
Direct Policy Transfer
via Hidden Parameter Markov Decision Processes

Jiayu Yao * 1 Taylor Killian * 1 2 George Konidaris 3 Finale Doshi-Velez 1

1. Introduction
Many situations arise in which an agent must learn to solve
tasks with similar, but not identical, dynamics. For example,
a robot might be tasked to manipulate objects with slightly
different masses and volumes; a clinician may treat patients
with unique—but still all human adult—physiologies. In
such situations, if one has already seen several instances of
the related tasks, it is inefficient to start learning a new task
from scratch. Indeed, in some domains, such as medicine,
one does not have multiple episodes to learn a personalized
treatment policy: decisions must be optimized from only a
few interactions with the patient.

The recently introduced Hidden Parameter Markov Deci-
sion Process (HiP-MDP) (Doshi-Velez and Konidaris, 2016;
Killian et al., 2017) addresses this setting by learning a low-
dimensional representation wb for the transition dynamics
of each instance b, i.e, the transition function can be mod-
elled as T (s′|s, a, wb,W), whereW are some global param-
eters. However, learning models that are accurate enough
for personalized planning is challenging. When encounter-
ing a new instance, Killian et al. (2017) required a few full
episodes in the environment to learn the local embedding
wb and additionally refineW , parameters of the underlying
transition dynamics. Moreover, even after a sufficiently ac-
curate model was learned, identifying a near-optimal policy
was computationally expensive since it required training a
Deep-Q Network (DQN) with a large number of simulated

*Equal contribution 1School of Engineering and Applied Sci-
ences, Harvard University, Cambridge, MA, USA 2MIT Lincoln
Laboratory, Lexington, MA, USA 3Department of Computer Sci-
ence, Brown University, Providence, RI, USA. Correspondence
to: Jiayu Yao <jiy328@g.harvard.edu>, Taylor Killian <taylorkil-
lian@g.harvard.edu; taylor.killian@ll.mit.edu>.

DISTRIBUTION STATEMENT A.
This material is based upon work supported by the United States
Air Force under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the United States Air Force.

The 2nd Lifelong Learning: A Reinforcement Learning Ap-
proach (LLARLA) Workshop, Stockholm, Sweden, FAIM 2018.
Copyright 2018 by the author(s).

episodes of that specific task instance.

Our core insight is that perhaps the entire policy-learning
process can be short-circuited if we use the embedding wb

as input into a policy π(a|s, wb). We hypothesize that after
observing only a few transitions of a new instance b, the
embedding wb may be sufficient to directly parameterize a
near-optimal policy

We demonstrate policy transfer in a toy 2D navigation do-
main, acrobot (Sutton and Barto, 1998), and with simu-
lated treatment protocols for patients with HIV (Ernst et al.,
2006). Our procedure results in immediate performance
improvement after a small number of interactions with the
environment of a new task instance, with further improve-
ment as more transitions are observed, at a fraction of the
computational cost.

2. Related Work
There exists a broad literature on transfer learning within re-
inforcement learning via latent representations (e.g. (Taylor
and Stone, 2009; Hausman et al., 2018; Ha and Schmidhu-
ber, 2018; Narasimhan et al., 2017; Morton and Kochender-
fer, 2017)). Our work falls in the category of work where
the goals do not change, but the dynamics of the system
do. In this regime, there are problems that involve trans-
fer across large changes in the state or action space (e.g.
transferring policies across agents with different numbers
of actuators (Gupta et al., 2017)). Hausman et al. (2018)
formulate a separate embedding space where tasks with dif-
fering dynamics could be directly compared and composed
in order to accelerate the learning of hierarchical or other
complex tasks. Unlike these efforts, we focus on situations
where there are subtle variations in the transition function,
and we want to adapt to those variations quickly. Closest
to our work, Killian et al. (2017) accounts for the variation
in the transition dynamics directly by learning a general
transition function with embedded latent parameters that
represent variations in the dynamics. Zhang et al. (2018) de-
couples the dynamics and rewards when learning a task and
is thus capable of transferring to problems where either the
dynamics and rewards mechanism may change. However,
both approaches are still model-based, in that they learn or
retrain a model for a new instance and then must solve it to



Direct Policy Transfer via HiP-MDP

determine a policy. By contrast, our direct policy transfer
approach avoids solving a model at test-time, and does not
require the estimated dynamics to be accurate to identify a
well-performing policy.

