
Skill Discovery for Exploration and Planning using Deep Skill Graphs

Akhil Bagaria 1 Jason Senthil 1 George Konidaris 1

Abstract
We introduce a new skill-discovery algorithm that
builds a discrete graph representation of large con-
tinuous MDPs, where nodes correspond to skill
subgoals and the edges to skill policies. The agent
constructs this graph during an unsupervised train-
ing phase where it interleaves discovering skills
and planning using them to gain coverage over
ever-increasing portions of the state-space. Given
a novel goal at test time, the agent plans with the
acquired skill graph to reach a nearby state, then
switches to learning to reach the goal. We show
that the resulting algorithm, Deep Skill Graphs,
outperforms both flat and existing hierarchical
reinforcement learning methods on four difficult
continuous control tasks.

1. Introduction
General-purpose agents operating in challenging domains
like robotics must cope with the reality of action and percep-
tion in high-dimensional spaces (Konidaris, 2019). Hierar-
chical Reinforcement Learning (HRL) (Barto & Mahadevan,
2003), with its emphasis on building procedural action ab-
stractions, is a promising starting point for scaling RL to
such problems.

The benefits of well-designed hierarchies have always been
clear (Sutton et al., 1999; Dietterich, 2000), but the task of
autonomously discovering them (known as skill discovery)
is a challenging open problem (Precup, 2001; Mcgovern,
2002; Ravindran, 2004; Konidaris, 2011; Bacon, 2018). Fur-
thermore, previous works have studied skill discovery in
several different contexts—multi-task learning (Levy et al.,
2019), exploration (Machado et al., 2017; Jinnai et al., 2019)
and planning (Sharma et al., 2020)—but how these settings
culminate in a single algorithm remains unclear.

We propose an algorithm that discovers skills that aid explo-
1Department of Computer Science, Brown University,

Providence, RI, USA. Correspondence to: Akhil Bagaria
<akhil bagaria@brown.edu>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Deep Skill Graphs constructs a discrete graph-based ab-
straction (bottom) of a high-dimensional continuous control prob-
lem (top) during an unsupervised training phase. When given
test-time goals (stars), the agent finds the high-level solution trajec-
tories on the graph, which are shown in red, green and blue (bot-

tom). Then the high-level solutions are translated to joint torques
using discovered skills, which are shown as different colors (top).

ration, and which are subsequently useful for planning in
a multi-task context. Our algorithm learns a collection of
skills that form a graph, where the nodes are subgoals and
the edges are the policies that navigate between them. To
construct this graph, we first discover subgoal regions that
optimize for coverage of the state-space, using techniques
inspired by the robot motion-planning literature (LaValle,
1998) that causes the graph to grow towards large unex-
plored regions. These regions are subsequently connected
using Deep Skill Chaining (Bagaria & Konidaris, 2020;
Bagaria et al., 2021), resulting in a collection of skills that
enable the agent to reliably move between subgoals. The
chainability of the discovered skills, i.e, the property that
successful execution of one permits the execution of an-

Deep Skill Graphs

other, allows the agent to build a graph that is suitable for
deterministic planning (Konidaris et al., 2018). Finally, our
algorithm operates in the multi-task setting (Taylor & Stone,
2009) because it discovers a multi-query graph (Kavraki
et al., 1996) that it can use to plan between arbitrary start-
goal pairs at test time. At test time, if a goal state lies inside
the skill-graph, the agent can reach it without any further
learning; if not, the agent plans to the nearest subgoal and
then switches to learning a new skill chain that extends the
graph to reach its new goal.

We test our algorithm on four maze-navigation tasks in Mu-
JoCo (Todorov et al., 2012), where it outperforms flat model-
free RL (Andrychowicz et al., 2017), model-based RL
(Nagabandi et al., 2018) and state-of-the-art skill-discovery
algorithms (Levy et al., 2019; Sharma et al., 2020).

2. Background and Related Work
We consider episodic, goal-oriented MDPs M =
(S,A,R, T , �,G, ⇢) (Sutton & Barto, 2018), where G is
a distribution over goals. Like most goal-conditioned RL
algorithms (Schaul et al., 2015; Andrychowicz et al., 2017),
we assume access to a reward function R : S ⇥ G ! R. ⇢
denotes the start-state distribution which is a small, fixed
region at training time, but can change arbitrarily at test-
time. This ensures that the agent cannot “teleport” to states
that might otherwise be difficult to reach (Ecoffet et al.,
2019) and thus must confront the exploration problem in its
entirety (Kakade & Langford, 2002).

2.1. The Options Framework

We model abstract actions (or skills) as options (Sutton
et al., 1999). Each option o in the agent’s option repertoire
O is defined as a three element tuple (Io,⇡o,�o). The
initiation set Io : S ! {0, 1} describes the set of states
from which option o can be executed. The termination set
�o : S ! {0, 1} describes the set of states in which option
execution terminates and is deemed successful. Finally, the
option policy ⇡o : S ! A is a controller that drives the
agent from Io to �o. Augmenting the set of available actions
with options results in a Semi-Markov Decision Process
(SMDP) where the next state depends on the current state,
action, and time (Bradtke & Duff, 1995).

In addition to the three elements described above, Konidaris
et al. (2018) define the effect set Eo of option o as the set
of states in which the option policy ⇡o actually triggers its
termination condition �o. Note that Eo ✓ �o since there
may be states in �o not reachable (or not reached in practice)
from states in Io.

2.2. Rapidly Exploring Random Trees (RRT)

RRT is a robot motion planning algorithm used to find
collision-free paths in a robot’s configuration space (LaValle,
1998). It does so by incrementally constructing a space-
covering tree rooted at a given start state using a random
sampling procedure. Concretely, RRT proceeds in three
steps: (a) randomly sample a state srand from the state-
space, (b) identify its nearest neighbor node vnn in the tree,
and finally (c) use the given model of the robot’s dynamics
to move K steps from vnn in the direction of srand, and add
the resulting state as a new node in the tree. In Section 3,
we generalize each of these steps to the RL setting. Despite
its simplicity, RRTs have been highly successful in solv-
ing motion planning problems involving high-dimensional
dynamical systems, largely due to the Voronoi bias of the
tree construction procedure (Lindemann & LaValle, 2004),
which refers to property that the direction in which the tree
expands at each iteration is proportional to the volume of
the Voronoi region of each edge node. So, the volume of
the Voronoi region of a state can be seen as a measure of
“how unexplored” the region around that state is; randomly
selecting points to expand the tree therefore causes it to
naturally grow in the direction of the unexplored frontiers
of the state-space (LaValle & Kuffner Jr, 2001).

