions while the critic or value network predicts the utility of a proposed

action with a DQN. Rather than select one discrete action from a set, the actor network is free to

predict a continuous value for each element in an action vector. DDPG is evaluated on a variety of

simulated tasks, including grasping and manipulation. Fujimoto et al. [24] improve upon the DDPG

architecture with Twin Delayed Deep Deterministic Policy Gradient (TD3), which adds several en-

hancements to the continuous-space reinforcement-learning algorithm to improve performance. TD3

remains one of the top-performing continuous-action reinforcement learning algorithms.

Though these deep-learning based algorithms are necessary to learn a robust policy, abstraction

is crucial. Rather than learn a single policy with robot-joint-level actions, several works utilize action

abstraction to make learning more efficient. Sutton et al. [91] introduce the options framework, a

general form of action abstraction that encapsulates a low-level policy with a set of states from

which it can be executed and a condition for when it should terminate. Formally, an option consists

of an option policy πo that maps observed states to low-level actions, an initiation set I containing

all states the option can be run from, and a termination condition β that defines when the option
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execution ends. A high-level policy can choose to execute an option from any state s ∈ I in its

initiation set, at which point the low-level policy takes control until the termination condition β

is reached. This focused policy learns to execute a specific task within a specific region of the

state space, and learning options can be more efficient than learning a single monolithic policy to

select actions throughout the course of a task. For complex, multi-step manipulation tasks, such as

tasks where an object must be grasped and then manipulated, a robot could more efficiently learn

separate policies for grasping and manipulating. Importantly, abstract skills learned to complete

one task can be re-used to bootstrap learning another; re-using generalized skills, such as grasping,

is key to enabling robots to effectively learn multiple new tasks in novel environments. Bagaria

and Konidaris [3] present a framework for learning and sequencing skills together through deep skill

chaining. As an agent learns a continuous-control policy through DDPG, it begins to discover and

construct options. It begins with an option that terminates at the goal, fine-tuning a policy that is

optimal near the goal location. It then works backwards, chaining from one option to another by

terminating one option when the next can be initiated. To more efficiently learn to chain options

as they are learned, Bagaria et al. [4] improve upon this system with improved dual initiation-set

classifiers, a goal-conditioned policy, and model-based reinforcement learning.

While these reinforcement-learning algorithms could be implemented on real robots directly,

several approaches have evaluated other action abstraction methods geared towards learning manip-

ulation policies. Khatib [36] propose operational space control, in which the agent selects high-level

actions that change the end-effector pose and traditional control methods convert these commands

to low-level control signals to send to a robot. Mart́ın-Mart́ın et al. [59] learn a policy using end-

effector impedance control rather than one that directly modifies an arm’s joint torques or velocities.

VICES uses an impedance-based PD controller to convert desired changes in end-effector positions

and velocities to joint torques to control the robot. A key insight they make is that the parameters

for this controller can be updated on-the-fly and learned for each task as well. Learning changes in

end-effector position and orientation while also learning to adjust the gains of the controller that
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effects these changes enables a robot to efficiently learn to perform constrained, contact-rich tasks

while exerting minimal energy and remaining safe.

Besides these reinforcement-learning abstractions, other works have proposed frameworks for

combining traditional robot control methods. Another action abstraction for robots is Dynamic

Movement Primitives (DMPs) [81]. A DMP consists of a parameterized pose goal and a motion

shape that is defined by a set of equations; a controller uses these equations to reach the goal under

the given motion constraints. Riemannian motion policies (RMPs) are another popular formulation

that map some task space to a robot’s configuration space [76]. They allow a variety of motion

primitives to be composed together into an RMP-tree, where each leaf node corresponds to a different

task space. These trees enable motion planners, motion optimizers, motion controllers, collision

controllers, learned policies, and other motion primitives to be synthesized and sent to a robot’s

low-level control interface. Shaw et al. [84] combine RMPs with a VICES-based controller to increase

the safety of policies learned in the VICES action space.

Some works define methods to learn durative-contact manipulation policies with robots [44, 37,

27]. One issue with these works is that the agent must learn how to grasp objects as well as how to

manipulate them after performing a grasp. Determining how and where to grasp an object in order

to perform a task is no simple problem, as evidenced by the body of work detailed in Section 2.2.2

that learns task-oriented grasps on objects. Though the works in Section 2.2.2 propose methods

for detecting task-oriented grasps, none learn both a task-oriented grasp classifier and a durative-

contact manipulation policy. I posit that learning a task-oriented grasp classifier and a manipulation

policy simultaneously will make learning more efficient, since the task success is dependent on both

the grasp selected and the policy that performs the task. This is an entangled-learning problem

because a task-oriented grasp is assigned a binary label based on whether the policy succeeds, but

policy success is dependent on the initial grasp. I investigate this difficult joint-learning problem in

Chapter 5.



Chapter 3

Multi-Modal Grasp Detection

In order to jointly teach a robot to detect grasps and execute a durative-contact manipulation policy,

I must first define a grasp detection framework. This chapter presents a general grasp pose detection

system designed specifically to utilize the multiple grasp types many multi-finger robot grippers are

capable of. This Multi-Modal Grasp Pose Detector takes as input a point cloud of a singulated

object or cluttered scene along with a set of potential grasp poses and predicts the probabilities that

each grasp type would succeed at each pose. Explicitly modeling multiple grasp types improved the

object removal rate by 8.5% over the best performing baseline ablation during robot experiments in

dense clutter.

3.1 Introduction

Humans use multiple types of grasps, depending on the object, the task, and the scene [21]. A human

may perform a large-diameter power grasp to stably grasp a heavy jug, but a precision sphere grasp to

lift a golf ball off the ground, as demonstrated in Figure 3.1. If the clutter around an object precludes

one particular grasp type, humans simply switch to another. It is therefore natural that the ability

to use multiple grasp modalities would substantially improve robots’ ability to grasp a wide range

34
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Figure 3.1: Two of the many grasp types a human may use. Stably grapsing a heavy jug necessitates
a power grasp, while a precision sphere grasp lifts the small golf ball.
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of objects, especially in dense clutter. However, state-of-the-art grasp detection systems typically

detect pincher grasps exclusively, and are evaluated using small objects and two-finger parallel-jaw

grippers [95, 55, 66, 32]. Existing grippers are capable of executing multi-finger dexterous grasps

better suited to stably grasping both small and larger, heavier objects; the grasps a Robotiq 3-Finger

Adaptive Gripper is capable of executing are demonstrated in Figure 3.2. Several grasp detection

approaches are applicable to multi-finger grippers, but are only capable of performing one type of

grasp [50], or do not explicitly model grasp type [34]. Some have taken grasp type into consideration,

but are evaluated on singulated objects [52], rely on human-labeled data [15], or return fingertip

placement for fully actuated fingers [98]. Furthermore, these systems are not evaluated in dense

clutter.

I propose a data-driven grasp detection framework, the Multi-Modal Grasp Pose Detector (MMGPD),

that jointly predicts the grasp success probabilities of several types of grasps given partial depth

data and a grasp pose. I train a DNN to perform this joint classification using a dataset containing

grasp candidates generated from real point clouds and grasp labels generated in simulation. Given a

point cloud—captured from an arbitrary number of depth sensors in arbitrary poses—along with a

grasp pose, my network outputs a probability for each available grasp modality. These values reflect

the probability that the corresponding type of grasp would succeed at the given pose.

I evaluate the system both in simulation and experimentally on a Robotiq 3-Finger Adaptive

Gripper, which is shown in Figure 3.2. I first evaluate the system on a held-out test set from simulated

data to show that the network efficiently learns to jointly predict grasp type when compared to a

larger ensemble of networks. On a real robot, the system clears objects from cluttered tabletop piles

containing objects of varying sizes. To show the usefulness of multiple grasp modalities in dense

clutter, I compare against several ablations of my network capable of performing fewer grasp types,

and find that a system capable of multiple grasp types clears more objects than baselines that use

fewer.
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(a) Wide Precision (b) Basic Precision (c) Pincher

(d) Wide Power (e) Basic Power

Figure 3.2: The Robotiq 3-Finger Adaptive Gripper’s five main grasp types.
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3.2 Background and Related Work

As discussed in Section 2.1.2, with recent advances in deep learning, data-driven grasp detectors have

proven effective for generating parallel-jaw grasps for two-finger grippers. Given visual information,

these systems return an end effector pose at which an executed grasp would likely be successful. Most

state-of-the-art parallel-jaw grasp detectors, such as those described by ten Pas et al. [95] and Mahler

et al. [55], follow a two-step proposal-evaluation model. A proposal function PROP : P → G,

implemented as a heuristic [95] or a generative network [64], first generates a large set of 6-DoF

end effector poses G ⊆ SE(3) from a point cloud P ⊆ R3. A grasp evaluation neural network

EVAL : g ∈ G→ [0, 1] then maps each g to a probability.

Another common approach is to train a neural network to predict optimal actions using a

reinforcement-learning framework. Works such as Ibarz et al. [32] and Levine et al. [45] train

their systems using real robot data, which is time consuming to produce. Though such systems

can achieve state-of-the-art grasp success rates, their reliance on reinforcement learning makes them

brittle; the same camera configuration used while training is required at test time. Furthermore,

modifying the system to grasp a specified object is not straightforward as it is in proposal-evaluation

systems, where the proposal step can be easily modified without adjusting a reward function or re-

training. Though both of these types of systems enable two-finger parallel-jaw grippers to grasp

some objects, these grippers are capable of executing only simple pincher grasps.

Data-driven grasp detection frameworks have also been applied to perform multi-finger dexterous

grasping. However, these systems are either capable of performing only fingertip or precision grasps

[83, 50], or use supervised [34, 53, 82, 87, 49] or reinforcement learning [103] to evaluate or predict

wrist poses and finger pre-grasp parameters, but do not explicitly model grasp type.

A few recent works predict grasp stability for multiple grasp types. Lu and Hermans [52] train

two classifiers to predict power and precision success probabilities from a shared embedding for a

4-finger Allegro Hand. Each classifier is evaluated separately on singulated objects on which power
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grasps are always preferred. As my system jointly classifies candidates of each grasp type at a given

position, it returns both a predicted optimal grasp pose and type. I evaluate my system in a cluttered

real-world scenario where multiple types of grasps can be necessary to clear the scene. Deng et al. [15]

and Santina et al. [80] use human-labeled data to train a neural network to predict grasp type, while

my system learns to use grasp types from simulated grasping data, avoiding human bias or error.

Both systems are not evaluated in dense clutter. Varley et al. [98] employ a hybrid approach, using

a DNN to guide fingertip placement and a grasp planning simulator to localize gripper placement.

They define a set of canonical grasp types based on the most common finger pre-poses in their

simulated training set. Planning fingertip placement can be impossible for underactuated grippers;

to perform a power grasp with an underactuated gripper, each finger’s more proximal links would

make contact with the object first, making the final distal link placement less relevant. Their system

is also not evaluated in dense clutter. Osa et al. [71] use hierarchical reinforcement learning to select

a grasp type and grasp location. They maintain a dataset of successful grasps for each grasp type

and match new point clouds to this dataset using ICP. Their system is not evaluated in clutter. As

they employ a reinforcement-learning framework, a higher-level controller could not request a grasp

type or target object as it could with mine. My approach is capable of executing multiple grasp

types, allowing it to successfully grasp objects in a variety of real-world, cluttered experimental

scenarios.

My system jointly predicts the independent probabilities that each grasp type would succeed at

a given grasp pose. The necessity of multiple grasp types is shown through real robot experiments

on scenes of cluttered objects. Most existing frameworks do not take grasp type into consideration,

and those that do rely on biased human-labeled data, are incompatible with underactuated grippers,

or train individual systems to evaluate grasp types from a shared representation while evaluating

the systems separately. Mine is the first that explicitly models grasp modalities to more successfully

clear cluttered scenes.
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3.3 Learning to Detect Multi-Modal Grasps

Though parallel-jaw grasp detectors have proven successful, two-finger grasps can be insufficient

when a robot deals with large, heavy objects. Grasp detectors designed for multi-finger grippers

detect grasps of a single type, and those that can explicitly utilize multiple grasp types have not

been proven to enable a robot to clear a pile of dense clutter. MMGPD demonstrates the usefulness

of multiple grasp types when picking objects of varying sizes from piles of dense clutter using the

proposal-evaluation paradigm commonly used in grasp detection systems [95]. The proposal function

PROP : P → G generates a set of 6-DoF end effector poses G ⊆ SE(3) from a partial point cloud

P ⊆ R3. Figure 3.3 illustrates this process. Unlike the grasp evaluators EVAL : g ∈ G → [0, 1]

used in related works that map a grasp pose to a single probability [95, 55], my grasp evaluation

neural network EVAL : g ∈ G → [0, 1]n maps each g to a vector of n success probabilities, each

corresponding to a different grasp type. This architecture enables MMGPD to jointly predict the

probabilities of success for multiple grasp types at a given g.

I generate grasp pose candidates G ⊆ SE(3) using the 6-DoF candidate generation algorithm

GEN : P → G proposed by ten Pas and Platt [94]: given a point cloud of an object or cluttered pile

of objects represented as a set of 3D points P ⊆ R3, sample a subset C ⊆ P of k grasp candidate

centroid positions. Each cs ∈ C is assigned a single orientation os ∈ SO(3) based on the normals and

curvature estimated at cs; the gripper approach direction is anti-parallel to the estimated normal,

and the gripper closes along the curvature. Similar candidates can be sampled by rotating the

sampled orientation about the approach direction; I rotate by 90◦ to generate one additional pose.

Finally, candidates causing the gripper to collide with P are pruned. The candidate generation

algorithm returns a set of k proposed candidates GEN(P ) = G where gs ∈ G and gs = {cs, os}.

The second phase of MMGPD evaluates each of the k proposed candidates gs ∈ G. My Grasp

Pose Classifier (GPC) deep neural network estimates success probabilities for each grasp type at each

gs, taking P and an encoding of gs as input. As several recent papers have shown [16, 47], grasp
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Figure 3.3: The grasp pose generation process. Given a partial point cloud of a real scene of
cluttered objects (top left), the grasp pose generator samples a set of points to assign as candidate
grasp centroids. Each of these sampled centroids is assigned an approach direction anti-parallel
to the normal estimated at that point (top right). Each grasp centroid is also assigned a gripper
closing direction that aligns with the estimated curvature at that point. In the bottom image, one
candidate grasp pose is visualized; the approach direction is the blue axis and the gripper closes
along the green axis.
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Figure 3.4: The left image shows a grasp pose gs visualized on a partial point cloud P of a scene.
The right image shows the point cloud Ps output by the grasp encoding function TF. This point
cloud, which is passed as input to MMGPD’s network, encodes gs and the local geometry around it
that the gripper may make contact with during a grasp attempt.

candidates can be efficiently encoded directly from point clouds recorded from arbitrary viewpoints

using a PointNet-inspired architecture [74]. The encoding layers used in my network are based on

the PointConv architecture [104]. I encode a candidate grasp pose by centering P at cs and aligning

P ’s orientation with os. I then crop all points outside the approximate grasping region, represented

as a box around the fingers and the area they sweep through. This transformation TF : P, gs → Ps

produces Ps, an encoding of a grasp pose and the object geometry local to it, as seen in Figure 3.4.

This transformed, cropped cloud Ps representing a single gs is then fed to the MMGPD’s network,

which is illustrated in Figure 3.7. Here, PointConv layer parameters listed are number of points,

radius, sigma, and MLP sizes. The listed parameter for each fully connected layer is output size.

The encoding layers in MMGPD’s neural network consist of four PointConv feature encoding

layers. Following der Merwe et al. [16], I reduce the first layer’s number of points from 1024 to 512

and the third layer’s final multi-layer perception from 128 to 64 units. The output from the fourth

encoding layer is then fed through a series of five fully connected layers with ReLU activations. The

final fully connected layer outputs a logit pair for each of the n grasp types the gripper is capable
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Figure 3.5: Multi-Modal Grasp Pose Detector system diagram. Orange boxes show inputs and
outputs while blue boxes represent algorithms. The Grasp Pose Generator produces candidate grasp
poses given a point cloud. The PointConv Network assigns each of these grasp poses a probability
of grasp success for each grasp type, and also takes the point cloud as input. An example of these
inputs and outputs is illustrated in Figure 3.6.

Figure 3.6: An example of the inputs and outputs to each Multi-Modal Grasp Pose Detector sub-
system. The input to the system is a point cloud of the graspable objects in the scene, with
the table plane and background filtered out. This cloud contains no semantic information that
differentiates objects. The points in the example cloud shown are colored based on height. The
grasp pose generator takes as input this point cloud and outputs a set of sampled candidate poses.
The approach directions of each of these poses are illustrated as gray arrows in the second example
cloud. The local geometry about each candidate pose is encoded by centering the point cloud at
the grasp and cropping. This encoding is input into my PointConv network, which then predicts
the independent probabilities that a grasp of each type would succeed at a given pose. In this
example, the five probabilities shown in the green box correspond to the probabilities that a grasp of
each of the five types would succeed for one potential candidate pose. Note that these independent
probabilities need not sum to one.