3. Background
Model-based reinforcement learning & HiP-MDPs
Hidden parameter MDPs, or HIP-MDPs (Doshi-Velez and
Konidaris, 2016; Killian et al., 2017), describe a fam-
ily of Markov Decision Processes (MDPs) via the tuple
{S,A,W, T,R, γ, PW }, where S ⊆ RD is the set of continu-
ous states s, A is the set of discrete actions a, and R is the
reward function. For each instance b in the family param-
eterized by the hidden parameters wb ∼ PW , it acts in a
continuous state space S ⊆ RD using a discrete action space
A. Assume the true transition dynamics of each instance,
T (s′|s, a, wb), is unknown and that we are given a reward
function R(s, a) : S ×A→ R. The HiP-MDP framework as-
sumes that a finite-dimensional array of hidden parameters
wb can fully specify variations of the true task dynamics.
It also assumes the system dynamics do not change during
a task and the agent is aware of when one task ends and
another begins. In model-based reinforcement learning, the
goal is to estimate the transition function T̂ (s′|s, a, wb) from
observed transitions (s, a, s′) of the new instance and then
use the model T̂ (s′|s, a, wb) to learn a policy a = πb(s) that
maximizes long-term expected rewards E[

∑
t γ

trt], where
γ ∈ (0, 1] governs the relative importance of immediate and
future rewards.

4. Direct Policy Transfer via HiP-MDPs
The HiP-MDP assumes that the transition dynamics can
be modeled via a function T (s′|s, a, wb), where wb is an
instance-specific latent parameter. Placing a Gaussian prior
on wb gives us the following generative model:

s′ ∼ T (s, a, wb,W) + ε

wb ∼ N (µw,Σb)

ε ∼ N (0, σ2
n)

where W are the parameters of the transition model. We
model the transition function T with a BNN and maintain a
posterior p(W) over the global transition parametersW .

When starting a new instance b, Killian et al. (2017) updated
estimates of wb andW based on interactions with the en-
vironment. Next, trajectories are simulated via the BNN
approximation of the transition function T̂ (s, a, wb|W) to
train a Double Deep Q Network (DDQN) (Hasselt et al.,
2016). Using the approximate transition model for planning
was efficient in the sense that it limited the data needed
from the real environment. However, training the DDQN
required 500-1000 simulation episodes for each new in-

(a) A comparison of epsilon greedy policies πDDQN, πHiPMDP, πDPT

(ε = 0.15)

(b) A comparison of cumulative rewards of multiple runs following
the three policies. We extract πDDQN, πHiPMDP, πDPT (ε = 0.15)
after training and ran each policy for 50 steps. We allow the agent
to restart if reaching the terminal state for easy comparision.

Figure 1. A demonstration of the efficiency benefits of direct policy
transfer using a simple 2D navigation domain

stance, making the approach computationally inefficient.
Additionally, if the accuracy of T̂ was poor, the simulated
episodes diverged from the dynamics of the environment,
and the resulting policies were sub-optimal. Killian et al.
(2017) required several episodes of real experience with a
new instance b to obtain transition models that were accu-
rate enough for planning; ideally we would be able to start
behaving near-optimally within the first episode.

Rather than use the approximate transition model T̂ to plan,
we propose to use the hidden parameters wb for direct policy
transfer. The core hypothesis is that the hidden parameters
wb, while perhaps insufficient for model-based planning,
still contain information about the dynamics of the environ-
ment and the similarities between previous instances. This
information may then be used to key the policy to directly
account for changes in the underlying dynamics of the task.



Direct Policy Transfer via HiP-MDP

Specifically, we will learn a policy function

a = π(s, wb;Y)

where Y are the function’s global parameters. Given π, as
soon as we have collected sufficient experience from the
new task instance to identify wb, we expect the policy to
perform near-optimally.