Although this work is inspired by RRT, we do not learn
a single-query tree (LaValle, 2006), but instead learn a
multiple-query graph, much like the related Probabilistic
Road Map (PRM) algorithm (Kavraki et al., 1996), meaning
that the resulting skill graph can be used to find solution
paths between multiple start-goal pairs.

2.3. Skill Chaining

We use deep skill-chaining (DSC) (Bagaria & Konidaris,
2020; Bagaria et al., 2021) to construct chains of options that
navigate between the regions discovered by our RRT-like
graph expansion procedure.

In skill-chaining (Konidaris & Barto, 2009), each discovered
option o learns its initiation region Io using a binary clas-
sifier that describes the region from which the ⇡o reaches
�o with high probability. Simultaneously, ⇡o is learned to
reach the subgoal region �o. The algorithm is recursive:
it first learns an option that initiates near the goal and re-
liably takes the agent to the goal; then it learns another
option whose termination region is the initiation region of
the first option; then it repeats the procedure targeting the
new option. Options are chained together in this fashion
until the agent discovers an option whose initiation region
contains the start state. Deep skill chaining (DSC) (Bagaria
& Konidaris, 2020) extended skill-chaining with deep RL,
outperforming other skill-discovery algorithms (Levy et al.,
2019; Bacon et al., 2017) in the single-task setting. The
Robust DSC algorithm (Bagaria et al., 2021) improved the

Deep Skill Graphs

vanilla algorithm, so that is the version of DSC that we use.

Given a single start state and a goal, skill chaining connects
them using a chain of options. When there are multiple
start states, skill chaining organizes options in the form of a
tree rooted at the goal state. This topology is insufficient in
the multi-task setting where the agent could start anywhere
and be asked to go anywhere. Consequently, we propose to
organize skills in the form of a graph to handle the multi-
task setting. Furthermore, while skill chaining required that
a goal region be specified during training, DSG proposes
its own goals during training and learns options to reliably
reach them.

2.4. Other Skill-Discovery Algorithms

Recent skill-discovery algorithms (see Abel (2020), chap-
ter 2.3 for a survey) can be broadly categorized into (a)
option-critic, (b) feudal, and (c) empowerment maximiza-
tion methods.

Option-Critic describes an end-to-end framework for learn-
ing options (Bacon et al., 2017; Harutyunyan et al., 2019; Ti-
wari & Thomas, 2019; Khetarpal & Precup, 2019). Learned
options are tied to the reward function during training, so
they cannot be easily repurposed for the multi-task setting.

Feudal methods construct a hierarchy in which a higher-
level manager outputs goals for the lower-level workers to
achieve (Dayan & Hinton, 1993; Vezhnevets et al., 2017;
Li et al., 2019). HIRO (Nachum et al., 2018) demonstrated
impressive performance on continuous control problems
with dense-rewards, but also has not been used in the multi-
task setting. Hierarchical Actor Critic (HAC) (Levy et al.,
2019) uses hindsight experience replay (Andrychowicz et al.,
2017) to stably learn goal-conditioned policies (Schaul et al.,
2015) and so can generalize to unseen goals at test-time. Fur-
thermore, it outperformed other feudal algorithms on con-
tinuous control problems. As a result, we compare against
HAC as a representative feudal method.

Empowerment driven methods discover maximally di-
verse skills (Gregor et al., 2016; Eysenbach et al., 2019a;
Baumli et al., 2021; Campos Camúñez et al., 2020; Florensa
et al., 2016). Recently, the DADS algorithm (Sharma et al.,
2020) introduced a model-based objective to this literature
and showed state-of-the-art performance on goal-reaching
tasks in MuJoCo. These methods are instances of unsu-
pervised skill-discovery algorithms since they learn task-
agnostic skills in a pre-training phase; the learned skills are
composed to reach unseen goals at test-time in a zero-shot
fashion. Given the similarity to our problem setting, we com-
pare against DADS as the best performing empowerment-
driven skill-discovery method.

2.5. Graph-based methods

The intuition of constructing a graph in RL has received
some attention recently. SoRB (Eysenbach et al., 2019b)
uses graph search on the replay buffer (Lin, 1993) to find
efficient paths between observations made by a model-free
policy. PRM-RL (Faust et al., 2018) replaces the local plan-
ner used in motion planning with an RL policy. In LEAP
(Nasiriany et al., 2019), a planner generates sub-goals for a
low level model-free policy to meet. SoRB, PRM-RL and
LEAP all assume access either to a well trained value func-
tion or an RL policy that can be meaningfully queried in
arbitrary parts of the state-space. By contrast, our algorithm
learns from scratch and incrementally extends the graph
towards unexplored regions (Jinnai et al., 2020). SPTM
(Savinov et al., 2018; Liu et al., 2020) is a memory aug-
mented RL agent that plans over raw landmark observations
in navigation problems. Our method bypasses the difficulty
of planning in high-dimensional spaces (Laskin et al., 2020)
by instead planning over abstract states.

3. Deep Skill Graphs
To solve goal-reaching tasks, options must be sequentially
composable: the agent must be able to successfully execute
one option after another until it reaches the goal. Sequential
composition is possible if and only if successful execution
of one option leads the agent to a state that permits the
execution of another.

When the agent need only ever navigate from a single given
start state to a single given goal state, it must therefore learn
options that form a chain connecting those two states. In
the more general case where the agent is given a single goal
that must be reachable from any start state, it must instead
build a tree of options, enabling it to follow a chain from any
state to the goal. In the most general case, the agent may be
asked to reach any goal state from any start state; since that
requires a chain of options connecting any possible start-
goal pair, the agent’s options must necessarily be organized
into a graph. We therefore propose to explicitly construct
options so that they form such a graph.

3.1. Definitions

Before describing how the skill graph is constructed and
used, we first define its key components:

Discovered goal regions. The DSG agent proposes its own
goals during an unsupervised training phase. For each pro-
posed goal state g, we define a goal region ✏g : S ! {0, 1}
as an ✏-ball centered around g. B = {✏g1 , .., ✏gn} is the set
of all such goal regions. To unify notation with options, we
additionally define I✏g = ✏g, and E✏g as the set of states in
which goal region ✏g was actually reached.

Deep Skill Graphs

Figure 2. Given a goal (red) outside the graph, the agent uses the graph to plan to reach the node closest to that goal (green). It then
expands the graph by constructing a skill chain connecting the goal to the graph.

Skill graph. A skill graph is a weighted, directed graph
G = (V, E,W). Each vertex i 2 V either corresponds to an
option or a goal region. Edge ei!j exists between vertices i
and j if and only if the effect set of i is inside the initiation
set of j, i.e, Ei ✓ Ij (Konidaris et al., 2018). The edge
weight wi,j 2 W is the reward accumulated by going from
vertex i to j.