Figure 3.7: Diagram of my Multi-Modal Grasp Pose Detector’s neural network architecture. A
partial point cloud containing local geometry centered at a grasp pose is input to the network. The
PointConv layers at the head of the network learn to encode the input, and the fully connected
layers at the tail end output a pair of logits corresponding to each grasp type.
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of:

GPC : Ps → Xs ∈ Rn×2. (3.1)

I output two logits per grasp type in order to train the network to perform binary classification on

each grasp type and predict whether a grasp of each type would succeed or fail. These logit pairs

are passed through n independent softmax functions. The n resulting probabilities corresponding

to positive labels, σ(Xs)∗,1 = ss ∈ [0, 1]n, can be interpreted as the probabilities that a grasp at gs

of the corresponding grasp type would succeed.

I train MMGPD’s GPC to jointly perform n binary classifications using a summed cross entropy

loss function. Joint binary classification is useful in cases where multiple entangled predictions are

made from a single input source. By training a single network to perform joint binary classifica-

tion, my system learns an embedding that efficiently encodes the information required to determine

whether each grasp type succeeds given a cloud and grasp pose. Though joint binary classification

has been proposed to solve problems such as emotion detection [31], mine is the first robotics appli-

cation I am aware of that uses it. I define this summed cross entropy loss function (Equation 3.3)

as a modified form of the standard cross-entropy loss function for m-class classification,

−
m−1∑
c=0

yc log(bc), (3.2)

where yc is 1 if c is the correct label for a given exemplar and 0 otherwise and bc is the estimated

probability that the exemplar is of class c. Given a labeled grasp exemplar e = {g, P, l} where

l ∈ {0, 1}n and Pg = TF(P, g), I compute the summed cross entropy between l and σ(GPC(Pg)) =

Z ∈ [0, 1]n×2. The summed cross entropy loss for my joint binary classification problem is:

−
n−1∑
i=0

1∑
c=0

yi,c log(Zi,c), (3.3)

where yi,c is 1 if c = li and 0 otherwise. Training details are found in Section 3.3.1.

In my experiments, given some P of an object or a set of objects, MMGPD’s grasp proposal

algorithm generates a set of grasp candidates G = GEN(P, k) where |G| = k. With its GPC trained
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to evaluate grasps for a specific gripper, the network predicts each candidate success probability

vector

ss = σ(GPC(TF(P, gs)))∗,1 ∀gs ∈ G (3.4)

to get S ∈ [0, 1]k×n where ss ∈ S. Finally, MMGPD selects the grasp pose gm = {cm, om} and

grasp type im corresponding to the maximum entry in S that is collision free. When executing this

grasp, the gripper is first moved to a pre-grasp pose some distance d away from {pm, om} along the

negative approach direction. Finally, the gripper is moved to {pm, om} and the fingers are closed to

complete the grasp.

Figure 3.5 shows a block diagram of MMGPD’s sub-systems with their inputs and outputs.

Given a point cloud, the grasp pose generation algorithm generates a set of candidate poses. Each

pose is passed through the PointConv network to predict its n per-type grasp success probabilities.

Figure 3.6 illustrates an example of the inputs and outputs of each sub-system. A point cloud is

used to generate a set of potential grasp poses (represented by gray arrows). The network predicts

the probability that each grasp type would succeed for each grasp pose.

3.3.1 Dataset Generation & Network Training

MMGPD’s GPC requires a dataset of grasp exemplars E where e = {g, P, l} ∈ E and l ∈ {0, 1}n

to train. The BigBIRD dataset [85] contains a set of real partial point clouds captured from 600

viewpoints on a set of common household products and a complete mesh for each object. A subset

of point clouds and models of these objects can be seen in Figure 3.8. BigBIRD is a popular dataset

for training grasp detection systems since no simulation-to-real transfer is required with real point

clouds. My grasp dataset is generated from 20 BigBIRD objects and 12,000 point clouds. I generate

a set of grasp candidates G from these clouds using GEN.

Each candidate is then assigned a label l ∈ {0, 1}n. A label is generated by attempting each grasp

type i at g in simulation and recording whether or not the grasp succeeds. I perform grasps in the

Drake simulation environment [93] to accurately simulate the Robotiq 3-Finger Adaptive Gripper
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(a) Campbell’s Soup Model (b) Canon Box Model (c) Hot Sauce Model

(d) Campbell’s Soup Cloud (e) Canon Box Cloud (f) Hot Sauce Cloud

Figure 3.8: Examples of complete models and partial point clouds of three objects from the BigBIRD
dataset: a can of Campbell’s Soup at Hand, a Canon charger box, and a bottle of Tapatio hot sauce.



47

(a) Wide Precision (b) Basic Precision (c) Pincher

(d) Wide Power (e) Basic Power

Figure 3.9: The Robotiq 3-Finger Adaptive Gripper’s five main grasp types simulated in Drake.

and its grasp types, as shown in Figure 3.9. The simulated graspable object models are based on

the complete BigBIRD object models. Each object model is placed on a plane, the gripper model is

placed at the grasp pose specified by the sampled candidate g and grasp type i. After the gripper

executes a grasp on the object and the plane is removed from the scene, li is set to 1 if the object

remains between the gripper’s fingers or 0 if it falls out of the grasp. Candidate grasps at which

no grasp types cause a collision between the gripper and object or table before execution are kept

in the dataset, and those that cause collisions are removed. The resulting dataset E contains over

36,000 grasp candidates, each assigned labels l generated by simulating over 180,000 grasp attempts

using n = 5 grasp types. This dataset is not perfectly balanced between positive and negative labels;

the percentages of positive labels for each grasp type are 79%, 43%, 81%, 73%, and 58%. Though

my labels are generated on singulated objects, ten Pas et al. [95] showed that systems trained with

grasps on singular objects generalize well to real-world clutter.

The network architecture described in Section 3.3 is then trained to perform joint binary clas-

sification using the summed cross entropy loss function defined in Equation 3.3. This network is
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implemented in TensorFlow and trained on a single GeForce GTX 1080 Ti. I use a learning rate

of 10−5, a batch size of 16, and the Adam optimizer to train the network. Like ten Pas et al. [95],

the cloud input to my network is comprised of two point clouds; one cloud is the BigBIRD cloud

used to generate a candidate, and the second is the cloud captured from the same viewing angle 54◦

away from the first. As the BigBIRD dataset is generated by capturing point clouds of objects from

five fixed viewing angles and rotating the object in 3◦ increments on a turntable, these secondary

clouds are available in the BigBIRD dataset. Since my network takes transformed and cropped point

clouds Ps as input and classifies 6-DoF grasp candidates, the number of point clouds captured and

their viewing angles are arbitrary. I choose to capture two point clouds at training and test time

to sufficiently cover the workspace when generating grasp representations Ps, but the configurations

need not be the same.

3.3.2 Grasp Types

A grasp taxonomy for any multi-finger robotic gripper could be derived to determine the number of

grasp types n that it is capable of, much like the one Feix et al. [21] present to categorize 33 grasp

types humans are capable of. Though my framework is compatible with any robot gripper and its

n, I train and evaluate MMGPD with the Robotiq 3-Finger Adaptive Gripper, a 4-DoF, 11-jointed

underactuated gripper. Unlike the fully articulated grippers used in related work [52], the Robotiq

3-Finger Adaptive Gripper is designed specifically to perform different types of grasps [78]. Each

3-jointed finger is controlled by one motor, and an additional actuator adjusts the orientation of the

non-thumb fingers. To avoid self-collision, the gripper’s controller allows for three discrete operating

modes. The non-thumb fingers are parallel in basic mode, spread apart in wide mode, and brought

together in pincher mode. The gripper is capable of performing two types of grips: a fingertip or

precision grip occurs when the distal links grip an object, while an encompassing or power grip

occurs when the proximal links first contact an object, causing the fingers to wrap around it. The

grip executed depends on the distance from the gripper’s palm to the target object. In basic and
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wide mode, both encompassing and fingertip grips are possible, while in pincher mode, fingertip

grips emulate parallel-jaw grippers. These operating modes and grip types enable the gripper to

execute five types of grasps, illustrated in Figure 3.2: basic power and wide power are useful

for firmly grasping large objects, basic precision and wide precision can grasp objects from a

surface, and a precision pincher that emulates a parallel-jaw gripper is useful for precise tabletop

grasps on small objects.

The mechanical design of the Robotiq 3-Finger Adaptive Gripper enables it to execute multiple

types of grasps with a single simple control policy without the need for tactile sensors or joint

encoders. It enables one to parameterize grasp type over the operating mode and distance from the

object to the gripper. To execute a grasp of a given type im at candidate gm = cm, om, I assign the

gripper a pose {pm, om}. I define pm to be the position of the point at the center of the gripper’s

palm, as shown in Figure 3.10. The orientation of this pose is the same as the candidate’s pose. As

cm is a point sampled from the cloud P , assigning pm = cm would result in a collision. pm is instead

set some distance d away from cm along the negative approach direction depending on the grip type

required to execute a grasp of type im: pm = cm − omd. To execute an encompassing grasp, pm

should be close to cm so the fingers’ proximal links first make contact with the object and wrap

around it. pm should be sufficiently far from cm during a fingertip grasp so the fingers’ distal links

would likely make contact with the object. I therefore set de = 1.9 cm to perform an encompassing

grip when executing a basic or wide power grasp, and set df = 8.22 cm to perform a fingertip grip

when executing a basic precision, wide precision, or pincher grasp.

3.4 Measuring Network Generalization

I first evaluate MMGPD by testing its performance on several held-out datasets. In the first scenario,

the test set is comprised of 15% of the grasp candidates in my dataset, selected at random, while

the remaining 85% are used to train the network. The second, more difficult scenario tests how
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Figure 3.10: A robot gripper’s fixed reference frame.
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well the system generalizes to unseen objects. Here, the test set contains all grasp candidates

from 15% of the objects in the dataset, while the grasps on the remaining objects are used to

train the network. In each scenario, I compare my architecture that outputs n = 5 predictions

per pose from a shared embedding (COMBINED) to a similar architecture that uses an ensemble

of n individual deep networks to predict grasp success for each grasp type (SEPARATE). These

individual networks are a naive approach that use n times as many parameters as the combined

network, but provide an upper bound to compare my system against. Table 3.1 shows the test-set

classification accuracies of my proposed architecture (COMBINED) and the ensemble of individual

networks baseline (SEPARATE), trained and tested using the two dataset divisions. # Params

shows the number of learnable parameters in each system. The final columns show average test-set

accuracy, precision, and F1 score at convergence. Per-type accuracy is further broken down in Table

3.2. The final columns here show accuracy for all n = 5 grasp types—wide power, wide precision,

basic power, basic precision, and pincher. These results are each averaged over three random seeds

used to divide the dataset.

Split Arch. # Params Avg Acc Avg Prec Avg F1

COMBINED 10.4M 0.867 0.879 0.897
Rand. SEPARATE 51.9M 0.871 0.878 0.9

COMBINED 10.4M 0.829 0.869 0.881
Obj. SEPARATE 51.9M 0.859 0.876 0.902

Table 3.1: Multi-Modal Grasp Pose Detector simulation performance

Split Arch. # Params T1 Acc T2 Acc T3 Acc T4 Acc T5 Acc

COMBINED 10.4M 0.913 0.802 0.908 0.824 0.886
Rand. SEPARATE 51.9M 0.922 0.804 0.908 0.833 0.886

COMBINED 10.4M 0.841 0.805 0.847 0.820 0.835
Obj. SEPARATE 51.9M 0.915 0.818 0.854 0.838 0.869

Table 3.2: Multi-Modal Grasp Pose Detector simulation performance per grasp type

Though test-set accuracy demonstrates how well the system learns, when executed on a real robot,
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selecting false positives can cause a low grasp success rate. Since the system chooses to execute the

one grasp with the highest predicted success probability, the grasp may fail if an incorrectly classified

false positive is selected. False negatives, however, are not as detrimental to the grasp success rate

since the system will choose only one of the many grasps expected to be successful. It is, therefore,

also important to verify the system’s precision and F1 score.

As COMBINED is trained to predict success for all grasp types, all statistics are reported at

the epoch at which average accuracy across all grasp types is maximum; the individual grasp type

accuracies are not necessarily maximum at this epoch. For SEPARATE, since each network is

trained with only one grasp type, each accuracy, precision, and F1 score is reported at the epoch

at which that grasp type’s accuracy is maximum. The reported average accuracy is the average of

these maximum accuracies. Despite this, when learning these binary classifiers jointly from a shared

embedding, the average classification accuracy decreases by only 0.4% when test objects have been

seen and 3.0% when the training and test object sets are exclusive. Furthermore, my system achieves

a higher precision in the case where test candidates are selected at random. These experiments show

that jointly training individual classifiers from a shared PointConv embedding enables my system

to more efficiently classify grasp poses with a negligible loss in performance compared to a similar

set of networks with five times as many parameters.

3.5 Clearing a Cluttered Table

I perform real-robot experiments to measure how much multi-modal grasps help to clear objects

of varying sizes from a cluttered table. I capture two point clouds from fixed locations as shown

in Figure 3.12, then remove all points within a threshold of the known table plane. As described

in Section 3.3, I generate a set of 400 grasp candidate poses G using GEN, then check each for

collisions, both in PyBullet with a simplified mesh and between the cloud and a simplified gripper

model. Like ten Pas et al. [95], I also filter candidates with an insufficient number of points in the
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Figure 3.11: The set of objects MMGPD is tasked to grasp in the real-robot experiments. The six
large objects on the left of the image are a shampoo bottle, a drill, a popcorn box, a cocoa box, a
can of chips, and a box of rice. The 17 medium and six small objects on the right include fake fruit,
sports balls, small toys, a box of toothpaste, a box of bandages, a jar of peanut butter, and a tin of
Spam. Ten objects are selected from this set at random, and three random large objects are placed
around a pile of the small objects to create a complex cluttered scene.

graspable region between the fingers. This is achieved by counting the number of points in the box

each finger would sweep through as the gripper closes. I then evaluate the remaining candidates

with MMGPD’s trained GPC. As detailed in Section 3.3, MMGPD executes grasp gm of type im

with predicted success probability Sm with a Robotiq 3-Finger Adaptive Gripper. If the motion

planner fails to find a path to gm, MMGPD executes the next most likely to succeed grasp.

Because related works are evaluated with a variety of datasets and often simpler experimental

scenarios, and implemented on different robot hardware, it is difficult to compare my system with

them directly. To examine the benefits of multiple grasp types when grasping in dense clutter, I

compare my system to two baseline ablations representative of related work whose deep networks

have not been trained to assess all five grasp types. The first, 1Type, predicts only the probabil-

ity that a pincher grasp would succeed, and is representative of systems designed for parallel-jaw

grippers [95, 55]. The second, 2Type, predicts whether n = 2 grasp types, basic power and basic

precision, would succeed; this is representative of the framework defined by Lu and Hermans [52].
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Figure 3.12: The depth sensor mounted to the wrist of the Kuka LBR iiwa 7 robot arm captures
a depth image of a cluttered scene. The point cloud captured from this pose is fused with a point
cloud captured at another pose and passed as input to MMGPD.

The full MMGPD system, 5Type, models all n = 5 Robotiq grasp types.

In each of my experimental trials, three large, upright objects are placed around a pile of ten

small and medium-sized objects. This scenario is designed to challenge the system, as it may depend

on all five grasp types to clear the table. An example of the clutter my system clears is shown in

Figure 3.13. The objects used in these experiments, an augmented segment of the YCB dataset [10]

containing six large, 17 medium, and six small objects, did not appear in the training set and can

be seen in Figure 3.11.

My procedure follows that of ten Pas et al. [95]; a random selection of small and medium objects

is placed in a box, shaken, and dumped into a cluttered pile on a table; large items are placed around

the pile after dumping the box to ensure they remain upright. The system attempts to grasp objects

until either 1) the same type of failure on the same object with the same grasp type fails three times
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Figure 3.13: A cluttered scene the Multi-Modal Grasp Pose Detector is tasked with clearing.

in a row, 2) the system fails to generate reachable grasps in three consecutive attempts, or 3) all

objects are removed from the table. If the system fails to find a feasible grasp or the motion planner

fails to find paths to the top 25 grasps, I repeat the candidate generation process up to two more

times, each time proposing twice as many candidates. A grasp is successful if one or more objects

are lifted from the scene and moved towards a box, and do not fall from the gripper until the fingers

are opened. If an object leaves the workspace during an unsuccessful grasp or during a grasp on

a different object, it is placed back in the scene near where it left, abutting as many other objects

as possible. If an unforeseen collision occurs during a grasp or placement execution, the disturbed

objects are reset and the attempt is not counted. Each system is presented with the same objects

as the other systems in each of the ten trials, but in a different random configuration. I report

both the grasp success rate (number of successful grasps divided by number of attempted grasps)

with number of attempts and overall object removal rate (number of objects removed from table at

the end of a trial divided by initial number of objects). The results on the real-world experimental

scenario averaged across ten trials are shown in Table 3.3.
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Success Rate #Attempts Removal Rate

5Type 0.808 125 0.808
2Type 0.692 120 0.654
1Type 0.825 114 0.723

Table 3.3: Multi-Modal Grasp Pose Detector real-world experimental performance

3.6 Discussion

Figure 3.14: The Multi-Modal Grasp Pose Detector successfully lifts the shampoo with a power
grasp.