To demonstrate the utility of embedding the parameters wb

with the input to the policy π, we compare the proposed
method with the HiP-MDP (Killian et al., 2017) and model-
free (DDQN) approaches in a simple 2D navigation domain,
introduced by (Killian et al., 2017), in Figure 1.

The model-free policy πDDQN (learned with an ε-greedy
policy with ε = 0.15 and 500 episodes within the real en-
vironment) learns a better route than the HiP-MDP policy
πHiPMDP obtained from the BNN-based transition function
trained with 1000 observed state transitions of the real en-
vironment. The policy from our proposed direct-transfer
approach πDPT is on par with (perhaps even slightly better
than) the model-free DDQN policy: The average cumulative
rewards of πDDQN, πHiPMDP, πDPT are 994.8, 943.6, 992.7
respectively. On average, πHiPMDP takes more steps to reach
the goal than the other approaches (Figure 1(a)), and thus
accumulates less rewards while πDPT is near-optimal.

5. Inference
We assume that we are provided a large batch of data from
previously observed instances, including near-optimal poli-
cies for each instance. This is reasonable in many domains:
we may have experimented with swinging many different
kinds of robotic arms and found good swing-up policies for
them; we may have treated large numbers of patients and
made them well. The objective is to use this information to
rapidly perform near-optimally on any new instance. Specif-
ically, in the following, we assume that estimates of the
global parameters, p(W) and Y , are learned from this ini-
tial batch of data and then kept fixed; at test-time, one may
only determine the local hidden parameters wb. These as-
sumptions match industrial settings where one may wish to
deploy a system in a variety of locations and circumstances
and not want unexpected global changes post deployment
(e.g. (Depeweg et al., 2016)). That is, we only want our cus-
tomization to alter the control procedure for the individual
circumstances each deployed unit operates in.

We denote the set of N previously observed instances as
{1, 2, ..., n, ..., N} and the new instance as b. Each in-
stance n provides a collection of observed transitions Dn =
{(sn, an, rn, s′n)}; and we denote all the observed transi-
tions in the initial batch byD = {(sn, an, rn, s′n)}Nn=1. We
denote the near-optimal polices for each instance n ∈ N
as π∗n(s) and the collection of all the policies as Π∗. (In

our experiments, each π∗n is obtained via online learning;
these could also be found by observing experts or any other
procedure.)

5.1. Batch Training of Global Parameters

Learn T̂ , the BNN-based transition function, the wn for
each instance and p(W). When given a batch of transi-
tions {(sn, an, rn, s′n)}, we have all the elements needed
to learn the BNN-based transition function T̂ . We first cre-
ate a set of inputs to the BNN {(sn, an, wn)} and a set of
outputs {s′n}, where the wn are hidden variables with the
same value for all transitions from instance n. Next, we use
the expectation-propagation based approach of Hernández-
Lobato et al. (2016) to obtain a fully factorized posterior
p(W|sn, an, s′n, wn) ≈

∏
i q(ωi) ≡ p(W) where the ωi’s

are the weights in the network and maximum-likelihood
local hidden parameters {wn} (in the optimization, we iter-
ate between updating the posterior onW and {wn}). We
keep a posterior on the global parametersW because this
uncertainty inW encapsulates the stochasticity in the envi-
ronment.1 In initial experiments, we found that maximum-
likelihood estimates of the local parameters were sufficient
because their posteriors were typically sharply peaked, even
after just a few iterations of experience.

In some situations (such as in the experiments presented in
Section 7), we may have choices in how the initial batch
of data is collected. In our case, we run an independent
DDQN for each instance n (with ε-greedy exploration, ε =
0.15), updating the policy as we go; this allows us to collect
transitions in regions that are most relevant for performing
well on the task.