Mapping states to vertices. Given agent state s, V(s) de-
notes the set of vertices in the skill graph that s maps to.
First, we find the set of options in the graph that the agent
can execute at s:

O(s) = {o | Io(s) = 1, 8o 2 O}. (1)

Then, we enumerate the set of goal regions that s satisfies:

B(s) = {✏g | ✏g(s) = 1, 8✏g 2 B}. (2)

Finally, the set of vertices that s maps to is given by:

V(s) = O(s) [B(s). (3)

The descendants D(v) of vertex v is the set of vertices
reachable from v. The ancestors A(v) of v are the vertices
from which v is reachable via G:

D(v) = {v
0
| G.has-path(v, v0), 8v0 2 V}, (4)

A(v) = {v
0
| G.has-path(v0, v), 8v0 2 V}. (5)

3.2. Overview of the Graph Construction Algorithm

During training, the agent alternates between (a) expanding
the graph into unexplored regions and (b) increasing the
connectivity of the existing graph. The high-level algorithm
for both cases is similar; its three steps are illustrated in
Figure 2.

The details of how each step is performed differs based on
whether the agent is trying to expand the graph or consol-
idate it. During graph expansion, the agent generates new
goals outside the graph (Section 3.3.1), navigates to its near-
est neighbor in the graph (Section 3.3.2) and then moves K
steps in the direction of the goal (Section 3.3.4).

During graph consolidation, the agent instead picks a node
from the closest unconnected sub-graph as the goal (Section
3.4.1), navigates to its nearest neighbor in the current sub-
graph (Section 3.4.2) and then learns an option chain that
connects the sub-graphs (Section 3.4.3).

3.3. Graph Expansion

Every N episodes, the agent expands the skill-graph to new
regions of the state-space.

3.3.1. GENERATE NEW GOALS

Regions covered by the graph represent places where the
agent has already achieved mastery (Kaelbling, 1993; Vee-
riah et al., 2018) because the agent can plan using learned
skills to reliably reach arbitrary states inside the graph. To
increase the portion of the world over which it has achieved
mastery, the skill-graph should expand into largely unex-
plored regions of the state-space.

In other words, given the current graph G, the agent should
generate a goal state g such that G grows towards the largest
region it has not yet covered. As Lindemann & LaValle
(2004) (somewhat surprisingly) showed in the context of
motion planning, randomly sampling g from the state-space
does exactly that. So, we set g = srand ⇠ S .1

3.3.2. IDENTIFY THE NEAREST NEIGHBOR

Given a randomly sampled goal state srand that lies outside
the graph, the agent identifies its nearest neighbor in the
graph vnn. To find vnn, it first uses Equation 4 to instantiate
the set of vertices reachable from the current state: D(st) =
{D(v)|v 2 V(st)}. Then, it finds the vertex in D(st) closest

1This assumes that we can sample states from the environment.
In MuJoCo, where the observation space is factored and bounded,
this is straightforward. Sampling from pixel-based observation
spaces is more involved, and is the subject of active research (Nair
et al., 2018; Pong et al., 2019).

Deep Skill Graphs

to srand and sets vnn to it:

vnn = argmin
v2D(st)

||srand � v||
2

= argmin
v2D(st)

max
s2Ev

||srand � s||
2

�
.

Note that, in the equation above: (a) we define the distance
between vertex v and state srand as the maximum distance
between any of the states in the effect set of v and srand

and (b) we use the Euclidean metric and leave discovering
more sophisticated metrics (Mahadevan & Maggioni, 2007;
Hartikainen et al., 2020; Pitis et al., 2020) for future work.

3.3.3. NAVIGATE TO THE NEAREST NEIGHBOR

Given that the agent is at state st and wants to reach vertex
vnn, it must decide which option to execute. There are two
possible cases: (a) if there is a path from V(st) to vnn in G,
the agent uses Equation 1 to find O(st), the set of options
available in st. Then, it uses graph search (Dijkstra, 1959)
to find a plan from each o 2 O(st) to vnn, selects the least-
cost plan, and executes its first option. Having landed in
a new state st+⌧ , it re-plans to go from st+⌧ to vnn. This
process continues until it reaches vnn. (b) If there is no such
path on the graph, the agent uses DSC’s policy over options
⇡O to select options (or primitive actions). Since DSC trains
this policy using SMDP Q-learning, it is not as effective as
using the planner for option selection.

3.3.4. EXTEND THE GRAPH

Having reached vnn, the agent attempts to extend the graph
towards srand. However, srand may be unreachable from
vnn either because it is inside an obstacle or because of the
limits of the agent’s current policy. As a result, srand itself
cannot be used as a goal state. In RRT, this issue is resolved
by using the given dynamics model to move K steps in the
direction of srand. Since a dynamics model is not typically
known a priori in the RL setting, we learn one from the
data collected during training and use the learned model in
conjunction with Model Predictive Control (MPC) (Garcia
et al., 1989) to move in the direction of srand. The state that
the model-based controller ends up in, sMPC , becomes a
new goal state and ✏sMPC is added to the list of goal regions
B. An example of this process is shown in Figure 4c.

3.4. Graph Consolidation

For training episodes in which the agent is not expanding
the graph, it improves the graph’s connectivity by selecting
an existing node and attempting to reach it.

3.4.1. GOAL IDENTIFICATION

To inform the decision about which node to target, the agent
identifies parts of the graph it currently has difficulty reach-

Figure 3. When an agent aims to consolidate the graph at training
time and is in graph vertex v0, it targets sub-graph 2 because it is
closer than sub-graph 3. Then it identifies the closest descendant-
ancestor pair (vd, va). It uses its planner to traverse v0 ! vd and
va ! vg . Since it does not have skills between vd and va, it uses
DSC to learn a chain of skills connecting sub-graphs 1 and 2.

ing. To do this, it first enumerates the vertices to which
there is no path from its current state st. To pick a specific
one to target, it uses a simple greedy heuristic: target the
nearest unconnected sub-graph to greedily maximize the
connectivity of the overall graph (Kuffner & LaValle, 2000).
This process is illustrated in Figure 3.

3.4.2. IDENTIFY THE NEAREST NEIGHBOR

Having selected a goal vertex vg , DSG identifies its current
sub-graph (the set of descendants D(st)), and the sub-graph
from which it can reach the goal vertex vg (the set of an-
cestors A(vg)). Finally, it identifies the pair of nodes from
D(st) and A(vg) closest to each other:

vd, va = argmin
vd2D(st),
va2A(vg)

||vd � va||
2

= argmin
vd,va

2

64 max
sd2Evd

,

sa2Eva

||sd � sa||
2

3

75 .