As seen in Table 3.3, my system with access to all five grasp types, 5Type, outperforms the

ablations of my system, 2Type and 1Type, when grasping items from cluttered scenes surrounded

by large objects. 5Type achieved the highest object removal rate by successfully clearing nearly all

scenes. In some trials, though GEN generated grasps on the small Lego or duck, the motion planner

failed to find a path to these grasps. A common failure mode of the system, which is a common

failure mode in other grasp detection systems [95], was that it attempted to grasp multiple objects

at once. The 5Type system suffers from this issue more than the baselines because it has access
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to wide-type grasps that spread the fingers out and are more likely to contact multiple cluttered

objects. The issue, illustrated in Figure 3.15, could be alleviated with an off-the-shelf depth image

segmentation algorithm and an additional filtering step in GEN. Other failure modes of my system

include false positives and objects moving as the fingers close. The system also struggled with the

heavy shampoo bottle in two of the five trials it appeared in. Because my grasp evaluation network

makes predictions based only on local geometry, it incorrectly predicted that unstable grasps would

succeed. Since my system has no notion of grasp history, it became stuck in a local minima and

unsuccessfully attempted similar grasps three times in a row, ending the trials. However, in three of

the trials, it correctly used power grasps to stably lift the heavy bottle as shown in Figure 3.14.

Figure 3.15: The Multi-Modal Grasp Pose Detector executes a grasp on two objects.

Since 2Type is incapable of performing pincher grasps, it often fails to find feasible grasp can-

didates on small objects that fit between the gripper’s spread fingers. The system encountered

difficulty with the rice box in one trial and the pear in another, objects that the 5Type system never

failed to grasp. However, because this ablation did not have access to the weak but precise pincher
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grasps, it was able to successfully grasp the heavy shampoo bottle in three of the five trials it ap-

peared in. The 1Type system outperformed the 2Type system in these experiments because pincher

grasps succeeded on the small or medium objects that made up the majority of my object set. Even

most of the large objects were light enough that they could be lifted with a pincher grasp. 1Type

attempted to grasp multiple objects at once less frequently because the fingers are not spread apart

during a pincher grasp. The 1Type system successively failed to lift the heavy shampoo bottle by

its cap three times in three different trials, ending the trials prematurely and decreasing the object

removal rate.

My 5Type system was able to choose applicable grasp types for the situation to clear each scene

more completely. It used a wide power grasp to stably grasp the top of the drill, and another to

perform a spherical grasp on the soccer ball, one of the largest medium-sized objects. It used basic

power grasps when faced with the heavy shampoo. The 2Type system also selected basic power

grasps for these objects. Overall, my 5Type system executed three wide power, 33 wide precision,

six basic power, 38 basic precision, and 45 pincher grasps. Collision-free power grasps were rarely

generated on the small and medium-sized objects because they lie close to the tabletop. As the large

objects were often partially occluded by the adjacent clutter pile, their larger graspable areas were

hidden. Though my 5Type system chose to use fingertip grasps in the many applicable scenarios, it

used power grasps to lift the heavy objects the 1Type system often could not.

3.7 Conclusion

The simulation experiments presented in Section 3.4 show that my Multi-Modal Grasp Pose Detector

is able to efficiently learn to jointly evaluate multiple grasp types for a given grasp candidate. My

real-world experiments show that this architecture enables a robot equipped with a multi-finger

gripper to more successfully clear a scene of cluttered objects of various sizes from a tabletop than

systems that use fewer grasp types.



Chapter 4

Learning Task-Oriented Grasps

from Limited Labeled Data

A given manipulation controller’s task success is dependent on the initial state of a robot. When

the robot is provided with grasping as a skill, this initial state is reached by executing a grasp at a

given pose. In this chapter, I present a task-specific grasp classifier that predicts whether a grasp

at a given pose would enable a given manipulation controller to successfully complete a task. This

classifier learns from small amounts of labeled data to predict which grasps enable a task policy to

succeed. This lightweight classifier is a key technological advancement required to simultaneously

learn a manipulation policy and which grasps enable this policy to succeed. I investigate combining

this classifier with a reinforcement-learning agent further in Chapter 5.

4.1 Introduction

The general grasp detector defined in Chapter 3 evaluates the quality of a grasp pose based on the

visually detected geometry local to the grasp region. This information is sufficient for finding the

most stable grasp in clutter, where the robot must grasp one of many objects and lift it upwards.

59
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However, pick and place is not the only, or even the most common, reason for a robot to grasp

an object. When completing more complex manipulation tasks, the local geometry is insufficient

for classifying a grasp pose because grasp stability is a necessary but not sufficient metric for task-

oriented grasping. While many grasps on a hammer would be stable, only the grasps on the handle

that allow the head to face forward afford the robot the ability to complete a hammering task, as

seen in Figure 4.1. The local geometry of grasp poses along the hammer’s handle, or the grasp poses

around the handle at a fixed height, would all appear visually similar or identical when passed to the

general grasp pose detector. Instead, global object geometry should be considered when evaluating

grasp poses for task-specific grasping.

Another roadblock encountered when modifying the generic grasp quality predictor to perform

task-specific grasp classification is the amount of training data necessary to train a DNN. Over

180,000 grasp attempts were simulated to generate a dataset of labeled grasp poses. The sim-to-

real gap was addressed by training with generic, singulated objects; as ten Pas et al. [95] showed,

training on the local geometry of singulated objects in simulation transferred well to real-world

grasping tasks. Gravity and contact physics for grasping a singulated object are modeled well by

simulators. However, it is unreasonable to expect to have realistic physics models of each object a

robot could encounter in the real world. Furthermore, a robot may interact with an object such as

a heavy door for the first time in the real world. If all of its training experience was with lighter

doors, or doors with different types of handles, a task-specific grasp classifier would fail. Therefore,

the robot should learn to interact with each instance of a new object, whether it be discovered in

simulation or in the real world. As obtaining 180,000 labeled examples in the real world is infeasible

due to the time it would take, a task-oriented grasp detector should learn from few labeled examples.

Existing solutions to the task-oriented grasping problem require tens to hundreds of thousands

of training examples, rely on human-labeled data, or make assumptions about the problem and

the information available to the robot. Many existing solutions for task-oriented grasping rely on

human-labeled data [39, 51, 17], which incorporate human biases and incorrect assumptions about
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Figure 4.1: Task-oriented grasps for a hammer and a mallet. While grasps centered in the red areas
could successfully lift the hammer or mallet, grasps centered in the green areas that align with the
illustrated arrows would allow a user to use the tools for their intended purposes.



62

potentially unknown policies. Keypoint and affordance-based methods focus on segmenting objects

and assuming grasps on the desired segment are appropriate for task completion [26, 75, 62]. Some

recent deep-learning-based approaches have been proposed, though all require tens to hundreds of

thousands of training examples [106, 102, 109, 18]. Two recent works leverage limited data learning

techniques to grasp objects for general pick and place tasks, but do not perform task-oriented

grasping [23, 29].

In order to quickly learn which grasps enable a robot to complete a given task, I propose the Aug-

mented Task-Oriented Grasp Detection Network (ATOG), the first deep-learning-based approach

that learns to detect task-oriented grasps with limited training data, while learning directly in the

environment it is evaluated in. ATOG consists of a deep neural network with two branches. The

first, based on a general grasp detection network, is pre-trained to predict whether a given grasp is

stable from local geometry using a dataset of general grasps. This branch takes a partial point cloud

of the object, centered and cropped at the given grasp pose, and encodes it using a PointConv-based

architecture [104]. After training the general grasp detection branch of ATOG, the weights of this

branch are frozen. The tail layers of the network are a small set of dense layers suitable to be trained

with a small dataset. The second branch takes the 6-DoF grasp pose relative to the object, encoded

as the position and quaternion in a fixed object frame. By providing the network with this pose, it

can learn to detect which regions of the object provide grasps suitable for a task. These weights are

adjusted on a per-task basis.

I evaluate ATOG in several simulated domains, illustrated in Figure 4.5, in which a robot arm

performs a task with an articulated or free-body object. To generate a small dataset with which to

train ATOG, a policy parameterized by its initial state (a grasp on the target object), is attempted

at a small set of random and kinematically valid proposed grasp poses. Task success is recorded

at each pose to train ATOG to perform binary classification. The network is updated each time a

new example is added to the training set, and the framework is re-evaluated with a large held-out

task-labeled evaluation set. ATOG’s capabilities are also demonstrated with a real robot task.
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I present four major contributions in this chapter. The first is the Augmented Task-Oriented

Grasp Detection Network’s architecture that combines object geometry with a grasp pose’s relation

to the object to predict whether the grasp would enable a robot to manipulate an object successfully.

The second is a training procedure for ATOG that enables it to learn to predict task-oriented grasp

success from a single-digit-sized training set. The third is a new metric that considers the precision

and kinematic capabilities of real robots to evaluate ATOG’s performance on a held-out test set.

Finally, I demonstrate ATOG’s capability to learn from small amounts of data by demonstrating

learning on a real robot.

4.2 Background and Related Work

In grasp pose detection, as described in Sections 2.1 and 3.2, a robot is tasked with selecting a grasp

pose g at which a stable grasp is likely to be formed given some representation of the scene. The

robot would then execute a grasp at this pose, with the objective being to lift the object and place

it in a goal location such as a box; grasp stability is the only metric optimized over. However, to

perform manipulation tasks, robots must grasp objects in ways that are stable but also afford them

the ability to complete tasks, as stability is a necessary but insufficient condition for completing a

task with a grasped object. For instance, while a robot could stably grasp a hammer on the head,

only specific grasps on the handle allow the robot to hammer in a nail. This more constrained grasp

pose detection problem is called task-oriented grasp pose detection, and it is defined in detail in

Section 2.2.1.

The goal of task-oriented grasp pose detection is to return a 6-DoF pose g ∈ SE(3) such that if a

robot were to execute a grasp at g, it could successfully complete a downstream manipulation task.

In this work, I assume that the pose g is in the robot frame, and that the robot can plan a path to

a set of joint states (found through inverse kinematics) that place its end effector at the grasp pose.

I also assume that the manipulation policy πM that attempts to complete the task, parameterized
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by its initial grasp, is provided.

Existing approaches for task-oriented grasping can be broken into several categories: systems

that require human-labeled data, optimization-based approaches, affordance and keypoint detectors,

and deep-learning-based networks. However, ATOG is the first to train a deep network from small

data sets to perform task-oriented grasp detection. A comprehensive review of existing task-oriented

grasping approaches is presented in Section 2.2.2. In this section, I relate these task-oriented grasping

works to ATOG specifically. Many approaches, both those that incorporate deep learning and earlier

techniques, rely on humans to inform robots on which grasps are suitable for a given task. Some

systems require a database of human-demonstrated task-oriented grasps, either to train a classifier

or to use as a lookup table [19, 20, 46, 5, 39]. Others use a database of robot grasps with task labels

annotated by a human expert [14, 6, 86, 33, 17, 65, 107, 51]. Some require rules or heuristics defined

by human experts [73]. A major issue with human-labeled data is that it contains human biases.

Without first-hand knowledge of the results of a grasp execution, grasps that a human thinks may

enable a robot to complete a task could fail. Additionally, some tasks may prove too difficult for

humans to accurately label because the manipulation controller or task policy could act counter to

their intuition, especially when a sub-optimal controller performs the task after grasping. Rather

than rely on human-labeled data, robots should learn through interaction with the environment in

which they execute tasks through first-hand experience, like ATOG does.

Some optimization-based systems encode tasks as desired object wrenches [30] or trajectories [72].

The system described by Haschke et al. [30] is limited in that tasks must be encoded as single motions.

Pardi et al. [72]’s framework selects a stable grasp that enables the robot to optimally move the target

object along a specified trajectory without collisions. However, this system does not take properties

such as a grasp’s relation to the object as a whole into consideration. ATOG is compatible with

tasks that cannot be encoded as single motions, and it learns to select grasps that stably grasp the

object, avoid collisions during policy execution, and enable a given policy to complete the task.

Affordance-based approaches have become popular as deep neural networks have enabled accurate
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pixel-level classification algorithms. In many of these works, objects are detected and segmented in

visual images, with each segment assigned a set of tasks for which a grasp would afford completion [62,

38, 12]. However, for complex manipulation tasks, it cannot be assumed that all stable grasps on

a segment of an object afford the robot the ability to complete a task. Some stable grasps may be

reachable but place the robot in an awkward configuration from which it is difficult to complete the

task. Others may not enable it to complete the task as optimally as others. ATOG considers grasps

across the entire object without making assumptions as to which segments afford the most optimal

grasps. Similar to affordances, other systems detect keypoints on manipulable objects and plug these

keypoints into their manipulation algorithms. The kPAM line of work involves detecting keypoints on

objects that are used for planning [58, 25, 26]. KETO and affordance coordinate frame-based systems

also rely on keypoints to perform manipulation [75, 11]. While keypoints enable these systems to

optimize over manipulation actions directly, these approaches make simplifying assumptions about

grasping.

Other recent data-driven approaches integrate deep neural networks into their frameworks in

other ways. In some, a robot learns which grasps afford it a task through exploration within the

task environment from scratch [106, 102, 109, 18]. However, like many other works cited here, these

systems are deep-learning based, requiring tens to hundreds of thousands of training examples to

learn to complete these tasks. When a robot in the wild is introduced to a new task, it must learn

which grasps afford it to complete the task in a reasonable amount of time, perhaps 20 interactions.

Few works have studied grasping using limited data, and I am not aware of any that learn task-

oriented grasp detection from small datasets. Fleytoux et al. [23] efficiently learn to classify top-down

grasps using a deep auto-encoder and a Gaussian process classifier. They train a β-Variational Auto-

Encoder to generate a small latent state representing top-down image patches centered at 3-DoF

grasp poses. They then train a Gaussian process classifier to predict whether a given grasp would

succeed from the latent representation corresponding to its image. Though this framework enables a

robot to identify stable grasps on objects from different viewpoints using a single-digit-sized training
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set, it only evaluates the grasp stability from local geometry and does not perform task-oriented

grasp detection.

Guo et al. [29] present IGML, a meta-learning framework that efficiently learns to grasp specific

objects from clutter. The network is first trained with a large dataset of RGB-D images to detect 4-

DoF grasps on desired objects at their specified grasping points. The network adapts when presented

with a new object; given a small number of examples of grasps on a target object, the meta-learner

is fine-tuned to perform grasps on the unseen object. This system requires a large amount of data

on the grasping task for the initial training; the small dataset is only used to train the network on

a specific new object. By contrast, ATOG learns a completely new task with very few task-labeled

examples.

ATOG learns task-oriented grasps using data collected in the task domain directly by the robot,

simulated or physical. This system does not rely on biased human data, segmented affordance

models, or deep learning architectures that require large amounts of data. This system enables

a robot to learn task-oriented grasps from small amounts of data and robustly manipulate novel

objects as quickly as possible.

4.3 Augmented Task-Oriented Grasp Detection Network

The previous work listed in Section 4.2 is lacking because it does not enable a robot to learn

which grasps afford it the ability to complete a task using small amounts of data from the robot’s

environment. ATOG, by contrast, quickly learns which grasp poses enable it to complete a task

using an augmented pre-trained grasp quality network. It learns task-oriented grasps using data

collected in the task domain directly by the robot, simulated or physical. This system does not rely

on biased human data, segmented affordance models, or deep learning architectures that require

large amounts of task data; instead, it learns task-oriented grasps from small amounts of data,

allowing it to robustly manipulate novel objects as quickly as possible.
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The key insight behind ATOG is that a stable grasp is a pre-requisite for manipulation. Stable

grasps can be learned effectively from simulated datasets, even when evaluated on real-world objects

that differ from the training objects [95]. ATOG takes advantage of this by bootstrapping its

learning process with a pre-trained general grasp classifier, enabling it to fine-tune its weights given

single-digit numbers of task-specific training examples.

ATOG consists of a deep neural network trained in two steps. First, a PointConv-based archi-

tecture learns to predict whether a robot can execute a stable grasp at a given pose. This network is

trained with a large dataset of grasp attempts generated in simulation. To learn which grasp poses

afford a robot to complete a specific task, the pre-trained PointConv branch of the network is frozen,

and the remainder of the network is trained to predict whether the desired task would succeed given

the grasp pose in a fixed object frame and the probability that a stable grasp could be executed at

the pose.

ATOG follows the common two-step proposal-evaluation paradigm: to select a grasp, a grasp

generation algorithm proposes a set of potential candidate grasps and ATOG evaluates each of

these candidates and to determine which has the highest probability of success. My generator

GEN : P → G is adopted from ten Pas and Platt [94], and is described in detail in Section 3.3.

A set of grasp poses G ⊆ SE(3) is proposed from a partial point cloud of the graspable area of the

target object P ⊆ R3; this cloud is first cropped to remove the background and ungraspable parts

of the target objects, such as the door frame. GEN posits that a grasp pose could be centered at

any point p ∈ P . Each p is assigned an orientation o such that the gripper approaches anti-parallel

to the estimated normal at p, and the gripper closes along the curvature estimated at p.