Learn the parameters Y of the policy π(s, wn;Y). In
some settings, we may be given a set of near-optimal poli-
cies Π∗. In others, these may be learned during some initial
training phase. For example, once we have a trained DDQN
(as described above) for each instance, we can exploit its
optimal policy by setting ε = 0. The next step is to learn the
policy π(s, w;Y). Starting with the observed {(sn, wn)}
in each batch, we train a multi-layer perceptron (MLP) to
predict the action a∗ = πn(sn), effectively distilling the
model-free policy (Rusu et al., 2015), keyed by the learned
wn. It is expected that if π(s, wn;Y) has been trained with
a sufficient number of observed instances n, then for any
new instance b, π(s, wb;Y) ≈ π∗b (s).

5.2. Direct Policy Transfer at Test Time

When encountering a new instance, a new hidden parame-
ter setting is initialized from the mean of batch instances
wb = E[wn], n ∈ N . Initially the policy acts in an ε-greedy

1An alternative would be to use input-uncertainty BNNs, as
done by Depeweg et al. (2016).



Direct Policy Transfer via HiP-MDP

fashion with respect to π(s, wb;Y). The ε-greedy explo-
ration allows to better capture information about different
dynamics and thus accurately estimate wb. As we gather
more experience with the environment, we periodically up-
date the hidden parameters wb and reduce exploration. As
our estimates of wb converge, our policy π(s, wb;Y) adapts
to the new instance of the task.

To update wb, we maintain a buffer of all transitions ob-
served in the current instance b: {(sb, ab, s′b)}. With these
observations and the posterior over BNN weights p(W),
we optimize the latent parameters wb to minimize the α-
divergence of the approximate posterior distribution p(W)
and p(W|s, a, wb, s

′). In Section 7, we see that this process
enables direct transfer, providing near-optimal decisions
with only a few interactions in the environment.

6. Experimental Setup
Evaluation and Baselines We consider two evaluation
measures: computational time and cumulative rewards over
a fixed number of iterations. (We emphasize that the number
of iterations are generally on the order of an episode, much
smaller than in earlier work.)

We compare against two baselines that also use latent param-
eters, one that is model-based and one that is policy-based.
We do not compare to average model or online model-free
learning with just the environment because Killian et al.
(2017) demonstrated that the HiP-MDP dominated those ap-
proaches in their work. The model-based HiP-MDP baseline
(labeled in the figures as simply HiP-MDP), upon updating
its hidden parameters, performs rollouts from the approx-
imate transition function to update a DDQN policy. The
second is a PCA-based approach to creating a latent repre-
sentation for direct policy transfer. All approaches follow
the same latent parameter update schedule.

The PCA-baseline is motivated by the fact that perhaps there
is a simpler way to capture statistics about the environment
that are sufficient for planning, rather than via the latent
parameters of the transition function. That is, is there a
simpler dimensionality reduction that also works? As a
baseline, we define the transition statistics of an instance ψn

as the average change in the observed state after performing
each action (∆sai

). That is: ψn = [∆sa1
, . . . , ∆saM

].
Then, with N previous instances, we form the matrix ΨN ,
where each row corresponds to the transition statistics, ψn

of a separate instance. Then,

ΨN = UΨSΨV
ᵀ
Ψ

where VΨ represents the principal directions of the new basis
that can be used to project the collected transition statistics
from a new instance ψb into a low dimensional form wPCA

b .
That is,

wPCA
b = ψb · VΨ

Once we have wPCA
b , we train a policy πPCA(s, wPCA

b ;YPCA)
analogously as we did for our approach.

Domains We evaluate our direct transfer approach in three
domains: a 2D Navigation task, Acrobot, and simulated HIV
treatment, the same domains used by Killian et al. (2017)
chosen to directly compare with the HiP-MDP.

2D Navigation. We revisit the 2D navigation domain from
the demonstration in Figure 1. The training batch was col-
lected from two instances, one for each class (θb = 0, θb =
1). We set the dimension of the latent weights wn to three.
We tested the algorithms with two instances, one for each
class. For HiP-MDP in the 2D navigation domain, as men-
tioned in Section 4, we observed that the DDQN often got
stuck in local optima. In initial experiments, we also ob-
served with small ε, if the agent starts close to the wall,
it continually bumps into the wall, collecting negative re-
wards, and is unable to gather enough information to learn
an accurate parameter representation wb. Thus, we set the
εmin = 0.15 during the test time. The latent parameters, wb,
were updated after every 5 transitions.