3.4.3. EXTEND THE GRAPH

The agent uses its planner to reach vd (using the procedure
described in Section 3.3.3), DSC to reach va from vd, and
the planner again to finally reach vg. This procedure mini-
mizes the number of new skills required to connect the two
sub-graphs. Once these skills have been learned, there is a
path in G from s0 to vg, and the agent can henceforth plan
to target vg .

Deep Skill Graphs

Figure 4. (a) States visited under a random walk and (b) using DSG. (c) model-based extrapolation for discovering goals during
unsupervised training: the stars represent randomly sampled states; trajectories of the same color target the respective goals using MPC.
All data is collected in Ant U-Maze, where the agent starts at the bottom-left of the maze.

Adding Edges to the Graph. For deterministic plans in
the skill-graph to correspond to feasible solutions in the
ground MDP, Konidaris et al. (2018) showed that any two
options o1, o2 can have an edge e1,2 between them if and
only if there is a guarantee that successful execution of
o1 will allow the agent to execute o2, i.e, e1,2 exists iff
Eo1 ✓ Io2 . To implement this rule, we store all the states in
which o1 successfully terminated and check if all of them
lie inside Io2 . Similar logic can be applied to creating edges
between options and goal regions in the graph.

3.5. Querying the Skill Graph at Test Time

Given a task expressed as a start state s0 and a goal region
✏g at test time, the agent can use the graph as follows:

• if ✏g completely contains the effect set of an option,
reaching that effect set implies reaching ✏g , so the agent
plans to reach g without any additional learning.

• if the goal outside the graph, DSG extends the graph
just as it did during training: it plans to the nearest
node and then uses DSC to build a chain of options
from the graph to reach g.

• If the start state s0 itself lies outside the graph, DSG
additionally creates a skill chain from s0 to its nearest
node in the graph.

4. Experiments
We tested DSG on the continuous control tasks shown in
Figure 6. These tasks are adapted from the “Datasets for
RL” benchmark (Fu et al., 2020)2 and are challenging for
non-hierarchical methods, which make little-to-no learning
progress (Duan et al., 2016). Since we already assume a
Euclidean distance metric in Section 3.3.1, we use the dense

2We use the mazes from this suite, not the demonstration data.

reward version of these tasks, i.e, R(s, g) = �||s � g||.
Video and code can be found on our website.

4.1. Implementation Details

We follow Nagabandi et al. (2018) to learn a model-based
controller to use as option policies ⇡o, 8o 2 O. Specifically,
transitions seen by all options are used to train a neural
dynamics model f⇠, which is then used to select actions by
approximately solving the following H-horizon optimiza-
tion problem:

⇡o(s|g) = argmax
a2U |A|(�1,1)

HX

t=1

�
t�1

R(st, g), (6)

such that st+1 = f⇠(st, a). The solution to Equation 6 is
a sequence of actions; rather than executing this sequence
open-loop, we use MPC to execute the first action and re-
plan at the next time-step (Nagabandi et al., 2018). Before
executing option policy ⇡o, we randomly sample from the
option’s subgoal region, i.e, g ⇠ �o. For more details on
how this sampling is done, please refer to Appendix E.

4.2. Qualitative Evaluation

Exploration Property of DSG. We compare the states vis-
ited by the DSG agent and those visited under a random
walk. Figure 4 shows that in the Ant U-Maze environment,
skills can lead to temporally extended exploration as op-
posed to the dithering behavior of random walks, even in
the absence of an extrinsic reward function.

Incremental Graph Expansion. Figure 5 provides some
intuition on why DSG can effectively explore large regions
of the state-space—the skill-graph begins at the start state
and incrementally expands into unexplored regions of the
state-space. By planning and executing learned skills inside
the graph, the agent can reliably get back to the frontier of
its knowledge (as represented by the outermost vertices in

Deep Skill Graphs

Figure 5. Incremental expansion of the skill graph towards unexplored regions in the large ant-maze. Although the skill-graph is directed,
we visualize it as un-directed for simplicity. To visualize option nodes, we plot the median state of its effect set.

the graph). Exploration from the frontier in turn allows it to
amass the experiences it needs to further expand the graph.
By interleaving planning and chaining in this way, the DSG
agent incrementally achieves coverage of ever increasing
portions of the state-space

4.3. Quantitative Evaluation

Experimental Setup. The agent discovers skills dur-
ing an unsupervised training phase (which lasts for 1000
episodes in Reacher and U-Maze, 1500 episodes in Medium-
Maze and 2000 episodes in the Large-Maze). During this
period, its start-state is fixed to be at the bottom-left of ev-
ery maze. At test time, we generate 20 random start-goal
pairs from the maze and record the average success rate
(Andrychowicz et al., 2017) of the agent over 50 trials per
start-goal pair (Sharma et al., 2020). All competing methods
are tested on the same set of states.

Comparisons. We compare DSG to the following

1. Flat model-free baselines: HER (Andrychowicz et al.,
2017) learns policies that generalize across goals by
taking the goal state as an additional input during train-
ing. Because of their widespread use, we use them as
a representative non-hierarchical baseline. Since HER
does not have an explicit mechanism for exploration,
we additionally favorably expand its start-state distri-
bution during training to include all valid locations in
the maze—we call this baseline HER*. HER policies
are learned using TD3 (Fujimoto et al., 2018).

2. Flat model-based baselines: Since we use the model-
based (MB) controller from Nagabandi et al. (2018)
as option policies, we include it as our model-based
baseline. Similar to HER*, we include a version MB*
which also gets favorable access to a wide start-state
distribution.

3. Feudal HRL baseline: HAC (Levy et al., 2019) is a
hierarchical extension of HER, and has achieved state-
of-the-art performance on similar tasks.

HER, HER*, MB, MB* and HAC sample goals uni-
formly from the free-space in the maze during training.

4. Empowerment HRL baseline: To compare against
DADS, we trained the skill-primitives in the Ant-
Reacher environment and used them at test-time in
the different mazes. This strategy outperformed that of
discovering skills in each specific maze environment,
since there was no space for the DADS agent to learn
diverse skills. For more details, refer to Appendix H.

5. Results
Figure 6 shows that DSG comfortably outperforms all base-
lines. Our results confirm that while in principle flat goal-
conditioned RL can solve the kind of goal-reaching tasks
we consider, they require orders of magnitude more data
and struggle to generalize to distant goals.

Both HAC and DADS were able to achieve comparable
(and good) results in Ant-Reacher (which was the task that
they were evaluated on in their respective papers). However,
unlike DSG, they struggled to maintain that level of per-
formance as the problem got harder with larger, more com-
plicated mazes. HAC implicitly assumes that the space of
subgoals is smooth—which is violated in our mazes because
several subgoal proposals made by the manager correspond
to states that are inside obstacles, and hence unreachable by
the workers. DADS discovers maximally diverse skills, but
solving mazes requires sequencing a very specific sequence
of actions (e.g., “go right until you can go left”)—a prop-
erty not captured by their diversity objective. Compared to
DSG, an advantage of DADS is that their skills are portable

(Konidaris & Barto, 2007), meaning that the same skill can
be transferred to different regions of the state-space.