4.3.1 ATOG Network Architecture

Figure 4.2 shows the ATOG network diagram. The general grasp stability evaluation branch, high-

lighted in yellow, predicts whether a grasp pose will enable a robot to lift an object given a patch of

the point cloud centered at the grasp pose. This PointConv architecture is based on the networks
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Figure 4.2: A neural network architecture diagram of my Augmented Task-Oriented Grasp Detection
Network. Highlighted in yellow is the pre-trained branch that predicts general grasp success given
a point cloud centered and cropped at the grasp pose. The softmax of the positive logit from this
branch is concatenated with the grasp position and grasp quaternion in the fixed object frame. The
tail of the network then predicts whether a manipulation policy could complete a task from the
given pose.

proven effective for grasp stability prediction by der Merwe et al. [16] and the Multi-Modal Grasp

Pose Detector defined in Chapter 3 [13], though I do not train it to complete object models or use

multiple types of grasps. The output from this branch of the network can be interpreted as the

probability that a grasp is stable enough to lift an object. This value is then concatenated with the

pose of a task-oriented grasp in a fixed object frame, represented as a position vector and quaternion

as shown in Figure 4.3. The grasp pose in a fixed frame is useful for task-oriented grasping because

the policy is expected to perform similarly on certain types of stable grasps on certain segments of

the object, enabling the network to learn to implicitly segment the object and cluster grasp poses.

This concatenated vector is fed to the three dense layers that compose the tail of the network. These

layers learn whether a grasp at the given pose enables the robot to complete the task given a grasp

quality prior prediction.

4.3.2 Efficiently Training ATOG

First, the PointConv branch of the network is isolated and trained to perform general grasp detec-

tion. ten Pas et al. [95] showed that grasp detection frameworks perform better when the training

set contains the same class of objects as the training set. As each of the manipulation tasks involves
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Figure 4.3: An example of the fixed frame of reference for the door handle. All poses passed to an
ATOG classifier trained to open this door are represented in this frame.

grasping cylindrical objects, I train the PointConv branch of ATOG with data obtained from at-

tempting grasps in simulation on a set of 10 cylinders with varying heights, radii, and masses. Each
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cylinder is simulated in MuJoCo [97], where partial point clouds are generated from two simulated

depth sensors. Grasp candidate poses are generated with GEN, then the robot attempts a grasp

at each collision-free candidate to record a binary success label. The PointConv network is trained

with over 25,000 labeled grasp poses and their simulated point clouds for 50 epochs.

Figure 4.4: A simulated robot arm attempting a grasp on a door handle in the MuJoCo simulation
environment.

When training the full network to predict task-oriented grasps, the pre-trained PointConv branch’s

weights are loaded and frozen. This drastically reduces the number of learnable parameters in the

network, enabling ATOG to learn from limited labeled data.
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4.4 Experiments

My experiments aim to illustrate: 1) how quickly ATOG learns, and 2) how ATOG performs against

several baselines, including a deep learning approach, using a metric relevant to robot manipulation.

To verify the algorithm, I evaluate it in several simulated environments, shown in Figure 4.5.

(a) Door (b) Mug

(c) Pitcher (d) Switch

Figure 4.5: Four simulated tasks that my Augmented Task-Oriented Grasp Detection Network is
evaluated on. The robot arm must rotate a door handle, lift a mug, lift and pour from a pitcher,
and flip a large switch upwards.
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4.4.1 Environments

Each domain consists of a MuJoCo simulation environment with a Kinova Jaco arm and an artic-

ulated or free-body object [97]. A policy parameterized by the grasp pose is provided; the robot

first executes a grasp at the given pose, then executes the policy. These policies are represented by

several waypoints in end effector space, which are planned to then attained with a PD controller.

First, a robot arm is tasked with grasping an elongated door handle and rotating the handle past

0.6 radians. An image of the robot opening the door is shown in Figure 4.6. In my provided policy,

the system receives as input a segmented point cloud of the handle in a fixed frame, captured from

two camera views. When attempting a grasp candidate, the robot motion plans to a location a fixed

distance away from the provided grasp centroid. It then moves to the grasp centroid and executes

a grasp, closing the fingers until contact is made, and moving an additional fixed number of steps

afterwards to ensure grasp success. Next, the gripper attempts to move to a pose rotated about the

known axis of rotation in the handle frame. This task is difficult because though an initial grasp

may be stable, as the gripper manipulates the handle, the grasp could break contact. Some grasps

are better suited to enable the robot to rotate the handle without slipping.

In the next task, the robot must successfully pour liquid from a container. I do not simulate the

liquid itself; rather, the robot must lift a pitcher above 0.15 meters, and rotate it after grasping so

its opening faces below the horizontal, and any liquid inside would begin to pour out. The liquid

container is implemented as a simple cylinder. Similar to the previous task, when executing a grasp

at a pose, the end effector first moves to a pre-grasp location before executing the grasp. In this

case, contact with the container before grasp execution could knock over the container and cause the

task to fail. The robot must grasp the container, lift it upwards, and rotate it past a threshold. This

task is difficult because the object is free floating. Grasps near the top or bottom of the container

may be stable for lifting, but the container could slip or get water on the gripper if the grasp is not

in the center.
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The third environment tasks the robot with flipping a large switch. This task differs from the

door opening task because the switch must be rotated past 0.75 radians. While a grasp could be

stable and allow the robot to grasp the switch and initiate the rotation, the initial configuration of

the arm at the time of the grasp has more of an influence into whether the task can be completed.

For the final task, the robot must lift a mug to a height of 0.15 meters. The challenge in this

task lies in selecting a stable grasp, since the handle could obstruct grasps that would be otherwise

stable.

(a) Initial state (b) Final state

Figure 4.6: Simulated door task. Figure (a) shows the robot after executing a grasp on the door
handle before executing its manipulation policy. Figure (b) shows the robot after executing its
manipulation policy and turning the door handle.

Manipulation tasks may vary in difficulty, and policies are not guaranteed to be optimal, so

it cannot be expected that a real-world dataset would be balanced. Of all the 1,000 to 4,000

kinematically reachable candidates generated by GEN in each domain, the respective percentages

of positive examples are 51.76%, 35.40%, 40.00%, and 63.04%. These distributions are illustrated

in Figure 4.7. Note that ATOG never sees all of these examples at once; it receives one at a time,

up until it has a training set containing 50 examples in the experiments.
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(a) Door (b) Mug (c) Pitcher (d) Switch

Figure 4.7: Partial point clouds of each simulated task object. The points are colored based on the
result of a grasp centered at the corresponding point. Blue grasps are kinematically infeasible, green
grasps enable the robot to successfully complete the task, and red grasps are feasible but do not
enable the robot to complete the task.

4.4.2 Procedure

When presented with a new object to manipulate, the system first generates a partial point cloud

of the object, crops the cloud to remove all points besides those corresponding to the target object,

then transforms the point cloud to a fixed object frame where the object is centered at the origin

and aligned with the axes. GEN then generates a set of potential grasp poses. Those that are

kinematically infeasible due to collisions or joint limits are pruned. In simulation, 20% of these

examples are held out and placed in a test set, while the remainder are placed in the training pool.

A random grasp is selected from this pool and the grasp and task policy are executed to generate

a binary success label, which is added to the training set. ATOG is trained on this set, then the

performance metrics are computed using the success predictions ATOG makes on the test set. A

new random grasp is then attempted and added to the training set, and the network is trained

again, initialized with the weights from the previous training cycle. This procedure continues until

the training set contains 50 examples.

The PointConv sub-network of ATOG is first trained for 50 epochs using a learning rate of 1e-5,

batch size of 16, and 1,024 points in each point cloud. The tail end of ATOG is trained with an

Adam optimizer with a learning rate of 0.001. For each example added to the training set, the

optimizer parameters are reset but the network is initialized with the weights from the previous
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training iteration. The network is trained for 20 epochs each time, with a batch size of 32. The

Pose-Net baseline is trained with the same parameters in the same fashion.

The PointConv baseline is trained for 20 epochs for each example added to the dataset with a

learning rate of 0.001, batch size of 16, and 1,024 points in each point cloud. The training data is

repeated to fill each batch in cases where the size of the training set is not divisible by the batch

size.

4.4.3 Baselines

I compare ATOG against two baselines. Pose-Net is an ablation of ATOG where the PointConv

quality prior is not included in the input to the tail of the network; it predicts whether a grasp

enables a task from its pose in relation to the object without the predicted quality prior. It is trained

using the same procedure as ATOG. The other baseline, PointConv, is the PointConv branch of the

network trained to predict task-oriented grasp success directly from local geometry. PointConv’s

pre-trained weights are loaded before fine-tuning on a specific task.

4.4.4 Evaluation Metrics

This is not strictly a learning problem; the goal is that the grasp with the highest predicted proba-

bility of success is suitable for the task, stable, and reachable. Therefore, I introduce a new metric,

Probability of Manipulation Success (PoMS). PoMS takes a robot’s precision and possibility of un-

reachable grasp poses into consideration when evaluating the grasp poses the network would select

to execute. The system need not successfully classify every example in an evaluation set. The robot

is provided with a large set of potential grasp candidates to execute, and it selects the one with the

highest predicted probability of task success. However, this selected grasp could be kinematically

infeasible in the presence of obstacles. Therefore, the set of grasps that are far from each other with

the highest predicted probability of task success must enable the robot to complete the task; the

robot could select the next grasp in the set if the previous grasp proves unreachable. Furthermore,
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Figure 4.8: The point cloud of the door handle illustrating the PoMS metric. Green points show
grasps that enable the robot to complete the task, red are grasps at which the robot fails to complete
the task, blue represent unreachable grasps, and all points in yellow fall within ϵ = 10cm of them = 1
top grasp predicted by the trained network.

the robot is not guaranteed to execute a grasp exactly at the desired point. The robot’s precision,

noise in the point cloud, and slight changes in object position during grasp execution could cause

the executed grasp to differ slightly from the selected grasp. PoMS captures the probability that a

grasp within a small radius ϵ of the m top grasps selected by the network would succeed:

PoMS =
1

|G|

|G|∑
1

SUCCESS(g ∈ G), (4.1)

where T is the set of grasps in the held out test set, Gtop = argmaxmg ATOG(g ∈ T) is the set

of m grasps with the highest predicted ATOG scores that are at least 3ϵ from all other poses in

Gtop, G is the set of grasps in T within ϵ of any of the m grasps in Gtop, and SUCCESS(g) is 1

if the given grasp pose enables the robot to complete the task and 0 otherwise. The PoMS metric

is illustrated in Figure 4.8. This best encapsulates the probability that a grasp executed by a robot

would succeed.

In order to gauge the success of learning, I also report the test-set accuracy as the size of the

learning set increases. As the robot executes only one of the top grasps, it is important that ATOG

classifies minimal false positives. Therefore, I report precision as well.
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4.5 Initial Simulation Results

Results of the simulation experiments are shown in Figure 4.9. My PoMS metric computed on the

held-out test set, test-set accuracy, and test-set precision are plotted for each of the four simulated

domains. Average values across all training set sizes are reported in the legend. I use m = 3 and

ϵ = 1cm when computing PoMS, with all poses in Gtop spaced at least 4ϵ for the door, pitcher,

and switch, and 3ϵ for the mug when the feasible grasping region is closer together. Works like ten

Pas et al. [95] and Liang et al. [47] demonstrate that deep-learning-based systems trained on point

clouds and labels generated in simulation well without the need for sim-to-real transfer techniques

when introduced to the real world. Though ATOG is evaluated in simulation, it would seamlessly

transfer to a real robot because it operates on point clouds and is built off of systems demonstrated

to perform well in the real world when trained with simulated data [16, 13].

4.5.1 Discussion

ATOG most clearly outperforms the two baselines in the pitcher environment. The average PoMS

is 6.5% higher than the closest baseline, while accuracy is 6.2% higher than the baselines, and

precision is 4.5% higher. The exceptional performance on the pitcher task is due to the utility of the

predicted general grasp success probabilities. The PointConv branch of ATOG was trained to predict

whether grasps on cylinders successfully lift them; this task is similar to the pitcher task, where after

lifting the cylindrical pitcher, the robot pours out its contents with an additional rotation. ATOG

performs well in the switch domain as well, beating baselines by 1.9%, 0.5%, and 0.8% for the

respective metrics. The capsule-shaped switch is lifted and rotated upwards, and the probability

scores predicted by ATOG’s general grasp branch are informative towards task success, though not

as strongly as in the pitcher domain. In the door and mug domains, ATOG performs well, while the

PointConv baseline struggles to predict successful grasps; ATOG’s average PoMS is 27.4% higher

than PointConv’s in the door domain and 7% higher on the mug. This could be because the general
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Figure 4.9: Simulation results for the four simulated domains (door, mug, pitcher, switch). PoMS,
Accuracy, and Precision on the held-out test set are reported. The x-axes show the number of exam-
ples in the training set. Standard error computed over 30 random seeds is shaded. Average values
across all training set sizes are reported in each plot’s legend. These plots show the performance of
my ATOG system, the Pose-Net ablation, and the PointConv ablation.
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grasp detection results are not as informative to these tasks. The door handle, for instance, contains

many grasps that look stable from local geometry, but fail to afford the robot the ability to complete

the task because of kinematic failures during policy execution. Though the uninformative grasp

stability information causes PointConv to perform poorly, ATOG learns to ignore it and focus on

the pose’s relation to the object that Pose-Net learns from. ATOG’s average PoMS is 0.5% higher

than Pose-Net’s on the mug and 2.3% lower than Pose-Net’s on the door.

As a whole, ATOG quickly learns to select good grasps. ATOG achieves 80% PoMS within 20

training examples for door, 10 for switch, 70% PoMS for the pitcher within 20 training examples,

and 60% PoMS within 20 for the difficult mug, where most of the generated grasp poses are negative

examples. ATOG achieves higher average metric scores and learns as fast as, if not faster, than the

other approaches.

Though my ATOG classifier and Pose-Net ablation outperform the PointConv baseline, they

perform similarly on three of the four tasks. In an attempt to determine why ATOG does not

definitively outperform Pose-Net in all domains, I perform a series of additional experiments.

4.6 Further Investigation

There could be several reasons why ATOG does not significantly outperform Pose-Net in all domains.

One potential explanation is that ATOG’s point cloud branch was trained only with cylindrical

objects, to which it overfit, resulting in a sensitive branch of the network. This PointConv branch

could provide useful grasping information about cylinders, but performance may degrade when the

objects contain other geometry not included in the training set. This could explain why ATOG

outperforms Pose-Net when predicting task completion in the cylindrical pitcher domain, but the

PointConv branch does not provide useful grasping information for the capsular door and switch

handles or more complex mug. Another possibility is that the grasping and lifting task from which

the PointConv branch’s labels were generated differs too much from the manipulation tasks. When
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grasping and lifting free-body objects, the robot’s grasp must be strong enough to lift the object

while overcoming the force of gravity acting upon the object. If the object slips from the grasp,

even slightly, the object could fall and the attempt would be considered a failure. Conversely, slight

slippage may not hinder the robot while it manipulates an articulated object’s handle; in fact,

the gripper could slip towards a more stable or suitable grasp pose during task execution while

attempting to open the door or flip the switch. ATOG could outperform Pose-Net on the pitcher

task because grasp stability is likely a much more important metric to consider when evaluating

grasp poses for grasping-based tasks.

In order to evaluate these two hypotheses, I perform an additional set of experiments. To deter-

mine if ATOG’s PointConv branch overfit to cylindrical objects, I compare ATOG’s performance on

the door and switch tasks when the PointConv branch is trained on the original cylinder grasping

dataset with an ablation of ATOG with its PointConv branch trained to grasp capsules. I further

ablate the original training set by training the PointConv branch on both grasping datasets contain-

ing both cylinders and capsules. In the second experiment, I evaluate whether the PointConv branch

of the ATOG network is more useful on the door task when slippage is considered task failure.

4.6.1 Retraining the PointConv Branch

This experiment compares the performance of four classifiers: my ATOG system, my Pose-Net

ablation without a PointConv branch, the PointConv baseline that predicts task success from the

grasp-centered point cloud alone, as well as the new ATOG Retrained with its frozen PointConv

branch trained on grasping data for either capsules or both capsules and cylinders. Data is generated

with the same grasp pose generation and grasp execution policy as ATOG trained on cylinders; the

graspable capsules are the same sizes as the original cylinders with a half-sphere on their top ends,

and are upright in the simulation environment. The capsule and cylinder dataset contains 50,000

examples. ATOG Retrained is trained using the same hyper-parameters and random seed averaging

as the original ATOG described in Section 4.4.2. The PointConv branch that predicts grasp stability
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is trained from scratch on these additional datasets, but ATOG’s tail is trained on the original task-

labeled datasets.

The performance of the ATOG retrained with capsule data is shown in Figure 4.10. These

results, showing PoMS, accuracy, and precision on the door and switch, are the same as the results

from Figure 4.9 with an additional line showing the performance of the retrained ATOG. Similarly,

Figure 4.11 shows performance when ATOG is trained on both the cylinder and capsule grasping

datasets.