Acrobot. It has been shown that in the acrobot domain, a
policy will generalize poorly if subtle changes are made
to the dynamics (Bai et al., 2013), and thus this domain is
well suited for investigation for transfer among families of
tasks. We set the latent weight dimension to 5 based on
preliminary experiments. Our training batch consists of 8
previous instances. During test time, ε is set to zero for
all approaches. We collect 20 transitions before updating
wb to ensure there is sufficient information to estimate the
dynamics.

HIV treatment. In this domain, the task is to determine an
effective HIV treatment for patients with different physio-
logical dynamics; the dynamics involve 22 latent parameters
and thus are significantly more complex than in the previous
domains. We set the dimension of the latent parameters, wb,
as 5. We train on a batch of 10 patients and test on 2 new
patients. It is expected that a more complex domain more
information to obtain a fairly accurate wb. However, as we
tracked some patients’ physiological state following a near-
optimal policy, we discovered out that the behavior follows
a periodic pattern. The average period is 20− 40 time steps.
Hence, in the testing time, we collected 3 transitions over
10 training epochs to estimate wb. In testing, ε = 0.0.

Additionally, the individual instances of the HIV simulator
vary widely in terms of the state and rewards distributions.
Rather than aggregate average performance across all test
instances, we separate the two test instances to demonstrate
the performance of the proposed evaluation approaches on
each one individually.

Training Procedure For each domain, we collected a
batch of data D = {sn, an, rn, s′n′}Nn=1 from instances



Direct Policy Transfer via HiP-MDP

Algorithm 1 Direct Policy Transfer (DPT) through a HiP-MDP framework

1: Training Phase:
2: Input: Observed Transitions D, a set of near-optimal

policies Π∗

3: function TuneModel(D,W, {wn})
4: for Number of Epochs do
5: UpdateW given D
6: Update each wn given Dn

7: end for
8: return p(W),{wn}
9: end function

10: function LearnJointPolicy(Π∗, {wn})
11: for Number of Epochs do
12: Update π(s, wn,Y)→ πn(s)
13: end for

14: return Y
15: end function
16: Testing Phase:
17: Input: Observations Db, p(W), Y ,{wn}
18: main Direct-Policy-Transfer
19: Init. wb = E[wn]
20: for i = 0 to t steps do
21: Take action a← π(s, wb,Y)
22: Store Db ← (s, a, r, s′, wb)
23: if Time to Update wb then
24: Update wb given Db, p(W)
25: end if
26: end for
27: end main

with various dynamics using the DDQN for 500 iterations
with εmin = 0.15, decaying epsilon after each episode, with
a learning rate of 5× 10−4. Using D, we updateW and wb

iteratively for 60 epochs. The learning rate of BNN in the
2D navigation domain is 5 × 10−4 and is 2.5 × 10−4 for
all other domains. We extracted the DDQN policy from the
previous step, set ε to zero, and generate trajectories of 50
episodes within each instance. With these data samples, we
train a MLP with one hidden layer of 32 nodes to generate
a joint policy for all instances. During testing time, at each
iteration, we collect only a few times steps into the buffer
and then update the latent weights, which allows us to adjust
the policy. We updated the embedding parameters over 10
iterations, in total.

7. Results
As discussed in Section 6, we sought to improve upon the
HiP-MDP in both performance and computational time by
leveraging the polices developed for previously observed
instances and transferring them directly to the new instance.
In Table 1 we report the computation time and performance
achieved when an agent first encounters a new instance
of a task (averaged over 5 separate runs). Computation
time measures the time the agent spent operating in the first
episode of the new instance while developing an optimal
control policy, including inference of the latent parameters
wb and then computing the control policy.