Upon examining the goal states that DSG failed to reach at
test-time, we found that these failures could be attributed to
our reliance on dense rewards. Specifically, if the goal state
lay on the other side of an obstacle from its nearest node in
the graph, DSG would be unable to extend the graph towards
this goal. It is well known that dense reward functions can

Deep Skill Graphs

Figure 6. Test-time success rates averaged over 20 randomly sampled start-goal pairs and 50 trials; error bars denote standard deviation.
All algorithms were trained for the same number of episodes prior to being tested—their training performance is not shown here.

Deep Skill Graphs

lead to sub-optimal policies (Randløv & Alstrøm, 1998;
Mataric, 1994), and extending our algorithm to the sparse-
reward setting should mitigate these failures.

6. Conclusion
We introduced an algorithm that builds a graph abstraction
of large continuous MDPs. Like all RL agents, DSG starts
by exploring the environment since it does not know enough
about it to plan. Then, it proposes its own goals and learns
skills to reliably reach those goals. Together, proposed goals
and skills enable high-level planning.

We showed that skill graphs grow outward from the start-
state towards large unexplored regions, reflecting mastery
over ever increasing portions of the state-space. Finally, we
tested our algorithm on a series of maze navigation tasks
and showed that DSG can be used to reach novel goals at
test-time in a small number of trials. We compared the zero-
shot generalization capability of our algorithm to that of
popular flat and state-of-the-art hierarchical alternatives and
showed that DSG significantly outperforms them.

Acknowledgements
We thank Stefanie Tellex, Michael Littman and other mem-
bers of the Brown BigAI group for their suggestions. This
research was supported by NSF grants 1955361, 1717569
and the DARPA Lifelong Learning Machines program under
grant FA8750-18-2-0117.

References
Abel, D. A Theory of Abstraction in Reinforcement Learning.

PhD thesis, Brown University, 2020.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, O. P., and
Zaremba, W. Hindsight experience replay. In Advances in

Neural Information Processing Systems, pp. 5048–5058,
2017.

Bacon, P.-L. Temporal Representation Learning. PhD thesis,
McGill University Libraries, 2018.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic ar-
chitecture. In Thirty-First AAAI Conference on Artificial

Intelligence, 2017.

Bagaria, A. and Konidaris, G. Option discovery using deep
skill chaining. In International Conference on Learning

Representations, 2020. URL https://openreview.

net/forum?id=B1gqipNYwH.

Bagaria, A., Senthil, J., Slivinski, M., and Konidaris, G.
Robustly learning composable options in deep reinforce-

ment learning. In 30th International Joint Conference on

Artificial Intelligence, 2021.

Barto, A. G. and Mahadevan, S. Recent advances in hier-
archical reinforcement learning. Discrete event dynamic

systems, 13(1-2):41–77, 2003.

Baumli, K., Warde-Farley, D., Hansen, S., and Mnih, V. Rel-
ative variational intrinsic control. In Thirty-Fifth AAAI

Conference on Artificial Intelligence, AAAI 2021, pp.
6732–6740, 2021.

Bradtke, S. J. and Duff, M. O. Reinforcement learning
methods for continuous-time markov decision problems.
In Advances in neural information processing systems,
pp. 393–400, 1995.

Campos Camúñez, V., Trott, A., Xiong, C., Socher, R.,
Giró Nieto, X., and Torres Viñals, J. Explore, discover
and learn: unsupervised discovery of state-covering skills.
In Proceedings of the 37th International Conference on

Machine Learning, ICML, volume 119, pp. 1317–1327,
2020.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
In Advances in neural information processing systems,
pp. 271–278, 1993.

Dietterich, T. G. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of Arti-

ficial Intelligence Research, 13:227–303, 2000.

Dijkstra, E. W. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on

Machine Learning, pp. 1329–1338, 2016.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. CoRR, abs/1901.10995, 2019.
URL http://arxiv.org/abs/1901.10995.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019a. URL https://openreview.net/forum?

id=SJx63jRqFm.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-

cessing Systems 32, pp. 15246–15257. 2019b.

Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L.,
Fiser, M., and Davidson, J. PRM-RL: Long-range robotic

Deep Skill Graphs

navigation tasks by combining reinforcement learning
and sampling-based planning. In 2018 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),
pp. 5113–5120. IEEE, 2018.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. In Inter-

national Conference on Learning Representations, 2016.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4RL: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Proceed-

ings of the 35th International Conference on Machine

Learning, pp. 1582–1591, 2018.

Garcia, C. E., Prett, D. M., and Morari, M. Model predictive
control: theory and practice—a survey. Automatica, 25
(3):335–348, 1989.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. ArXiv, abs/1611.07507, 2016.

Hartikainen, K., Geng, X., Haarnoja, T., and Levine, S.
Dynamical distance learning for semi-supervised and
unsupervised skill discovery. In International Confer-

ence on Learning Representations, 2020. URL https:

//openreview.net/forum?id=H1lmhaVtvr.

Harutyunyan, A., Dabney, W., Borsa, D., Heess, N., Munos,
R., and Precup, D. The termination critic. In The 22nd

International Conference on Artificial Intelligence and

Statistics, pp. 2231–2240, 2019.

Jinnai, Y., Park, J. W., Abel, D., and Konidaris,
G. Discovering options for exploration by minimiz-
ing cover time. In Proceedings of the 36th Inter-

national Conference on Machine Learning. PMLR,
2019. URL http://proceedings.mlr.press/

v97/jinnai19b.html.

Jinnai, Y., Park, J. W., Machado, M. C., and Konidaris, G.
Exploration in reinforcement learning with deep cover-
ing options. In International Conference on Learning

Representations, 2020. URL https://openreview.

net/forum?id=SkeIyaVtwB.

Kaelbling, L. P. Learning to achieve goals. In Proceedings

of the 13th International Joint Conference on Artificial

Intelligence (IJCAI), pp. 1094–1099. Citeseer, 1993.

Kakade, S. and Langford, J. Approximately optimal approx-
imate reinforcement learning. In Proceedings of the 19th

International Conference on Machine Learning (ICML),
volume 2, pp. 267–274, 2002.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars,
M. H. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE transactions on

Robotics and Automation, 12(4):566–580, 1996.

Khetarpal, K. and Precup, D. Learning options with interest
functions. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pp. 9955–9956, 2019.

Konidaris, G. Autonomous Robot Skill Acquisition. PhD
thesis, University of Massachusetts at Amherst, 2011.