Figure 4.10 and Figure 4.11 show that retraining ATOG’s PointConv branch on either of these

additional grasping datasets does not significantly change the system’s performance. When trained

on only capsules and evaluated in the door opening domain, ATOG’s average PoMS increases by

3.3%, its average accuracy increases by 0.2%, and its average precision increases by 0.2%. In the

switch domain, ATOG’s average PoMS increases by 0.9%, its average accuracy remains the same,

and its average precision decreases by 0.1%. When trained on both capsules and cylinders, ATOG’s

average door-environment PoMS increases by 0.3%, but average accuracy and precision decrease by

0.4% and 0.3%. In the switch environment, average PoMS decreases by 1.1%, and average accuracy

and precision each decrease by 0.2%.

Though ATOG performed slightly better in the door and switch environments when trained on

capsules alone, modifying ATOG’s grasp quality branch’s training set had little effect on perfor-

mance. This shows that ATOG’s similar performance to Pose-Net in the door and switch domains

was likely not caused by the PointConv branch over-fitting to its training data.

4.6.2 Grasp Slippage as Failure

Next, I evaluate whether ATOG’s lack of performance boost over Pose-Net on the door task is the

result of grasp slippage tolerances allowing task completion with less stable grasps. As ATOG’s

PointConv branch is trained to predict general grasp stability, perhaps this information is less useful

for the door task where the task may still succeed even when the robot’s gripper slips away from the
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Figure 4.10: PoMS, Accuracy, and Precision results in the door and switch domains. The results
from Figure 4.9 are repeated and include a new line showing the performance of ATOG when the
PointConv branch is trained to detect grasps on capsule-shaped objects.

Figure 4.11: PoMS, Accuracy, and Precision results in the door and switch domains. The results
from Figure 4.9 are repeated and include a new line showing the performance of ATOG when the
PointConv branch is trained to detect grasps on both cylindrical and capsule-shaped objects.
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(a) Original door handle labels, where grasp slippage does not result in failure.

(b) Updated door handle labels, where grasp slippage does result in task failure.

Figure 4.12: Door handle labels. Grasps centered at green points enable task completion; grasps
centered at red points do not enable task completion; grasps centered at blue points are unreachable.
Grasp orientation is not visualized here.

original grasp. Here, I generate a new task-labeled dataset in which a trial is considered a failure

if the gripper moves more than 10 centimeters from its original position on the handle. As seen in

Figure 4.12, this eliminates a large set of positive examples from the right end of the handle; in the

original dataset, the robot was able to complete the task after executing a grasp in this area despite

the grasp slipping during the execution of the manipulation policy.

In order to determine if ATOG can outperform Pose-Net when slippage is taken into consid-

eration, I retrain ATOG and Pose-Net with this new dataset following the procedure detailed in

Section 4.4.2. The results of this experiment are shown in Figure 4.13. Here, ATOG achieves an

average PoMS 1.3% higher than Pose-Net, but average accuracy and precision 0.2% and 1.2% lower.
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Comparatively, when trained on the original dataset, as shown in Figure 4.9, ATOG achieves an

average PoMS 2.3% lower than Pose-Net but average accuracy and precision 0.2% and 1.0% higher

on the door task. This modified dataset is more difficult to classify. When trained on the original

data where slippage is not considered a failure, both systems can label the held-out test set with

nearly 85% accuracy and over 80% precision after being trained on 50 examples. When trained and

tested on this modified dataset, both systems only achieve 75% accuracy and nearly 65% precision.

Furthermore, PoMS drops from 95% on the original dataset to 60% when slippage is considered a

failure. One cannot make a direct comparison between performance on these two datasets since the

labels of both training and testing examples changed when slippage is considered failure. However,

it is noteworthy that the poses of grasps that enable the system to complete the door opening task

are easier for a classifier to distinguish than the grasp poses that allow for task completion without

slipping.

As ATOG’s performance did not increase over Pose-Net’s on this new dataset, adding the non-

slip requirement to the task success metric did not enable ATOG to better leverage information

from its general grasp quality PointConv branch. This is likely because a stable grasp for lifting an

object and fighting gravity is too different from a stable grasp that enables the robot to open the

door without slipping. As seen in Figure 4.12b, grasps on the door could slip during manipulation

because the palm was placed on the spherical end of the handle; when force was applied to rotate the

handle or pull the door open, the gripper likely slipped up the handle. By contrast, when grasping

an object, it is more important for the fingers to wrap tightly around the object because the force

of gravity moves the object away from the gripper and palm.

Overall, these experiments have shown that both our Pose-Net and ATOG networks efficiently

learn which grasps enable a policy to complete a task when trained on very small datasets, ranging

from 1 to 50 examples. The comparisons between ATOG and Pose-Net show that predicted grasp

quality helps the network predict whether the pouring task will succeed since pouring is very similar

to the pick and place task used to generate labels to train the quality branch of the network. This
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Figure 4.13: PoMS, Accuracy, and Precision results in the door domain. Here, the task success
metric is modified so a trial is considered a failure if the gripper moves away from the grasp pose
during the execution of the manipulation policy. Results from ATOG and the Pose-Net ablation are
shown.

shows that integrating predicted grasp quality labels into the input to a task-oriented grasp classifier

is useful when the task requires lifting free-body objects, but less useful when the task is a more

complex manipulation task that requires interacting with a complex articulated object. However,

both my ATOG and Pose-Net ablation outperform a PointConv baseline that considers the object

geometry local to the grasp pose.

4.7 Real Robot Demonstration

I demonstrate ATOG’s ability to learn task-oriented grasps in a real-robot domain: opening a

cabinet. A Kuka LBR iiwa 7 robot arm with a Robotiq 3-Finger Adaptive Gripper is presented with

a standard kitchen cabinet with a towel rack handle shielded by a pool noodle affixed to the front.

The robot must open the cabinet past a fixed threshold for the task to be considered a success. The

grasp-dependent policy provides a trajectory comprised of five waypoints that rotate the gripper

about the door’s known axis of rotation by 90◦. The arm attempts to execute this trajectory using

MoveIt’s Cartesian planner, moving through each available waypoint and stopping when it reaches

the final goal or cannot move beyond 40% of the way to the next waypoint in the chain because

of collisions or joint limits. In this demonstration, the robot learns from several small datasets

containing five to 15 training examples and is evaluated based on its performance when its top three
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selected grasps are executed.

Figure 4.14: A robot learning which grasps enable it to successfully open the cabinet.

4.7.1 Procedure

The arm first moves to two fixed positions to capture a point cloud of the scene from two views

on either sides of the cabinet. The combined partial point cloud is cropped, once using the known

location of the handle to generate a cloud of graspable points and again to generate a full cloud of

the scene from which a mesh is generated for collision detection. As the cabinet is placed in the same

pose during each trial, the same cloud is used for the entire demonstration. This reduces processing

time and ensures grasps are not repeated in the datasets. Next, GEN generates a set of potential

grasp poses G using the point cloud of the graspable handle. These are power grasps, in which the

palm moves close to the the grasp point so the fingers can wrap around the object and stably hold

it in place. Each pose is checked to confirm that it is collision-free using models of the gripper and

table and a mesh of the cabinet generated from the captured point cloud. In the demonstration,
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collision checking reduced the number of feasible grasp candidates from 17,324 to 6,379. These poses

can be seen in Figure 4.15.

Figure 4.15: A point cloud showing all points on the graspable area of the door handle. Grasps
centered at the blue points are in collision while grasps centered at red points are feasible.

Each g ∈ G is assigned a pre-grasp pose 10cm behind the grasp pose along the grasp axis. The

set of feasible grasp candidates is narrowed down further using MoveIt and a MoveIt environment

including a model of the table, arm, and cabinet. Candidates for which MoveIt cannot plan a path

to the corresponding pre-grasp pose, or cannot plan a Cartesian path that makes it 70% of the way

from the pre-grasp to grasp pose are pruned. Five grasp poses are selected at random from the

remaining set of feasible grasps with which to initialize the training set. For each grasp, the arm

executes the plans to move to the pre-grasp pose, then the grasp pose, then closes the gripper. It

then attempts to execute the grasp-dependent plan to open the cabinet door. After moving as far

along this path as possible, the gripper opens. If the door is beyond a pre-defined threshold, the

attempt is considered a success. Otherwise, it counts as a failure.

After executing all five grasps to generate a labeled dataset, ATOG is trained. The PointConv

branch is pre-trained with the same dataset of simulated cylinder grasping data used to train the

networks used in simulation, and as with the simulation experiments, the weights are frozen after

training. The network is trained for 100 epochs with a batch size of five and a learning rate of 0.001.

This trained network is evaluated by attempting the top three grasps predicted by the network and

measuring the percentage of success. This is analogous to the PoMS metric used in the simulation

experiments.
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After evaluating the network trained with five labeled examples, five additional examples are

selected at random and the grasps and policies are executed with the robot to generate labels.

ATOG is trained from scratch with the new dataset of 10 examples, and the three grasps with the

highest predicted probability of success are again executed to evaluate the system. This is repeated

once more to generate a training set with 15 labeled examples and evaluate a network trained on

this set. In all of these experiments, the training examples are kept from the test pool, and all

executed evaluation grasps must be at least 4cm from the nearest evaluation grasp that has already

been executed.

4.7.2 Results

Three of the first five training grasps are successful, seven of the first 10 are successful, and nine of

all 15 are successful. For the network trained on five examples, the second selected grasps enables

the robot to open the cabinet, though the first and third choices do not, the first narrowly missing

the goal. All three grasps selected by the network trained with 10 examples succeed. The first and

third grasps selected by the network trained with 15 examples succeed.

4.8 Conclusion

In order to learn or execute complex manipulation policies, robots must first perform task-oriented

grasps on objects. A robot must learn which task-oriented grasps enable manipulation success

as quickly as possible to limit expensive manipulation time with objects in the real world. My

ATOG deep network leverages a pre-trained general grasp quality classification branch to learn

which grasps enable task success with few training examples. ATOG outperforms two baselines

in Probability of Manipulation Success, and classification accuracy and precision. Though adding

infrastructure to generalize between object instances or integrating active learning with ATOG

could be interesting extensions, the most useful extension would be to combine ATOG with a
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Figure 4.16: A real robot executing a hand-coded door opening policy after using ATOG to learn
which grasps enable task success.
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reinforcement-learning agent to more efficiently learn complex manipulation abilities without the

need for hard-coded policies.



Chapter 5

Jointly Learning a Task-Oriented

Grasp Classifier and a Task Policy

One major assumption that the ATOG system defined in Chapter 4 made is that the manipulation

controller π is provided for all tasks; the system must only predict which grasps would enable the

controller to complete the task. However, such a controller would not be known to the robot when

it interacts with a novel object for the first time. Instead, the robot should be provided with the

ability to learn new manipulation policies that take grasps into consideration. In this chapter, I

propose an algorithm for jointly learning a manipulation policy and a task-oriented grasp detector.

5.1 Introduction

I have shown in Chapter 4 that a manipulation controller, which defines a control policy for a robot

arm to complete a task, alone is not sufficient for task completion. Policy success is also dependent

on the initial state of the system. The manipulation controllers provided to the system in Chapter

4 are instantiated after a grasp has been attempted; the initial state of such a controller is a grasp

pose g ∈ SE(3). The problem of task-oriented grasping was simplified in Chapter 4. Assuming

91



92

a manipulation controller was provided, the task-oriented grasp classifier defined in Section 4.3

predicted whether a given grasp would enable the controller to complete the task. However, it is

unreasonable to assume a robot is provided with a manipulation controller for any task it might

be faced with. Hand-engineered controllers require time from an expert programmer and lack the

robustness of a learned control policy. For example, opening a door is a complex manipulation task

that requires a robot to grasp the handle, rotate the handle, then pull or push the door open. An

engineer could hard-code a policy using a pre-defined grasping skill, end-effector position control,

and information about the door’s axes of rotation to control the robot to grasp the handle, rotate the

handle by moving the end-effector to a fixed opening pose, then moving to a fixed pose to open the

door. This hard-coded policy would prove to be too brittle when either goal pose was unreachable

from the initial grasp, the door re-latched while trying to open it, the gripper slipped off of the handle

while manipulating the door, or the robot was unable to follow the interpolated path between goal

poses. Instead, a learned policy would encounter these difficult situations during training and learn

how to rebound from them. To enable a robot to be truly autonomous, its manipulation controllers

should be learned for each new task.

Learning manipulation policies is an active area of study. This task is challenging because of

the sparse reward signal robots receive as they learn; without a hand-tuned reward that coaxes the

robot toward the goal, robots often struggle with the large state and action spaces manipulation

frameworks induce. If a robot is given full control over each of its joints, even reaching a specified

end-effector pose is difficult. I posit that empowering a robot with a grasp controller to bootstrap the

learning process will make learning a manipulation policy possible for difficult durative-manipulation

problems. Furthermore, by selecting grasps that enable the robot to complete the task, learning a

manipulation policy that begins once these grasps have been executed is more efficient. However,

learning a control policy while simultaneously learning which grasps enable task completion is a

difficult entangled learning problem because the initial state during policy learning is determined by

the grasp detector, while data used to train this grasp detector is labeled with an evolving policy.



93

Robots deployed into novel or changing environments must be able to adapt and learn to interact

with new objects quickly. Traditional reinforcement-learning techniques require large amounts of

data and hundreds of robot hours to learn from real-world data. Systems such as those defined by

Ibarz et al. [32] begin with no notion of grasping or other abstract actions; they learn policies to

move the robot that act on visual information alone. However, problems such as motion planning

in robotics have existing solutions that allow a robot to reliably move its end effector to a desired

location [35]. Such controllers allow robots to execute grasps, and are often utilized to execute grasps

in generic grasp-detection systems [95, 55]. These grasp detectors provide robots with abstract grasp

actions, where a grasp can be executed at a given pose without learning a controller to reach that

pose. Abstract actions that take advantage of existing solutions must be utilized to learn from as

few labeled examples as possible.

I propose an algorithm for jointly learning a task-oriented grasp detector and a manipulation

policy to complete a task. This algorithm combines the lightweight task-oriented grasp classifier

described in Chapter 4 with a more complex manipulation policy. To learn the manipulation policy,

I employ a state-of-the-art reinforcement-learning algorithm, TD3 with Hindsight Experience Replay

[24, 2]. After selecting an arbitrary grasp with the task-oriented grasp classifier and executing this

grasp using a given grasp controller, the manipulation policy takes over and attempts to complete

the durative-contact manipulation task, such as flipping a switch or opening a door. In order to

select a grasp to be executed, I simultaneously train a classifier to predict whether a given grasp

would enable the manipulation policy to complete the task. As this classifier requires fewer than

20 examples to accurately classify grasps, as demonstrated in Chapter 4, it quickly informs the

manipulation policy on which grasps may afford it the ability to complete the task. Furthermore,

my algorithm handles the entangled joint-learning problem using a weighting scheme that down-

weights examples based on how much the policy has changed since they were observed. I call this

combination of a task-oriented grasp detector and a reinforcement learning agent a Grasp-Aware

Reinforcement-Learning Agent (GARLA).
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I evaluate GARLA in two simulated domains, opening a door and flipping a switch, by comparing

the episodic task success as the system trains. I compare my algorithm and an ablation where task-

oriented grasp classifier examples are not weighted against two baselines that also combine a grasp

selector and executor with a manipulation policy agent. In the lower-bound baseline, the agent learns

to complete the manipulation task while selecting any proposed grasp at random. To estimate an

upper-bound on my algorithm’s performance, the oracle baseline selects from a small set of grasps

that afford a fully trained policy the ability to complete the task while learning its manipulation

policy. I find that when an agent jointly learns a manipulation policy and which grasps afford it the

ability to successfully execute this policy to complete a task, the agent outperforms a system that

learns to manipulate an object after executing a random grasp pose. This agent can even outperform

a system that executes grasps only at a small set of “good” poses that enabled a previously trained

system to complete the task successfully.

I describe two major contributions in this chapter. The first is a method with which a task-

oriented grasp classifier can be combined with a manipulation policy learner to jointly learn to select

grasps and manipulate an object. The second is a weighting system that helps the task-oriented

grasp classifier ignore labels assigned by an outdated version of the manipulation policy. I verify

that combining these two contributions enables a robot to learn to complete complex manipulation

tasks more quickly and successfully than baseline ablations.

5.2 Background and Related Work

In order to robustly manipulate the world around them and complete new tasks in novel envi-

ronments, robots must be able to learn manipulation policies. Formally, a policy π : s → a

returns the action or a distribution of actions a a robot should take given the state or some ob-

servation of the state of its environment s. The Multi-Modal Grasp Pose Detector introduced in

Chapter 3 could be considered a policy, as it can greedily return the grasp pose and grasp type
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ag = (gi ∈ SE(3), ti ∈ {1, ..., N}) that correspond to the highest predicted success probability for

all reachable proposed grasps given a point cloud of the scene sP ⊆ R3. After the robot exe-

cutes this action with its provided grasp controller, then lifts the object and drops it at the goal

location using a hard-coded controller, it requests another reachable grasp from MMGPD to con-

tinue to clear the cluttered scene. The hard-coded manipulation policies that were engineered to

complete tasks in Chapter 4 return actions in the form of trajectories of goal end-effector poses

am = (pi ∈ SE(3) ∀ i ∈ T ) that the system computes given initial end-effector poses sp ∈ SE(3). In

both of these cases, part or all of the manipulation policy is hard-coded and hand-tuned by an expert

programmer to perform one very specific task. These policies provide a robot with a long sequence

of steps to perform, which are not robust to disturbances or errors that may occur during execution.