PCA does not sufficiently capture the dynamics of newly
encountered variations. Unsurprisingly, the PCA base-
line is the fastest computationally, as the inference of the
parameterwPCA

b only requires a single matrix computation to
project the observed transition statistics to the pre-computed
basis. However, the performance of the PCA baseline is

significantly worse than the other approaches. It is unclear
whether the features preserved via PCA contain sufficient
information to differentiate between variations in the dy-
namics of the environment, and the estimates were highly
dependent on the specific state transitions observed (that is,
the estimate of wPCA

b could vary widely between runs). This
reinforces the utility of training a model of the transition
dynamics: our approach, which infers the latent wb via the
BNN, had parameters designed to be informative about the
dynamics of the current instance.
The direct policy transfer approach requires fewer
interactions with the environment to learn a high-
performing policy. By using the latent estimate wb as
input to the policy derived through DPT, we were able to
identify a near-optimal policy with less data than when
using the HiP-MDP alone. This is demonstrated in Fig-
ure 2 as DPT, the red curve, which adapts to the new task
instance sooner thus achieving better performance in the
initial episode of the new instance. This indicates that DPT
adapts to the change in transition dynamics more rapidly
than either the HiP-MDP or PCA baseline. Average cumu-
lative reward over test episodes is reported in the Table 1.
While the variances are sometimes high, the recorded perfor-
mance demonstrates the advantage DPT gains by learning
the specific variation present in the new instance earlier than
in the HiP-MDP. (Or, as in the second HIV test instance,
achieving comparable performance.)
At test time, the direct policy transfer approach is faster
than the original HiP-MDP. As recorded in the Table 1,
DPT provides an overwhelming improvement in computa-
tional efficiency over the HiP-MDP, representing 8-16x re-
duction in computational time, needing only approximately
20 minutes to replace several hours of computation. The pri-
mary contributor toward this improvement comes through
avoiding the need to perform extensive rollouts of the ap-



Direct Policy Transfer via HiP-MDP

(a) 2D Navigation (b) Acrobot

(c) HIV Test Patient 1 (d) HIV Test Patient 2

Figure 2. Cumulative rewards achieved throughout the initial episode of a newly encountered instance. The early improvement of the red
curve indicates that DPT adapts to the change in transition dynamics more rapidly than either the HiP-MDP or PCA baseline.

Table 1. Experimental results where DPT is evaluated against the HiP-MDP and PCA baseline

COMPUTATION TIME CUMULATIVE REWARDS

2D NAV ACROBOT HIV 2D NAV ACROBOT HIV
PCA 17.4s±0.52 56.3s±1.49 180.6s±4.43 317.9±207.8 -42.7±38.89 100.8±12.8 207.8±1.53
HIPMDP 1.0× 104S 1.9× 104S 1.0× 104S 809.9±35 -30.8±33.2 726.7±59.8 580.0±21.9
DPT 1.1× 103S 1.2× 103S 1.2× 103S 891.9±319 -27.7±49.5 1425.0±5.6 562.2±4.2

proximated transition function to enable policy learning
with the DDQN, as described above. This result reinforces
the decision to leverage the previous set of policies, Π∗, to
develop π(s, wn;Y) which extends to π(s, wb;Y)→ π∗b (s).
(The PCA-based baseline is the fastest, but as we mention
above, it produces policies that are significantly worse than
either the HiP-MDP or the DPT approaches.)

8. Discussion and Conclusion
We used a latent variable model to capture differences in
the dynamics of an environment, and then, rather than using
that dynamical model for planning, used those parameters to
directly parameterize a policy. This approach allowed us to
learn statistics about the environment that captured the vari-
ation in dynamics across instances—essential for perform-
ing well—but was also both sample and computationally-
efficient at test time: only a few interactions were needed
to learn the parameters, and once learned, no expensive
planning was required to perform well.

As with all latent variable-based approaches, an important
questions is whether the latent variable—in this case the HiP-
MDP hidden parameter—is sufficient for planning. Across
our experiments, we found that this was the case, and the
HiP-MDP parameter captured the necessary information
about the environment more accurately than the PCA-based
baseline. That said, it was essential to have sufficient vari-
ation among in training batches such that different enough
parameter settings were encountered to generalize to those
we may see in test. In situations where a large previously-
collected cohort is available, this is not a large limitation.
In some domains, it was also important to see a variety of
actions (our use of the ε-greedy in the 2D navigation task,
even at test time); it would be interesting to develop ex-
ploration policies to quickly and consistently identify the
hidden parameter wb in all environments, or heuristics for
determining in what kinds of environments this kind of ad-
ditional exploration is needed (and in what environments
just taking any few actions is sufficient). Finally, currently
our direct policy transfer approach does not adjust its policy



Direct Policy Transfer via HiP-MDP

based on the rewards it receives during the new instance. It
would be interesting to start with π(s, wb;Y) and then adapt
that policy as we gather more data in the environment.