Konidaris, G. On the necessity of abstraction. Current

Opinion in Behavioral Sciences, 29:1–7, 2019.

Konidaris, G. and Barto, A. Skill discovery in continuous
reinforcement learning domains using skill chaining. In
Advances in Neural Information Processing Systems, pp.
1015–1023, 2009.

Konidaris, G., Kaelbling, L. P., and Lozano-Perez, T. From
skills to symbols: Learning symbolic representations for
abstract high-level planning. Journal of Artificial Intelli-

gence Research, 61:215–289, 2018.

Konidaris, G. D. and Barto, A. G. Building portable options:
Skill transfer in reinforcement learning. In 20th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI),
volume 7, pp. 895–900, 2007.

Kuffner, J. J. and LaValle, S. M. RRT-Connect: An efficient
approach to single-query path planning. In Proceedings

of the 2000 IEEE International Conference on Robotics

and Automation. Symposia Proceedings, volume 2, pp.
995–1001. IEEE, 2000.

Laskin, M., Emmons, S., Jain, A., Kurutach, T., Abbeel,
P., and Pathak, D. Sparse graphical memory for robust
planning. arXiv preprint arXiv:2003.06417, 2020.

LaValle, S. M. Rapidly-exploring random trees: A new tool
for path planning. 1998.

LaValle, S. M. Planning algorithms. Cambridge university
press, 2006.

LaValle, S. M. and Kuffner Jr, J. J. Randomized kinody-
namic planning. The international journal of robotics

research, 20(5):378–400, 2001.

Levy, A., Konidaris, G., Platt, R., and Saenko, K. Hi-
erarchical reinforcement learning with hindsight. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?

id=ryzECoAcY7.

Li, S., Wang, R., Tang, M., and Zhang, C. Hierarchical
reinforcement learning with advantage-based auxiliary
rewards. In Advances in Neural Information Processing

Systems, pp. 1409–1419. 2019.

Deep Skill Graphs

Lin, L.-J. Reinforcement learning for robots using neu-
ral networks. Technical report, Carnegie-Mellon Univ
Pittsburgh PA School of Computer Science, 1993.

Lindemann, S. R. and LaValle, S. M. Incrementally reducing
dispersion by increasing voronoi bias in RRTs. In IEEE

International Conference on Robotics and Automation,
volume 4, pp. 3251–3257, 2004.

Liu, K., Kurutach, T., Tung, C., Abbeel, P., and Tamar, A.
Hallucinative topological memory for zero-shot visual
planning. Proceedings of the 37th International Confer-

ence on Machine Learning (ICML), 2020.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
laplacian framework for option discovery in reinforce-
ment learning. In Proceedings of the 34th Interna-

tional Conference on Machine Learning - Volume 70,
pp. 2295–2304, 2017.

Mahadevan, S. and Maggioni, M. Proto-value functions:
A laplacian framework for learning representation and
control in markov decision processes. Journal of Machine

Learning Research, 8(Oct):2169–2231, 2007.

Mataric, M. J. Reward functions for accelerated learning.
In Machine learning proceedings 1994, pp. 181–189. El-
sevier, 1994.

Mcgovern, E. A. Autonomous discovery of temporal ab-

stractions from interaction with an environment. PhD
thesis, University of Massachusetts at Amherst, 2002.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances

in Neural Information Processing Systems, pp. 3303–
3313, 2018.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning. In 2018 IEEE

International Conference on Robotics and Automation

(ICRA), pp. 7559–7566. IEEE, 2018.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine,
S. Visual reinforcement learning with imagined goals.
Advances in Neural Information Processing Systems, 31:
9191–9200, 2018.

Nasiriany, S., Pong, V., Lin, S., and Levine, S. Planning
with goal-conditioned policies. Advances in Neural Infor-

mation Processing Systems (NeurIPS), 2019.

Pitis, S., Chan, H., Jamali, K., and Ba, J. An inductive
bias for distances: Neural nets that respect the triangle
inequality. In 8th International Conference on Learning

Representations, ICLR, 2020.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-fit: State-covering self-supervised rein-
forcement learning. Proceedings of the 37th International

Conference on Machine Learning, ICML, 2019.

Precup, D. Temporal abstraction in reinforcement learning.

PhD thesis, 2001.

Randløv, J. and Alstrøm, P. Learning to drive a bicycle using
reinforcement learning and shaping. In Proceedings of

the 15th International Conference on Machine Learning,
volume 98, pp. 463–471, 1998.

Ravindran, B. An algebraic approach to abstraction in

reinforcement learning. PhD thesis, University of Mas-
sachusetts at Amherst, 2004.

Savinov, N., Dosovitskiy, A., and Koltun, V. Semi-
parametric topological memory for navigation. In Inter-

national Conference on Learning Representations, 2018.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International conference

on machine learning, pp. 1312–1320, 2015.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised discovery of skills. In
International Conference on Learning Representations

(ICLR), 2020.

Sutton, R., , Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1):
181–211, 1999.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An

introduction. MIT press, 2018.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine

Learning Research, 10(7), 2009.

Tiwari, S. and Thomas, P. S. Natural option critic. In
Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 33, pp. 5175–5182, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In International Confer-

ence on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Veeriah, V., Oh, J., and Singh, S. Many-goals reinforcement
learning. arXiv preprint arXiv:1806.09605, 2018.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N.,
Jaderberg, M., Silver, D., and Kavukcuoglu, K. Feu-
dal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pp. 3540–3549, 2017.

Skill Discovery for Exploration and Planning using Deep Skill Graphs
Appendix

Akhil Bagaria Jason Senthil George Konidaris

A. Maintaining the Skill Graph
As options are executed, all three of their components
(Io,⇡o,�o) are updated. As a result, the relevant edges
of the skill graph need to be modified.

A.1. Setting edge weights

Recall that the edge weight wij represents the cost corre-
sponding to the edge eij in the graph. Now suppose that the
planner chooses to execute option i to reach node j in the
graph and that after executing option i, the agent lands in
state s. If i is successful, then the cost related to edge eij is
reduced, else it is increased:

f(s) =

(
1, if Io(s) = 1

�1, otherwise,

Wi,j =
f(s)

⇥Wi,j .

We used = 0.95 in all our experiments.

A.2. Deleting old edges

When the initiation set of one option (say o2) no longer
contains the effect set of another (say o1) (either because Io2
shrinks or the effect set Eo1 expands), the edge eo2!o1 must
be deleted from the graph; this is to ensure that all edges in
the graph maintain the property that Eoi ✓ Ioj , 8oi, oj 2

O (Konidaris et al., 2018)1. To implement this logic, we
enumerate all the neighbors of an option o after it is executed
in the environment and check if those edges still satisfy the
aforementioned property.