Robust manipulation policies should provide a robot with constantly updating actions that guide

the robot to its goal and change as the states of the robot and manipuland change. Therefore, the

policy π should return an action a that moves the robot towards its goal, and the robot should

call upon π throughout the course of its manipulation attempt to receive updated actions. Robot

manipulation tasks should therefore be defined as Markov Decision Processes (MDPs) with discrete

time steps, as first discussed in Section 2.3.1.

An MDP is a framework for defining tasks as processes broken into discrete time steps where an

agent takes actions a ∈ A in an environment that consists of states s ∈ S while receiving rewards

r ∈ R [90]. Importantly, these processes obey the Markov property, which states that the state

reached and reward obtained after taking action a in state s only depend on the previous state s and

action a, though this transition could also include stochasticity. This implies that there is no memory

or history of actions that determine the next state and reward. To model robot manipulation as an

MDP, the state and action spaces and reward function must be defined. Additionally, an algorithm

to learn a policy π is necessary. These algorithms are reinforcement learning algorithms, where the

agent explores its environment and learns π from its experience over time.
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5.2.1 Reinforcement Learning in Continuous Action Spaces

Deep learning has enabled major breakthroughs in important problems such as grasp detection

[28] and image classification [41]. It has also powered recent advances in reinforcement learning.

Traditional reinforcement learning approaches include Q-learning and SARSA [100, 79]. These

approaches focus on learning a Q-function Q : s, a→ q that maps a state-action pair to a Q-value q,

a score indicating how much discounted reward the agent would expect to obtain by taking action

a from state s. Given a Q-function, a greedy policy π selects the action a∗ that optimizes the

expected return at the current state s. A tabular Q-function is represented as a table that explicitly

tracks the Q-values for all possible combinations of states and actions. These traditional Q-function

approaches work well on simpler problems with small state and action spaces, but struggle in large

state spaces, such as when the state is an image. Function approximation is necessary in these cases,

and deep neural networks have proven to be powerful function approximators.

Deep learning first made a major breakthrough with Deep Q-Networks (DQN), as introduced

in Section 2.3.2. Deep Q-Networks represent Q-functions as DNNs, and achieved state-of-the-art

performance in learning to play Atari video games [61]. A Deep Q-Network takes in a state, rep-

resented as a small series of sequential frames from the Atari game that the agent is learning to

play. It outputs a Q-value for each of the available actions, which consist of a varying number of

button combinations depending on the game. With a single pass through the network, DQN predicts

the Q-values for all actions at the given state. This combination of deep learning and reinforcement

learning enabled the agents to learn efficiently from a very large state space, but was only compatible

with a small set of discrete actions.

The Deep Deterministic Policy Gradient (DDPG) method revolutionized reinforcement learning

in large, continuous action spaces [48]. This advancement is vital for manipulation policy learning,

as robots’ actions can consist of continuous desired positions, velocities, and torques. DDPG consists

of a critic network that estimates the Q-value for a given state-action pair as well as a policy network
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that suggests an action to take in a given state. This DNN pairing enables the agent to learn to

sample a continuous action that optimizes the Q-function. Other works such as TD3 have iterated

on the DDPG design to achieve even better performance when learning in continuous domains [24].

TD3 introduces several enhancements to DDPG; TD3 represents its Q-function with a pair of Deep

Q-Networks, reduces the policy update frequency, and adds noise to the target to avoid overfitting.

As I detail in Section 5.3.2, GARLA uses a modified version of TD3 to efficiently learn robust

manipulation policies.

5.2.2 Robot Manipulation Policy Learning

The works described in Section 4.2 focus on selecting grasps that enable robots to complete a given

task, but do not simultaneously learn a manipulation policy like GARLA does. Those that rely

on human-labeled data or human guidance to train a system to predict whether grasps enable

task completion assume that a manipulation policy is given and focus solely on learning to detect

task-oriented grasps [39, 17, 107, 51]. Optimization-based approaches [72, 30] and affordance-based

approaches [12, 26] similarly detect task-specific grasps and assume a policy is provided. Several

do use deep learning, but do not simultaneously learn a grasp classifier and a manipulation policy.

Fang et al. [18] present TOG-Net, a deep neural network that jointly predicts grasp stability, task-

oriented grasp quality, and the manipulation parameters necessary to complete a task. However,

in the two presented tool-based tasks, the manipulation parameters that this policy takes as input

are simply the initial position and orientation of the gripper at the start of a given manipulation

trajectory; the gripper moves a fixed distance along a fixed axis when performing a sweeping task,

and the wrist joint rotates by 90 degrees when hammering. Xu et al. [106] plan using a relaxed

definition of affordances that also considers whether the affordance enables the completion of a task

during some future step. Their policies are comprised of simple motion planning-based skills that

are parameterized by grasp and place positions or trajectory start and end points. Their system

consists of a latent dynamics neural network that predicts future states and an affordance model
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that estimates the cost of a given plan. These simple manipulation chains can perform simple tasks,

but GARLA is capable of learning complex manipulation policies from scratch with 6-DoF grasps.

Zhao et al. [109] focus on insertion tasks. They train a cascaded sequence of neural networks to

predict, for a given 4-DoF grasp, general grasp stability, post-grasp displacement, and the probability

of a successful task completion. Their Grasp Quality Network and Grasp Displacement Network

are trained simultaneously, and the Insertion Quality Network is trained after that. They do not

learn an insertion policy, but estimate the position of the object in the gripper with the post-grasp

displacement, then generate a motion plan to complete the task. Wen et al. [102] learn an object-

class representation in simulation that is well suited to predict the probability that a grasp leads to

task success across object instances, but do not learn a task policy. GARLA is the first I am aware

of that learns both a manipulation policy and a task-oriented grasp detector.

State-of-the-art robotic reinforcement learning works learn policies to complete a variety of ma-

nipulation tasks, but I am not aware of any that explicitly learn a grasp classifier while learning a

manipulation policy. Levine et al. [44] present a neural network that predicts actions in the form of

a robot end-effector configuration and joint torques directly from images using guided policy search.

This system does not predict grasp poses that enable task completion, but learns from two to three

given initial grasp states. Khazatsky et al. [37] use foresight to predict goal configurations for a

variety of tasks, then learn to complete new tasks. These tasks include grasping; as grasping is

not provided to the system as an explicit skill, they learn grasping as part of the policy learning

process. Gu et al. [27] similarly learn grasping as part of the manipulation policy and assume that

the gripper is near the manipuland at the start of each episode, but do not learn a grasp classifier.

Frameworks that rely on efficient action abstraction to learn manipulation policies such as VICES do

not explicitly consider grasping [59]. Other works that utilize frameworks like DMPs [81] or RMPs

[76] to compose skills, such as the system proposed by Shaw et al. [84], do not explicitly learn a

grasp detector and manipulation policy simultaneously. GARLA is the first system that leverages

grasp classification and policy learning to efficiently learn to complete durative-contact robot tasks.
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5.3 Learning a Durative-Contact Manipulation Controller

My solution to the durative-contact manipulation learning problem consists of several disparate

sub-systems. I call this system a Grasp-Aware Reinforcement-Learning Agent (GARLA). Framing

the reinforcement-learning problem properly with the right level of abstraction is essential for the

agent to tractably learn to solve the task. The selection of a reinforcement-learning algorithm also

dictates the agent’s ability to quickly learn to complete the task correctly. Integrating a grasping

skill bootstraps the learning process, and a task-oriented grasp classifier enables the agent to select

initial states that enable it to solve the problem. This combination of a grasping skill with a learned

policy is inspired by the options framework, the hierarchical reinforcement-learning framework in

which a high-level policy can choose to pass control to one of several low-level policies depending

on the state s of the environment. In order to train the reinforcement-learning agent while jointly

using its experience to train a grasp classifier, I present a weighting scheme that enables the grasp

classifier to ignore examples with outdated labels.

5.3.1 Durative-Contact Manipulation Reinforcement-Learning Agent

In order to frame durative-contact manipulation as a reinforcement-learning problem, I first con-

cretely define my agent’s state space S and action space A, as well as a reward function R. The

system described in this work solves durative-contact manipulation tasks, where a robot must first

successfully grasp an object, then perform a downstream task while maintaining the grasp. In

these durative-contact manipulation tasks, task completion is represented as a binary success metric

r ∈ {0, 1}. The agent is provided this success metric as a sparse reward: one if the task is completed

successfully, and zero otherwise. A dense reward could encode additional information, such as the

distance from the object’s current state to its goal state or the distance from the robot to the object.

This dense reward would guide the robot through the process, providing partial reward for making

progress towards the goal. However, such a reward signal would have to be hand-engineered for each
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new task the robot must solve.

The agent’s state space is comprised of the knowledge about its environment. At the lowest

level, a robot arm’s state is described by its joint positions q and joint velocities q̇, with its joint

accelerations q̈ derivable as the derivatives of the joint velocities [88]. The gripper’s state similarly

contains proprioceptive finger joint positions and velocities. Additionally, tactile sensors placed on

the links of each of a robot’s fingers explicitly inform the agent of how much contact each segment

of the gripper is making with the environment. In order to learn from observations made about the

environment, the agent’s state must also contain information about the object to be manipulated.

This observation could consist of images of the scene captured by the robot, and the agent could

learn to encode these images using convolutional neural network techniques, such as those that

proved successful for learning to play Atari games [61]. To simplify the learning problem, a pre-

trained neural network that estimates the states of objects could be employed to predict the state

of an object. For instance, Abbatematteo et al. [1] present a system that predicts the position and

orientation of an object’s axis of articulation. Pose detection systems such as Xiang et al. [105]’s

PoseCNN similarly estimate the pose for free-body objects. This lower-dimensional vector contains

all the information that the agent would have to learn to extract from an image while simultaneously

learning the task; providing object state information directly simplifies learning by greatly reducing

the size of the state space. Concretely, my durative-contact manipulation agent receives observations

from the state space

S = {qr, q̇r, qg, q̇g, qo, q̇o, t}, (5.1)

where qr ∈ Rn is the joint positions for an n-jointed robot arm, qg ∈ Rm is the joint positions for an

m-jointed robot gripper, qo ∈ Rk is the joint positions for an object with k points of articulation,

q̇ is a set of joint velocities, and t ∈ Rj is the readings from a set of j tactile sensors. An example

state is illustrated in Figure 5.1. Alternately, if the manipuland were a free-body object and not an

articulated object, qo ∈ SE(3) would be its pose in some fixed frame of reference.

At the lowest level, a robot arm’s joints are each actuated by a motor, the input to which is
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Figure 5.1: An example state that GARLA could encounter. The robot arm’s joints’ axes of rotation
are displayed in the first image. The gripper’s frame is represented as a set of three colored axes
in the second, along with tactile sensors highlighted in red. The articulated cabinet door’s axis of
rotation is represented by a red axis in the third image.

electrical current. An agent could be trained to select the amount of electrical current to pass to each

motor at each timestep to complete a task. However, such an action space places an unnecessary

burden on the agent to not only learn precisely how electrical current relates to the robots’s motions,

but also how to chain motions together to complete the task. Instead, action abstraction must be

employed at several levels. The action space can be simplified, making learning easier by providing

the agent with ways to intuitively interact with its environment, by leverage existing control sys-

tems and motion planning techniques. Existing robot arm control systems consider many complex

variables, such as friction, backlash, compliance, joint coupling, flexibility, actuator and drive-train

dynamics, and impedance [88]. An example of one layer of abstraction is a control system that takes

each joint’s desired position, velocity, and torque as input and outputs changes in electrical current

to each individual motor to drive the system to the goal while considering disturbances and external

sources of error. Such a system could be abstracted further; rather than train an agent to predict

how to optimally change the robot’s joint positions, velocities, and torques, the agent could work

directly in the end effector frame to predict optimal changes in end effector positions. This control

signal would be converted to joint commands using the kinematics of the arm, then to low-level

electrical impulses to control the arm directly.
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GARLA makes decisions in the robot’s end-effector space using operational space control [36].

As the state-of-the-art Variable Impedance End-Effector Space (VICES) work demonstrated, se-

lecting the correct action space for the task makes learning more efficient and policies more robust

[59]. Operational space control, also known as end-effector space control, is a robot action space

augmentation that enables the reinforcement-learning agent to output changes in end effector po-

sition and orientation while a fixed controller converts goal poses to low-level control commands.

The VICES action abstraction is similar, but augments the action space with the gain parameters

of the underlying low-level robot controller to learn both how to change the end effector’s pose and

how much force to apply when moving to this pose. My agent could use VICES to learn both

the high-level control commands and low-level controller gains to modify the controller during task

execution. However, as GARLA is agnostic to the exact action-space abstraction and the tasks I

evaluate it on do not require precise impedance control, I choose the less complex operational space

control to make policy learning easier. Formally, the actions available to the agent are

A = {∆px, ∆py, ∆pz, ∆ox, ∆oy, ∆oz}, (5.2)

where ∆pn ∈ R represents a change in end-effector position by ∆pn meters along axis n ∈ {x, y, z}

and ∆on ∈ R represents a change in end-effector orientation, represented by Euler angles, by ∆on

radians about axis n ∈ {x, y, z}.

At each time step of a durative-contact manipulation episode, the agent is provided with the

robot’s and object’s states. Given this information, it must decide how to change its end effector’s

position and orientation. Once the agent’s policy has selected an action, this high-level action is

converted to a low-level action for the robot to make. First, an impedance controller computes

the end-effector force and torque required to obtain the desired change in end-effector position and

rotation while maintaining the desired stiffness. These desired end-effector forces and torques are

converted to desired joint torques using the robot’s Jacobian matrix. These output torques are then

fed to the robot’s low-level controller. Enabling the agent to learn exactly how to move its end
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effector to achieve a goal makes for a simplified learning problem, as the robot need not learn both

how to control its joints to move its end effector and how to move its end effector to achieve the

goal.

5.3.2 Learning a Policy to Perform Durative-Contact Manipulation

Using the sparse reward signal that requires no hand engineering, the state space S = {q, q̇, t}

containing robot proprioception, object state, and tactile sensor readings, and the abstract oper-

ational space control action space A = {∆p, ∆o}, that enables the agent to learn in the robot’s

workspace directly, GARLA is equipped to learn durative-contact manipulation policies. To learn

these policies, I employ a state-of-the-art continuous-control reinforcement-learning framework: TD3

[24] with Hindsight Experience Replay [2].

As detailed in Section 5.2, the reinforcement learning framework enables an agent to learn a

policy π that maps states s to actions a. Given an observation that encodes the state of the robot

and its environment, the policy predicts which action the robot should take to move towards its

goal. At each discrete time step t in an episode, the trained policy informs the robot on how

to act. During learning, the agent learns its policy from sequences of states, actions, subsequent

states, and rewards. Since GARLA’s action space is continuous and not discrete, it requires a

reinforcement-learning algorithm with continuous control. DDPG, introduced in Section 2.3.2, is

a powerful model-free continuous-control reinforcement learning algorithm [48]. GARLA’s learning

algorithm is based on DDPG, and it takes advantage of several additional advancements proposed

by Fujimoto et al. [24] and Andrychowicz et al. [2].

The Deep Deterministic Policy Gradient agent consists of two DNNs: the Deep Q-Network scores

pairs of states and actions, while the policy network predicts which action is optimal given a state.

The Deep Q-Network is a critic that evaluates state-action pairs, and the policy network is an actor

network that suggests an optimal action given some state. This actor-critic pairing makes selecting

an action tractable, as computing the optimal action at every time step by optimizing the Q-network
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is computationally expensive. DDPG is an off-policy algorithm; all experiences are added to a replay

buffer containing tuples of the agent’s current state s, action taken in that state a, subsequent state

reached s′, and reward obtained upon reaching that state r. Both the actor and critic networks

are updated at each time step by randomly sampling a new batch of training data from the replay

buffer. The agent discards old experience when the buffer becomes too full, enabling the actor and

critic networks to be updated with recent data. The size of this replay buffer is a hyper-parameter

that requires careful tuning; a small replay buffer causes the agent to overfit to recent experience,

while a buffer that is too large makes the agent slow to learn.

DDPG learns its critic DQN using mean-squared Bellman error. The mean-squared Bellman

error MSBE for a batch containing N experiences of the form (si, ai, ri, si+1) is

MSBE =
1

N

N−1∑
i=0

(Q(si, ai)− yi)
2, (5.3)

where the target is

yi = ri + γQ(si+1, π(si+1)), (5.4)

the discount factor hyper-parameter is γ, the Deep Q-Network is Q, and the policy network is π.

The mean-squared Bellman error teaches the critic network to recursively estimate the return for

a state using the reward obtained during a transition and the expected return for executing the

remainder of the policy from the newly reached state.

DDPG updates its policy network using the gradient of the policy. As the Q-function is differen-

tiable with respect to action, the policy network is updated using gradient ascent. The gradient of

the reward J with which the policy network’s parameters are updated for a batch of N experiences

is

∇θµJ =
1

N

N−1∑
i=0

∇aQ(s, a)|s=si,a=π(si)∇θµπ(s|θµ)|s=si . (5.5)

This update does not affect the Deep Q-Network’s parameters, only the policy network’s. The policy

is deterministic; the policy network predicts one action given a state. In order to force the agent to

explore the environment, DDPG adds Ornstein-Uhlenbeck noise to the output of the policy network
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when selecting an action in order to randomly explore states that the evolving policy network may

not predict to be optimal. This exploration strategy is important, as it enables the agent to search

the state space for paths to the goal.