More broadly, our work makes important steps towards
learning approaches to transfer policies from a batch of data,
when future instances may not be exactly like the batch (and
indeed, there are variations in the batch). We see interesting
directions in considering end-to-end training that creates
a transition-type model that is particularly well-suited to
producing policy parameters, as well as imitation learning-
based ways of identifying the original set of optimal policies
Π∗ when a simulator is not available. For safety-critical
applications, such as healthcare, having even the rough
transition model, in addition to the policy, may also provide
a way to safe-guard against truly poor actions if regions
where the policy is less accurate.

Acknowledgments
FDV, GDK, and JY acknowledge support from NSF RI-
1718306.

References
H Bai, D Hsu, and WS Lee. Planning how to learn. In Robotics

and Automation, 2013 IEEE International Conference on, pages
2853–2859. IEEE, 2013.

S Depeweg, JM Hernández-Lobato, F Doshi-Velez, and S Udluft.
Learning and policy search in stochastic dynamical systems with
Bayesian neural networks. arXiv preprint arXiv:1605.07127,
2016.

F Doshi-Velez and G Konidaris. Hidden parameter markov de-
cision processes: A semiparametric regression approach for
discovering latent task parametrizations. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial
Intelligence, volume 25, pages 1432–1440, 2016.

D Ernst, G Stan, J Goncalves, and L Wehenkel. Clinical data
based optimal STI strategies for HIV; a reinforcement learning
approach. In Proceedings of the 45th IEEE Conference on
Decision and Control, 2006.

A Gupta, C Devin, Y Liu, P Abbeel, and S Levine. Learning invari-
ant feature spaces to transfer skills with reinforcement learning.
In International Conference on Learning Representations, 2017.

D Ha and J Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018. URL https://worldmodels.
github.io.

H van Hasselt, A Guez, and D Silver. Deep reinforcement learning
with double Q-learning. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages 2094–2100. AAAI
Press, 2016.

K Hausman, JT Springenberg, Z Wang, N Heess, and M Riedmiller.
Learning an embedding space for transferable robot skills. In
International Conference on Learning Representations, 2018.

JM Hernández-Lobato, Y Li, M Rowland, D Hernández-Lobato,
T Bui, and RE Turner. Black-boxα-divergence minimization. In
Proceedings of The 33rd International Conference on Machine
Learning, 2016.

TW Killian, SJ Daulton, G Konidaris, and F Doshi-Velez. Robust
and efficient transfer learning with hidden parameter markov
decision processes. In Neural Information Processing Systems,
2017.

J Morton and MJ Kochenderfer. Simultaneous policy learning
and latent state inference for imitating driver behavior. arXiv
preprint arXiv:1704.05566, 2017.

K Narasimhan, R Barzilay, and T Jaakkola. Deep transfer in
reinforcement learning by language grounding. arXiv preprint
arXiv:1708.00133, 2017.

AA Rusu, SG Colmenarejo, C Gulcehre, G Desjardins, J Kirk-
patrick, R Pascanu, V Mnih, K Kavukcuoglu, and R Hadsell.
Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

R Sutton and A Barto. Reinforcement learning: An introduction,
volume 1. MIT Press, Cambridge, 1998.

ME Taylor and P Stone. Transfer learning for reinforcement
learning domains: a survey. Journal of Machine Learning
Research, 10(Jul):1633–1685, 2009.

A Zhang, H Satija, and J Pineau. Decoupling dynamics and reward
for transfer learning. arXiv preprint arXiv:1804.10689, 2018.

https://worldmodels.github.io
https://worldmodels.github.io