A.3. Adding new edges

Of course, it is also possible that option o’s initiation classi-
fier Io expands so that it can be connected to more nodes
in the graph. To do this, we need to iterate over all nodes in
the graph and check if Eoi ✓ Ioj , 8oi, oj 2 O. Given that
this is a computationally expensive operation, we perform
this operation once every 10 episodes.

1Recall that this property ensures that plans in the skill graph
correspond to feasible paths in the ground MDP M.

B. Discovering Goal Regions
Every N episodes, the DSG agent tries to expand the graph.
The pseudocode for this is shown in Algorithm 1.

Algorithm 1 Discovering New Goal Regions
Require: Skill-graph G

Require: Current episode number episode
Require: # permitted attempts max tries

1: if episode % N = 0 then
2: for num tries 2 max tries do
3: Generate goal state srand ⇠ S

4: Find vnn according to Section 3.2.2
5: Navigate to vnn according to Section 3.3.3
6: MPC using f⇠ and R(st, srand) for K steps
7: if not-reject(st) then
8: Define region ✏st as 1(s) : {||st � s|| < ✏}

9: return Goal region ✏st

10: end if
11: end for
12: end if

B.1. Rejection Sampling

As described in Algorithm 1, ✏st is result of moving from
vnn in the direction of srand. Similar to RRT (LaValle,
1998), we ensure that Algorithm 1 results in graph expan-
sion, by rejecting ✏st (not-reject() in line 7) if st is
either inside any of the nodes in the current skill-graph (i.e,
reject(st): �o(st) = 1 or Io(st) = 1, 8o 2 V).

B.2. Multiple Attempts

If we reject ✏st more than max tries= 10 times, we give
up on expanding the graph, and choose to consolidate it
instead (in our experiments, this only happened when the
skill graph had largely covered the state-space).

C. Discussion about Optimality
Suppose at test-time, the agent starts at state s0 and is re-
quired to reach state sg (or more specifically, ✏sg). DSG
requires that the agent first travels to the sg’s nearest node
in the graph vnn and then use deep skill chaining outside

Appendix: Deep Skill Graphs

the graph to reach sg . The path to vnn is obtained by using
Dijkstra’s algorithm (Dijkstra, 1959), which results in the
shortest path on the skill-graph, but does not, in general,
result in the shortest path in the ground MDP M. Further-
more, it is possible that there is a shorter path from s0 to
sg that does not involve going through vnn, but ther agent
foregoes that path to prioritize staying inside the graph over
finding optimal paths in M. The question of how the skill-
graph could be used to derive hierarchically optimal (Barto
& Mahadevan, 2003) solutions (or boundedly sub-optimal
solutions (Ames & Konidaris, 2019)) is an interesting av-
enue for future work.

D. Optimistic vs Pessimistic Classifiers
For simplicity, we have discussed option initiation regions to
be parameterized by a single binary classifier (Konidaris &
Barto, 2009; Bagaria & Konidaris, 2020). However, Bagaria
et al. (2021) showed that representing initiation sets using
two classifiers, one optimistic I

✓
o and the other pessimistic

I
�
o , results in more stable option learning. The optimistic

classifier I✓
o determines states from which the option can

be executed; the pessimistic classifier I�
o forms the subgoal

target for some other option targeting o.

To account for this dual parameterization of option initiation
regions, we can re-write Equation 1 from the main paper as:

O(s) = {o|I
✓
o (s) = 1, o 2 O}. (1)

Using Equation 1, we can determine which options are
available for execution at some state s.

When checking if two options in the graph should have
an edge between them, we check if Eo1 ✓ I

�
o . In other

words, the effect set of option o1 must be contained inside
the pessimistic initiation classifier of option o2.

E. Selecting Option Subgoal States
Given a goal vertex vg, the planner computes a plan
(o1, o2, ..., oL) that will take the agent from its current state
st to vg . Before executing option o1 in the environment (by
rolling out ⇡o1), we must sample a specific goal state g1 for
⇡o1 to target. Our choice of g1 must ensure that reaching
g1 would permit the agent to execute the next option in the
plan o2, i.e, g1 must be inside Io2 . To implement this condi-
tion, we first compute the subset of o1’s effect set Eo1 that
is inside I

�
o2 and then randomly sample from it:

g1 ⇠ {s|I
�
o2(s) = 1, 8s 2 Eo1}

F. Finding the Nearest Subgraph
As illustrated in Figure 3 in the main paper, DSG picks
a node from the nearest unconnected subgraph as a target

during the graph consolidation phase. To find the nearest
unconnected subgraph, we first enumerate all unconnected
subgraphs. Then, we find the closest descendant-ancestor
pair (vd, va) for all such subgraphs. Finally, we compare
the distance between each (vd, va) pair we found, and pick
the one corresponding to the lowest distance between them.
This procedure minimizes the region over which we rely
on our distance metric (i.e, we only need the metric to be
locally valid) while selecting targets that will increase the
connectivity of the skill-graph.

Since enumerating all unconnected subgraphs can be an ex-
pensive operation, we only consider the ancestors of vertices
that correspond to goal regions and not options.

G. Model-Based Policies
Dynamics Model To learn a dynamics model, we adopt
the approach from Nagabandi et al. (2018). We parameterize
our learned dynamics function f̂✓(st, at) as a deep neural
network which take as input the current state st and action
at, and predicts the change in state st over the time step
duration of �t. The next predicted state is thus ŝt+1 = st +
f̂✓(st, at). The neural network 2 dense layers with hidden
sizes of 500, with LeakyRelu as the nonlinear activation
function.

Data Collection and Preprocessing: To train the dynamics
model, we use the transitions collected by the DSG agent.
Each trajectory is sliced into inputs of (st, at) with corre-
sponding output labels of st+1 � st. We then normalize the
data by subtracting the mean and dividing by the standard
deviation.

Training the model: Following Nagabandi et al. (2018),
we first collect 50 episodes of random transitions from the
environment Drand. At this point, the dynamics model is
trained for 50 epochs—meaning that we iterate over the
dataset Drand 50 times. Thereafter, the agent picks actions
according to the RL algorithm and stores the resulting tran-
sitions in dataset DRL. At the end of every episode of
training, we train the model for 5 epochs on the dataset
D = Drand [DRL.

Model Predictive Control (MPC): Following Nagabandi
et al. (2018), we use the random-shooting method as our
black-box optimizer to approximately solve Equation 6 in
the main paper. We use M = 14000 randomly generated
action sequences of length K = 7.