DDPG leverages target networks to make learning more stable. The target actor and critic

networks use the same DNN architectures as the actor and critic networks, but learn to slowly track

the original networks. DDPG learns using targets that also depend on its Deep Q-Network’s weights;

with a single actor and single critic network, learning is often unstable. Instead, the weights of the

target networks are updated at each learning iteration to slowly track the learned actor and critic

networks. Using these target networks to compute the targets for the Deep Q-Network to learn, as

calculated in Equation 5.4, makes the networks less likely to diverge.

Though Lillicrap et al. [48] showed that DDPG successfully learns to solve many continuous-

control robotic tasks, Fujimoto et al. [24] proposed several extensions; their updated Twin Delayed

Deep Deterministic Policy Gradient (TD3) contains three modifications to further enhance perfor-

mance and achieve state-of-the-art results. To avoid over-estimating the target, TD3 learns a pair

of clipped Deep Q-Networks to estimate Q-values. The second enhancement is to simply reduce the

frequency of policy network updates. The third involves adding additional noise to the target so the

policy network does not overfit to errors produced by the Deep Q-Network.

Like the DDPG architecture it is built off of, TD3 is an off-policy algorithm that learns from

a replay buffer. Rather than learn a single Deep Q-Network using experiences in this buffer and

update a single delayed target Q-network, TD3 learns two Deep Q-Networks simultaneously. Clipped

Double-Q learning learns a pair of twin Q-functions and takes the minimum Q-value in Bellman error

loss in order to avoid overestimating the target. Formally, the target for the first Deep Q-Network

can be expressed as a modified version of the target defined in Equation 5.4 for one experience tuple

(si, ai, ri, si+1):

yi = ri + γ min
q=1,2

Qθ′
q
(si+1, πϕ(si+1)). (5.6)

Here, Qθ′
1
and Qθ′

2
are the two target Deep Q-Networks and πϕ is the policy network. Target
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overestimation error is propagated through the policy network update, but underestimation error

is not; therefore, is is preferred to underestimate the target return. Furthermore, minimizing the

Q-values enables the agent to focus on states with low variance in the value estimates, which adds

stability to the policy network.

In TD3, the policy and target networks are updated less frequently than the Q-functions because

policy updates change the targets and make learning difficult if they are updated too often. With

a less frequent policy update computed using Q-values with lower variance, learning is more stable.

The frequency with which to update the policy and target networks is a hyper-parameter.

The final modification TD3 adds on top of DDPG is noisy target actions that enable the policy

to better ignore errors in the learned Deep Q-Network. To ensure that the policy does not overfit

to errors in the Q-value estimates, TD3 adds an additional regularization term to the target update

to smooth the value estimate. The noisy target estimate is computed by adding some randomly

sampled noise ϵ to the target value computed for some experience (si, ai, ri, si+1):

yi = ri + γQθ′(si+1, πϕ′(si+1) + ϵ). (5.7)

ϵ is sampled from a noise distribution with mean 0, standard deviation σ, and clipped at ±c. Though

DDPG adds noise to the policy when selecting an action to explore, TD3’s additional noise helps

the policy network avoid overfitting to a potentially erroneous Q-function during learning.

Two of TD3’s enhancements can be summarized in the target function

yi = ri + γ min
q=1,2

Qθ′
q
(si+1, πϕ′(si+1) + ϵ), (5.8)

while the third simply reduces the frequency of the target and policy network updates. These three

straightforward additions significantly boost the performance of a deep reinforcement-learning agent

in continuous domains.

GARLA integrates another state-of-the-art advancement in reinforcement learning, Hindsight

Experience Replay (HER) [2], with TD3 to efficiently and robustly learn manipulation policies.

HER is a simple algorithm that can be implemented on top of off-policy reinforcement learning
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algorithms that learn from a replay buffer. HER is particularly useful for scenarios with sparse

rewards. It is a form of reward abstraction where the agent still only receives a sparse reward signal

from the environment when it completes the task, but internally learns to achieve different goals in

the state space. HER does not require an expert programmer to implement a specialized shaped

reward for each particular task; the agent is intrinsically rewarded for reaching different states in

the state space.

HER follows standard off-policy learning algorithms and adds experience to the agent’s replay

buffer. During learning, it adds standard experience tuples (si, ai, ri, si+1) it encounters to the

replay buffer after augmenting them with the goal g. The augmented experience tuples are therefore

(si, ai, ri, si+1, g). In durative-contact manipulation tasks, this goal is the desired position of the

manipuland. For each experience trajectory obtained throughout the course of an episode, HER

also adds additional experiences to the replay buffer where the goal is not the true goal of the task,

but instead the manipuland position in the final state reached in the episode, gs. In these modified

experiences, the reward is one if the manipuland had reached this final sub-goal state gs. GARLA’s

state space contains the manipuland position, so the sub-goal gs is extracted directly from the final

si+1 observed during an episode. Note that the agent receives a positive reward in some states even

though they have not achieved the true goal of completing the task.

By adding experiences from both trajectories, at least half of the experiences in the replay buffer

have the true goal g. The remainder have goals that the policy was able to reach successfully. With

this positive reward, the agent can learn to reach some other state, even if it is not the goal or even

necessarily closer to the goal. By learning from trajectories where the agent fails to complete the

task, GARLA learns to make progress towards states that it reached during previous exploration

attempts and more quickly expand the area that it explores. This enables it to reach the goal that

it is interested in faster.

If an agent that uses the state and action spaces defined in Section 5.3.1 and a sparse reward signal

was tasked to learn a durative-contact manipulation policy using TD3 and HER, it would first spend
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time learning to find, approach, and grasp an object before learning to complete the downstream

task. Learning these prerequisite skills would be time consuming and potentially impossible with

a sparse reward and large state space. Instead, the state-of-the-art reinforcement-learning agent

should only begin learning once some grasp has been made on the object using an existing pose-

based grasp controller similar to the ones described in Chapter 3. Further, as shown in Chapter 4, a

task controller’s success is a function of the initial grasp state the system begins in. Therefore, the

grasp selection method should be learned.

5.3.3 Learning a Task-Oriented Grasp Classifier in-the-Loop

With a state-of-the-art reinforcement learning algorithm and a learning environment with an intel-

ligently selected action abstraction, my agent can learn a manipulation policy to complete a task

when instantiated after a grasp is executed. To select a grasp, I propose that the agent also learn

a task-oriented grasp classifier like the ATOG described in Chapter 4. Rather than learn to reach

the gripper towards the graspable object, align the gripper with the object, close the fingers, then

perform the durative-contact manipulation, an intelligent agent should utilize existing grasping tech-

nology to perform a grasp and only learn to manipulate the object after a grasp. Even if learning to

reach, grasp, and manipulate was feasible with only a sparse reward, learning only to manipulate will

enable the agent to better focus on a single task rather than waste valuable time learning to solve

tasks that already have solutions. As the agent learns to complete the task, each episode generates

a datum of the initial grasp pose and whether the task succeeds, which is added to the classifier’s

training set. By updating this classifier as the policy evolves, the agent can focus on learning a

policy that completes the task from a focused and related subset of the potential grasp poses at its

disposal.

This combination of a grasp classifier and a reinforcement learning policy that begins once that

grasp has been executed is inspired by the options framework for reinforcement learning [91]. As

described in Section 2.3.2, an option consists of a policy π, an initiation set I of states the option
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can be run from, and its termination condition β that determines when control should be passed

back to the global agent. Bagaria and Konidaris [3] model the initiation set as a classifier I(s) that

predicts whether a given state belongs in an option’s initiation set. The parallel between the use

of a lightweight classifier to classify states to begin an option policy from and the use of a task-

oriented grasp classifier to select grasps at which to begin a manipulation policy from is obvious.

A manipulation policy and option policy are both executed or learned after the system reaches a

state in the initiation set. The initiation set classifier and grasp pose classifier are both trained with

data generated as the policy learns. Therefore, the framework presented in this chapter could be

extended to non-robot domains, or domains where multiple skills must be chained sequentially.

In many manipulation tasks, a robot can successfully complete the task by performing a grasp

and executing its manipulation controller while maintaining the grasp. Therefore, the initial states

of the given π can be modeled as a grasp executed at a given pose g. As defined in Section 3.3, these

grasp poses are defined by a position and orientation. Therefore, a task-specific grasp detector must

return a pose at which the given manipulation controller can be executed, as the ATOG system

described in Chapter 4 did. The robot will execute this pose with its given motion planner, then

will execute the manipulation controller.

The smaller and more task-relevant action space introduced by operational space control makes

learning to complete complex manipulation tasks more feasible, but it does not completely eliminate

the difficulty induced by the sparse reward. As the agent explores the environment, it must still

control the end effector to reach the graspable object, execute a grasp, and manipulate the object

before receiving a positive reward signal. Integrating a grasp detection system and grasp controller

with the manipulation control policy further injects structure into the problem. Durative-contact

manipulation tasks can be solved by chaining together a general grasping skill with a manipulation

skill. Rather than begin learning the manipulation control policy with the arm in an arbitrary

position away from the manipuland, the system should first grasp the object, then hand control over

to the manipulation policy.
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The input to this grasp detection sub-system is a point cloud P . As the pose of each depth sensor

is known relative to the robot, this point cloud P , which is initially represented in the robot’s frame,

can be transformed to a cloud Po in a fixed object frame. This ensures that all points are represented

relative to a fixed pose of the object, either given or detected through a computer vision algorithm,

so the cloud is invariant to changes in the object’s pose. The grasp proposal algorithm GEN defined

in Section 3.3 first generates a set of potential candidate grasp poses in the object frame Go from

the point cloud: GEN : Po → Go. The task-oriented grasp classifier must then predict whether

a given grasp will enable the manipulation controller π to successfully complete the task. In other

words, the task-oriented grasp classifier must determine if a given grasp pose is in the manipulation

controller’s initiation set. I define this task-oriented grasp classifier as TOGC : go ∈ Go → [0, 1].

The proposed TOGC does not operate on local or global visual information, Po. As each TOGC

predicts whether one particular task can be completed at a grasp on one particular instance of an

object, and these grasp candidates Go are represented in the object frame, this decision can be made

from the poses Go alone. This is a reasonable assumption, especially for home robots that would

interact with the same instances of objects repeatedly. For the door opening task, though the same

general door opening policy could be used on all doors in a house, the controller’s initiation set

would differ from door to door because of factors such as the weight, handle location, and size of the

doors. Therefore, a different TOGC would be trained for each door. The poses passed to TOGC

are vectors of size seven that contain a grasp’s Cartesian position and its orientation represented as

a quaternion. This is similar to the input passed to the tail end of the ATOG network defined in

Chapter 4, but it does not contain the grasp stability prediction from the PointConv branch of the

network, as this additional information did not prove useful for solving the door and switch tasks.

The network architecture is also similar to the tail end of the ATOG network; three fully connected

layers predict task-oriented grasp success probability.
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Concretely, my Grasp-Aware Reinforcement-Learning Agent combines this TOGC grasp classi-

fier with a reinforcement-learning agent as follows. At the beginning of an episode, the system cap-

tures a point cloud of the scene. The system is evaluated in simulation only because reinforcement-

learning algorithms are data hungry, so this point cloud is always simulated, though the system is

compatible with real point clouds as well. The grasp pose generation algorithm GEN defined in

Section 3.3 proposes a set of potential grasp poses G given the point cloud in the object frame.

Initially, the agent selects one of these grasp poses at random. If the TOGC classifier had been

trained at least once during a previous episode, the classifier predicts the probability of task success

for each of these grasp candidates. These normalized predicted probabilities seed the random grasp

selector, enabling the system to attempt grasps at poses that are more likely to enable the robot to

complete the task. After selecting a grasp and executing it using the same controller used in Chapter

4, control of the robot is handed over to the reinforcement-learning agent. The agent executes its

policy until the episode terminates when the robot achieves task success or exceeds the step limit.

After an episode terminates, the system stores the new example in the TOGC classifier’s training

set. This data point consists of the grasp pose ge at which the system began the episode and a binary

label le that is 1 if the robot completed the task in this episode and 0 otherwise. As the simulated

point cloud in the object frame is the same during each episode, the output of GEN is always the

same, and the set of potential grasp poses is discrete. If the agent attempted to complete the task

from grasp pose ge during a previous episode, the system simply updates the corresponding label le

already present in the training set, as labels could change as the policy evolves. If this training set

contains at least 10 positive and 10 negative examples, the system retrains the TOGC classifier for

10 epochs. As described in Section 5.3.2, the system also retrains the reinforcement-learning agent.

This process is repeated during each episode, with each new experience updating the classifier and

the classifier dictating how grasps are selected.
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5.3.4 Weighting Task-Oriented Grasp Labels

Though the Grasp-Aware Reinforcement Learning Agent that uses the components described in the

last three sections could likely learn to solve manipulation tasks faster and with higher accuracy

than baseline agents, the solution discussed so far ignores an important aspect of this problem. The

agent learns a policy that often begins at a grasp candidate with a high estimated probability of task

success, but these predictions are made with a classifier trained on data labeled by the policy. This

is an entangled joint learning problem because the agent trains two neural networks simultaneously

and the labels used to train each system depend on the performance of the other. The reinforcement-

learning policy’s success depends on its initial grasp pose, as Chapter 4 illustrates; its initial grasp

pose is determined by the grasp classifier. The agent learns the grasp classifier using labels that

its manipulation policy generates; as the policy changes and the robot learns to complete the task,

initial task completion labels become incorrect. The initial policy acts at random, and successful

task completion is unlikely. The agent labels all of these training examples as bad grasps, even

though they may be good grasps that enable a trained policy to complete the task. Rather than

retrain a classifier with these stale examples, an optimal agent should retrain its classifier while

focusing on examples that agree with its current policy.

A simple weighting scheme could involve only training on recent examples. However, tuning this

parameter would be difficult and the agent would likely throw out too many or too few examples.

Furthermore, even labels generated with an older policy have some use. If an agent is able to

initially solve the task from some grasp state using a sub-optimal policy, it may be able to solve the

task from that grasp with a more robust policy. Another simple strategy that ignores older labels

during classifier training is to keep only the latest label for each example. This is not possible in

continuous domains or a real robot where the number of possible grasp poses G ⊆ SE(3) is infinite.

To completely account for the shifting distribution of grasp classifier training labels, my agent must

be equipped with a more complex method of ignoring stale data. Specifically, the network should
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focus on learning to classify examples labeled with a policy close to the current one by loss-function

weighting.

Training a DNN classifier to focus on some examples more than others is simple. As discussed in

Sections 3.3 and 5.3.3, the grasp classifier is a binary classifier that predicts whether or not a given

grasp would succeed. The cross-entropy loss function that a binary grasp classifier is trained with

defined in Equation 3.2 is

−
m−1∑
c=0

yc log(bc) (5.9)

for a particular example where yc is 1 if c is the correct label for a given exemplar and 0 otherwise,

bc is the estimated probability that the exemplar is of class c, and m = 2 in the two-class binary

classification case. Specifically, bc is the softmax of the logits output by the classifier. When training

a classifier on a dataset D, the loss over all examples d ∈ D is

−
|D|−1∑
d=0

m−1∑
c=0

yd,c log(bd,c). (5.10)

In order to have the classifier focus on some examples more than others during training, each example

can be assigned a weight wd > 0. The weighted cross-entropy loss function is

−
|D|−1∑
d=0

wd

m−1∑
c=0

yd,c log(bd,c). (5.11)

Each training datum now consists of the classifier input, a label, and a weight. If all weights are

set to one, wd = 1 ∀ d ∈ D, the weighted cross-entropy loss function is reduced to the standard

cross-entropy loss function. Examples with weights 0 < wd < 1 are downweighted, while the loss

is amplified for examples with weights wd > 1. These weights affect the loss during training, but

do not affect the predictions at inference time.

With this weighted loss function, GARLA is equipped to train its task-oriented grasp classifier

given grasp examples with binary labels and weights. The approach I take is inspired by Natarajan

et al. [67], who examine classification with noisy labels and relate uncertainty to the probability that

a noisy label could flip. I define a weighting function WeightGrasp : qg, lg → wg that takes in the
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current Q-function’s scores of the grasp pose g, qg, and the latest received binary task completion

label when the agent began its policy execution from grasp g, lg. WeightGrasp returns a weight

with which the grasp example g is weighted in the classifier’s training during the next training

iteration. Intuitively, if the Q-function’s evaluation of a grasp state does not match the most recent

label obtained, the uncertainty is high and the example should be down-weighted when training the

grasp classifier.

Concretely, GARLA first assigns each grasp pose g in the classifier’s training set with the full

reinforcement-learning agent state encountered at the end of a grasp execution but before the

reinforcement-learning policy takes control, sg. As these grasps had been attempted previously,

these states are known. These states contain the robot and object states, as described in Section

5.3.1. Next, GARLA predicts the optimal action corresponding to the grasp state sg using its policy

network:

ag = π(sg). (5.12)

GARLA calculates the Q-function score qg for a grasp g by estimating the Q-score for the (sg, ag)

pair with its Deep Q-Network:

qg = DQN(sg, ag). (5.13)

WeightGrasp then assigns weights to a grasp example with qg and the label lg. It calculates a

labeling threshold tD for a training set D as the median across all Q-values qg:

tD = median qg ∀ g ∈ D. (5.14)

This weighting function is compatible with distributional Q-functions, which predict a distribution

of scores for a given state-action pair rather than a single value [7]. With distributional Q-functions,

each qg is a vector of values instead of a single score. In the distributional case, tD is similarly

calculated as the median of all values in all Q-value distributions. For each example g, the flipping

mass fmg is calculated as the sum of all Q-values in the distribution that, when thresholded, do not
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match the latest ground-truth label:

fmg =

|qg|−1∑
i=0


qg,i, (qg,i < tD and lg = 1) or (qg,i > tD and lg = 0)

0, otherwise

(5.15)

A grasp’s flipping mass is large if, on average, the corresponding Q-values do not agree with the

latest ground-truth label. A grasp’s flipping probability is the ratio of its flipping mass to the sum

of all values from its Q-value distribution:

fpg =
fmg

|qg|−1∑
0

qg,i

. (5.16)

When the critic is implemented as a standard Q-function and not a distributional Q-function, this

flipping probability will be one if the Q-value is below the dataset’s median and the grasp is labeled

as a success or if the Q-value is above the dataset’s median and the grasp is labeled as a failure,

and it will otherwise be zero if the thresholded Q-value aligns with the most recent label. Finally,

WeightGrasp computes a grasp’s weight wg as the reciprocal of this flipping probability ratio plus

a small constant c for stability:

wg =
1

fpg + c
. (5.17)

With a standard Deep Q-Network critic, this weight will be close to one for grasps whose Q-values

do not match their labels, and c−1 for those that do. The resulting weight will be larger for grasps

whose corresponding Q-value distributions align with their latest ground-truth labels. This weighting

scheme enables GARLA to focus on grasp examples whose labels its Q-function is more certain of

when learning a grasp classifier, allowing the classifier to ignore examples that were likely labeled

using a stale policy.

5.4 Experiments

Though Chapter 4 has shown that my task-oriented grasp classifier can be trained with as little as

20 labeled examples, reinforcement-learning algorithms require much more data to learn complex
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manipulation policies. Therefore, I train and evaluate GARLA exclusively in simulation environ-

ments where episodes run quickly without human intervention or manual labeling. The two domains

in which I evaluate this agent are the door opening and switch flipping environments introduced in

Section 4.4 and simulated in MuJoCo [97]. These tasks challenge the agent to learn the relationship

between its actions and an articulated object; the single-step switch task requires the arm to rotate

the switch about its base, and the more complex two-step door task requires the arm to sufficiently

rotate the door handle before pulling the door open.

(a) Simulated Door Domain (b) Simulated Switch Domain

Figure 5.2: The two simulated tasks the Grasp-Augmented Reinforcement-Learning Agent must
learn to complete.

As discussed in Section 5.3.1, GARLA receives a sparse reward in these domains; 1 at the time

step when the task succeeds (at which point the episode ends), and 0 for all others. In the door

domain, the positive reward is triggered when the door is pulled towards the arm by 0.5 radians. The

switch must be rotated upwards by 3 radians. If the agent fails to complete a task after executing

a fixed number of actions, the execution is considered a failure.

The agent is equipped with a simulated Kinova Jaco arm to solve the two tasks. This arm has six

articulated joints, and each of its gripper’s three fingers has two articulated joints. Each finger’s two
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linkages are equipped with a simulated tactile sensor array. The door consists of a rotatable handle

and an articulated door that can be opened once the handle is rotated by ± 90◦. The switch has one

axis of articulation. Therefore, the state space defined in Section 5.3.1, S = {qr, q̇r, qg, q̇g, qo, q̇o, t},

consists of vectors of the following sizes: |qr| = 6, |qg| = 6, |qd| = 2, |qs| = 1, |t| = 6, where qd and

qs are the qo for the door and switch domains respectively.

I compare the performance of my proposed GARLA against three baseline ablations. Each

of these ablations learns the manipulation control policy from the same state and action spaces

using the same hyper-parameters; the methods to select the grasp poses to begin the manipulation

execution from differ. GARLA selects from the proposed grasp pose candidates at random, with

the probability of selecting any grasp being the normalized probability that the grasp enables the

agent to complete the task as predicted by the task-oriented grasp classifier trained with weighted

examples. The unweighted classifier ablation uses the same grasp selection strategy, but its task-

oriented grasp classifier is trained to predict task success without weighted exampled. The most

simple of the ablations selects from all feasible grasp candidates uniformly at random. It utilizes the

operational space control action space and grasp-bootstrapped reinforcement-learning framework,

but does not take advantage of a task-oriented grasp classifier. The final ablation agent is provided

with “oracle” grasps: the final 15 grasps that another agent was able to complete the task from

during its training in a previous run. It selects uniformly at random from this small set of good

grasps, and should provide an upper bound on performance.

For each task domain, I generate a simulated point cloud of the graspable area and generate a

set of grasp candidate poses using the grasp pose generation algorithm GEN defined in Section 3.3.

As in Chapter 4, unreachable grasp poses are removed from the set of grasp poses. In each episode

of an experimental trial, the agent begins by selecting a grasp using its grasp selection algorithm

described in the preceding paragraph, then executing it with the grasp controller used in Chapters

3 and 4. Once the selected grasp is executed, GARLA passes control to its manipulation policy.

All agents’ manipulation policies train with actor and critic learning rates of 3 × 10−5 for the
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door domain and 3 × 10−6 for the switch domain. Their reward discount rate γ is 0.99, TD3 target

action noise with standard deviation 0.2 is clipped at 0.5, and exploration noise is generated with

standard deviation 0.1. The policy network and target networks are updated with every 2 Deep

Q-Network updates and the batch size is 256. Each agent is trained with the same five random

seeds for a fair comparison, and all reported results are averaged over these seeds. Each agent is

given 20,000 episodes to learn the task. When learning a grasp classifier, the grasp pose and binary

success label based on whether the task succeeded are added to the training set after each episode.

If that grasp pose had already been attempted, the old label is over-written. Once the training

set contains at least 10 positive and 10 negative examples, the classifier is trained for 10 epochs

after each episode with the current training set. The probability that every grasp would succeed is

predicted with this retrained classifier, and these probabilities are then used to randomly select the

next grasp to attempt.

In order to evaluate my system, I measure each agent’s performance as they learn. To visualize

average performance as each agent learns, I plot the fraction of episodes that resulted in task success

over the past 200 episodes. This averaged task success metric shows how well each agent learns as the

training episodes roll out. Though the agent does randomly explore during some time steps due to

TD3’s exploration noise, causing sub-optimal behavior, all agents explore with the same likelihood,

so exploration should not impact performance when comparing the agents. Examining average task

success as a function of episode enables one to determine when and how quickly an agent learns to

complete the task, as well as how an agent performs at the end of its training. Figure 5.3 shows the

performance of the four agents on the door and switch domains.

5.4.1 Discussion

In the switch case, all agents learn to perform the task quickly; Figure 5.3b plots the agents’ per-

formances. As expected, the agent with access to oracle grasps performs the best, spiking to 75%

task success around 4,000 episodes and approaching an 80% success rate after 20,000 episodes. The
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(a) Door domain results. (b) Switch domain results.

Figure 5.3: Reinforcement-learning agents’ performances on the door and switch tasks. The plots
show success rate averaged over the past 200 training episodes vs. episode number. Error over five
random seeds is shaded.

smoothed success rate averaged over all episodes is 66.9%. GARLA with my weighted classifier per-

forms very well; it attains a 60% success rate after 6,000 episodes and surpasses 80% after 20,000. Its

average smoothed success rate is 62.5%. Though, on average it does not perform as well as the agent

with access to the oracle grasps, GARLA efficiently learns which grasps are good while learning to

complete the task, and achieves a higher smoothed success rate than the oracle agent after 20,000

episodes. The unweighted classifier ablation achieves a success rate over 75% after 20,000 episodes.

While it learns about as quickly as the GARLA agent, it completes the task less often, and does

not achieve a smoothed task completion rate above 80%; on average, its 57.9% success rate is 4.6%

lower than GARLA’s. The agent that selects grasps at random performs the worst, but it does learn

to complete the task. It takes 7,500 episodes to reach an average success rate of 60% and the final

success rate does not approach 80%. Its average smoothed success rate of 53.5% is 4.4% lower than

the agent with an unweighted grasp classifier and 9% lower than GARLA’s. These results support

my hypothesis that an agent that learns with state and action spaces designed for manipulation

tasks and a state-of-the-art reinforcement-learning algorithm can learn an effective durative-contact
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manipulation policy, but that integrating a task-oriented grasp classifier and weighting this clas-

sifier both improve performance. Additionally, empowering a reinforcement-learning agent with a

weighted grasp classifier enables it to learn to complete the task more quickly than the baseline

agents, but not as quickly as an agent given knowledge about known optimal grasps.

The door task is more difficult since it is a two-part task with a handle rotation sub-goal, but

the agent is only rewarded for opening the door past the given threshold. As Figure 5.3a shows, my

GARLA agent achieves the best performance, reaching a 60% success rate around 13,000 episodes, a

final task success rate near 80%, and an average smoothed success rate of 43.5%. The ablation agent

with an unweighted grasp classifier also performs well; it reaches the 60% success rate milestone at

the same time as GARLA, and its final performance is also about the same. Its averaged smooth

success rate of 41.9% is 1.6% lower than GARLA’s. The baseline ablation agent that selects grasps

at random also learns to complete the task, achieving a smoothed success rate of 60% around 16,000

episodes and a final smoothed success rate close to 75%. Its average smoothed success rate of 35.3%

is 8.2% lower than GARLA’s. Interestingly, the agent that selects from the small set of oracle grasps

at random does not perform well. It takes 16,000 episodes to reach a 20% task success rate, and

its smoothed success rate only approaches 50% after 20,000 episodes. Its average smoothed task

success rate of 12.2% is 31.3% lower than GARLA’s. One possible explanation for this is that the

other agents that learn from the full set of grasps are more robust; if their grasp slips during task

execution, the resulting grasp pose would likely still be similar to a grasp pose encountered during

training, and the policy could recover and complete the task. If an agent that only begins the task

from a small set of states slips from a grasp pose, it would likely never have seen the resulting grasp

pose before, and the agent would be unable to recover and complete the task. Another explanation

is that the policy learned from a small set of grasps is brittle and only succeeds for a subset of the

good grasp poses. The set of oracle grasps that work well for a previous agent could be a subset

of the good grasps in a multi-modal distribution. It could be too difficult to learn a policy that

succeeds on a subset of this distribution. Learning a grasp classifier while learning the manipulation
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policy enables the agent to select which grasps to focus on while its policy evolves over time. Though

the oracle agent does not provide an upper bound on performance as expected, my GARLA agent

learns to complete the door task well, learning a robust policy while focusing on good grasps. In

this environment, relying on a set of grasps that enabled another agent to complete the task is not

sufficient; to learn a robust policy, the agent must be allowed to explore the graspable region and

learn which grasps enable its evolving policy to complete the task.

5.5 Conclusion

In order to learn complex manipulation tasks, reinforcement-learning agents must be equipped with

action space abstractions crafted specifically to enable learning in the robot’s end effector space.

Combining existing sub-systems such as a kinematic solver and a motion planner to perform grasp-

ing as a skill bootstraps the learning process so the agent need not re-learn to achieve basic pre-

conditions. The method I have defined in this section combines the lightweight task-oriented grasp

classifier from Chapter 4 with a reinforcement-learning agent, enabling the agent to learn a manip-

ulation policy while learning which grasps lead to task success. To solve this entangled learning

problem, the agent learns to update its notion of a good grasp by weighting this classifier’s training

examples.



Chapter 6

Conclusions

To move robots from controlled manufacturing facilities where they perform repetitive tasks to

unstructured and variable home environments where they may be asked to performed complex

tasks, they must be imbued with the ability to learn to complete new tasks using unseen objects on-

the-fly. The most vital skill robots require to learn to manipulate novel environments is the ability

to stably grasp objects of varying shapes and sizes. Once they can stably grasp objects, they must

reason about how to best grasp objects in order to perform downstream tasks with them. Learning

to perform these downstream tasks can be very difficult. To efficiently learn to complete new tasks,

robots must simultaneously learn which grasps enable them to complete the task.

To conclude, I have introduced a novel neural network architecture and learning process that

predict grasp quality for each potential type of grasp for a general picking task. Then, I extended

this method to train a task-oriented grasp classifier given a policy and small amounts of labeled data

by leveraging a pre-trained grasp quality prediction branch. Finally, I have shown how this task-

oriented grasp classifier can be used as a manipulation option’s initiation set classifier to efficiently

learn complex manipulation tasks by selecting optimal grasps at which to begin manipulation. With

these abilities, a robot could be introduced to a new environment and quickly learn to manipulate

novel objects using structured actions. The experimental results I have provided support my thesis

122
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statement:

With a classifier that learns from limited data and weighting that considers uncertainty, we can

train a task-oriented grasp classifier jointly with a manipulation policy to efficiently learn to

manipulate objects.

6.1 Contributions

In this dissertation, I have presented three major contributions. Though grasping is a difficult

problem, breaking it down into a grasp detection problem and solving it with computer vision

techniques, then leveraging standard motion planning algorithms to execute grasps enables it to

be solved effectively. Existing systems provide methods to assess grasps for simple grippers, but

do not explicitly consider different types of grasps. In Chapter 3, I present a Multi-Modal Grasp

Pose Detector that predicts where and with what grasp type a robot should attempt a grasp on

a singulated object or a pile of cluttered objects. A neural network architecture that operates

directly on point clouds and predicts the probabilities that each grasp type succeeds at a given pose

is defined. By explicitly modeling grasp type and using all five grasp types a Robotiq 3-Finger

Adpative Gripper is capable of, I showed that a real robot can remove more objects from clutter.

Efficiently removing objects from clutter is a vital skills robots must possess, especially when picking

items from warehouse bins or unpacking groceries in a home.

Though grasp stability is important when a robot selects a grasp for a more complex manipulation

task, it must also consider whether a grasp is suitable for the task. I study this task-oriented grasp

detection problem in Chapters 4 and 5. My second major contribution, presented in Chapter 4, is

a specialization of a generic grasp detector, where the robot must grasp an object to complete a

certain task. This Augmented Task-Oriented Grasp Detection Network predicts grasp stability with

a pre-trained grasp stability branch. Since generating labeled manipulation attempts with a real

robot is costly due to long execution time and safety hazards, this grasp detector must learn from as
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small a set of labeled examples as possible. ATOG’s tail, therefore, is a lightweight neural network

that predicts whether a grasp enables a robot to complete a task based on the grasp pose and the

output of the grasp stability branch of the network. This learning framework enables the robot to

quickly learn which grasp poses allow it to complete a task for an individual instance of an object

with a given policy.

Grasping alone enables robots to pick objects, but more complex manipulation tasks necessitate

more complex manipulation policies. In Chapter 5, I combine the lightweight task-oriented grasp

classifier from Chapter 4 with a state-of-the-art reinforcement-learning agent to learn complex ma-

nipulation policies and grasp-selection classifiers simultaneously with a Grasp-Aware Reinforcement-

Learning Agent. Since the learned manipulation policy assigns labels with which the grasp classifier

is trained in this joint learning problem, I present a weighting scheme for the grasp classifier that en-

ables it to accurately classify grasp examples as the policy evolves. As demonstrated experimentally

with several simulated manipulation tasks, integrating a grasp classifier with a reinforcement-learning

agent enables the agent to learn to complete a task faster and more accurately.

6.2 Future Directions

There are several natural extensions to the systems described in this dissertation, as well as planned

future works that build upon these systems. Importantly, each of my three presented frameworks is

modular. With my Multi-Modal Grasp Pose Detector and Augmented Task-Oriented Grasp Detec-

tion Network, an algorithm first proposes a set of potential grasp candidates from visual information,

then the candidates are evaluated, with one being selected for execution. This modularity enables

these systems to be easily integrated with algorithms that further constrain grasp selection by mask-

ing the inputs or outputs. For instance, a computer vision algorithm or user could define one object

in particular to pick from a pile of clutter, and a multi-modal grasp detector could only consider

grasp poses on that object. Delicate areas of objects could be identified, and grasps could be avoided



125

in these areas to avoid damage. Prior information about which parts on an object can be stably

grasped can be fed to a task-oriented grasp classifier to learn even more quickly. A grasp detec-

tor would be a useful module in other systems, such as an object retrieval framework like the one

proposed by Nguyen et al. [69] or a system that also learns to utilize primitive nudging actions to

separate clutter before grasping like the one described by Tang et al. [92]; I have collaborated on

both of these works.

These trained quality or task-oriented grasp detectors and learned manipulation policies could

be used in a task and motion planning context. A trained classifier could be implemented as an

abstract, parameterized action available to a task and motion planner. The frameworks proposed

here are crucial precursors to a larger system that will chain multiple durative-contact skills together

to perform even more complex manipulation tasks.
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