H. Experiment Details
H.1. Test environments

We evaluated our algorithm in four tasks that exhibit a hi-
erarchical structure (Nachum et al., 2018; Fu et al., 2020;

Appendix: Deep Skill Graphs

Environment # Training Episodes
Ant Reacher 1000
Ant U-Maze 1000
Ant Medium Maze 1500
Ant Large Maze 2000

Table 1. Number of training episodes per environment. Each
episode comprises 1000 steps.

Brockman et al., 2016; Duan et al., 2016): (1) Ant Reacher,
(2) Ant U-Maze, (3) Ant Medium Maze, (4) Ant Large
Maze. In Ant Reacher, there is no maze, and the ant is
required to navigate an open area spanned by [�10, 10]2.
The other three mazes (2)-(4) are taken from the D4RL
repository2. In each task, the agent is reset back to its start
state (a small distribution around (0, 0)) after 1000 steps per
episode. All other environment specific configurations are
unchanged from D4RL. The number of training episodes
for each environment is given in Table 1.

Following D4RL (Fu et al., 2020) and other HRL algo-
rithms (Nachum et al., 2018; Sharma et al., 2020), we used
the negative distance from the goal as our reward function:
R(s, g) = �||s.CoM�g||, where s.CoM2 R2 refers to the
x, y position of the Ant’s center-of-mass and g refers to a
target position. When s.CoM is sufficiently close to g, i.e,
||s.CoM�g|| < 0.6, then R(s, g) = 0.

H.2. Baseline Implementation Details

H.2.1. MODEL-FREE BASELINE: TD3+HER

Parameter Value
Replay buffer size 1e6
Critic Learning rate 3 · 10�4

Actor Learning rate 3 · 10�4

Optimizer Adam
Target Update Rate ⌧ 5 · 10�3

Batch size 100
Iterations per time step 1
Discount Factor 0.99
Output Normalization False

Table 2. TD3 + HER Hyperparameters

To compare against TD3 (Fujimoto et al., 2018), we used
the TD3 author’s open-source code base 3. We used the
default hyperparameters, which are listed in Table 2. The
use of Hindsight Experience Replay (HER) (Andrychowicz
et al., 2017) requires that we sample a goal state g at the start
of every episode; as is common, we sampled g uniformly

2
github.com/rail-berkeley/d4rl

3
github.com/sfujim/TD3

at random from the set of positions that were not inside
obstacles in the maze.

H.2.2. HIERARCHICAL BASELINE: HAC

We used the 3�layer HAC agent from the HAC author’s
open-source code base4. We used the same hyperparameters
that they used in domains involving the Ant.

H.2.3. HIERARCHICAL BASELINE: DADS

We used the author’s code base5 without modification.
Given that DSG’s dynamics model f⇠ was trained inside the
various mazes that we were testing on, we first tried to train
the DADS skills on environments in which they were going
to be tested. However, we found that the discovered skills
lacked diversity and tended to collapse to the region around
the start-state distribution—presumably because of the lack
of space (in the x, y direction) for the agent to discover max-
imally diverse skills. As a result, we trained the skills on the
Ant-Reacher domain (as Sharma et al. (2020) did in their
paper) and used the resulting skills in the various mazes.

I. Hyperparameters
I.1. DSG

As shown in Table 3, DSG introduced two new hyperparam-
eters; both their values were the same for all environments.

Parameter Value
#�steps of model extrapolation (K) 100
Goal region discovery frequency (N) 50

Table 3. DSG specific hyperparameters

Skill chaining requires three hyperparameters, whose values
are shown in Table 4; their values were also the same for all
environments.

Parameter Value
Gestation period 10
Option timeout 200
Buffer length 50

Table 4. DSC specific hyperparameters

I.2. Model-Based Baseline

The hyperparameters used to implement the model-based
algorithm from Nagabandi et al. (2018) is shown in Table 5.

4
github.com/andrew-j-levy/

Hierarchical-Actor-Critc-HAC-

5
github.com/google-research/dads

Appendix: Deep Skill Graphs

Parameter Value
Batch size 1024
Optimizer Adam
Controller horizon H 7
Number actions sampled K 14000

Table 5. Hyperparameters for learning dynamics model f⇠

J. Computational Details
J.1. Initiation Classifiers

Following related work (Bagaria & Konidaris, 2020; Eysen-
bach et al., 2019; Sharma et al., 2020; Levy et al., 2019),
option initiation classifiers were defined over the x, y po-
sition of the agent. Following Bagaria et al. (2021), we
used a one-class SVM (Tax & Duin, 1999) to represent the
option’s pessimistic classifier and a two-class SVM (Cortes
& Vapnik, 1995) to represent its optimistic classifier.

J.2. Computational Resources

All experiments in this paper were performed on 2 NVIDIA
2080-Ti GPUs.

References
Ames, B. and Konidaris, G. Bounded-error lqr-trees. In

2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 144–150. IEEE, 2019.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, O. P., and
Zaremba, W. Hindsight experience replay. In Advances in

Neural Information Processing Systems, pp. 5048–5058,
2017.

Bagaria, A. and Konidaris, G. Option discovery using deep
skill chaining. In International Conference on Learning

Representations, 2020. URL https://openreview.

net/forum?id=B1gqipNYwH.

Bagaria, A., Senthil, J., Slivinski, M., and Konidaris, G.
Robustly learning composable options in deep reinforce-
ment learning. In 30th International Joint Conference on

Artificial Intelligence, 2021.

Barto, A. G. and Mahadevan, S. Recent advances in hier-
archical reinforcement learning. Discrete event dynamic

systems, 13(1-2):41–77, 2003.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-

chine learning, 20(3):273–297, 1995.

Dijkstra, E. W. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on

Machine Learning, pp. 1329–1338, 2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?

id=SJx63jRqFm.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-

tional Conference on Machine Learning, pp. 1582–1591,
2018.

Konidaris, G. and Barto, A. Skill discovery in continuous
reinforcement learning domains using skill chaining. In
Advances in Neural Information Processing Systems, pp.
1015–1023, 2009.

Konidaris, G., Kaelbling, L. P., and Lozano-Perez, T. From
skills to symbols: Learning symbolic representations for
abstract high-level planning. Journal of Artificial Intelli-

gence Research, 61:215–289, 2018.

LaValle, S. M. Rapidly-exploring random trees: A new tool
for path planning. 1998.

Levy, A., Konidaris, G., Platt, R., and Saenko, K. Hi-
erarchical reinforcement learning with hindsight. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?

id=ryzECoAcY7.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances

in Neural Information Processing Systems, pp. 3303–
3313, 2018.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning. In 2018 IEEE

International Conference on Robotics and Automation

(ICRA), pp. 7559–7566. IEEE, 2018.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised discovery of skills. In
International Conference on Learning Representations

(ICLR), 2020.

Tax, D. M. and Duin, R. P. Support vector domain descrip-
tion. Pattern recognition letters, 1999.

