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Abstract—Current methods for representing 3D objects for
robotic interaction have significant limitations. They do not
allow knowledge transfer from previously encountered objects to
similar but novel objects, they construct large object databases
that do not scale and are expensive to query, or they require
hand tuned object models. We propose the use of Variational
Bayesian Principal Component Analysis (VBPCA) directly on
3D object representations to create compact low-dimensional
probabilistic models for classes of 3D objects. We show that
these learned Bayesian Eigenobjects (BEOs) are well suited to
important and practical robotic tasks including the classification
and pose estimation of novel objects. Furthermore, we show that
this approach can complete partially observed novel objects,
allowing for the classification and pose estimation of novel
occluded query objects.

I. INTRODUCTION

It is inevitable that robots operating in the real world will be
required to interact with previously encountered objects. While
databases of object models exist with tens of thousands of
objects, the world contains orders of magnitude more variation.
Although 2D object detection has improved dramatically in the
recent years, techniques for detecting and interacting with 3D
objects are still quite limited. The common practice is still
to build a library of 3D object models and match them to
encountered objects in the world, often using ICP [18]. While
this can be successful in highly controlled environments, it can
not be feasibly scaled to less controlled settings where a wide
variety of objects must be considered. Take, for example, a
robot designed to clear dishes off of a table. The amount of
variation in the size and shape of bowls, platters, and plates
that the robot may encounter is huge. While such a task might
be feasible for a specific set of place settings, creating a
general purpose table clearer is beyond the current state of
the art. Thus, new approaches are needed to allow robots to
generalize across such highly variable objects.

There are several key building blocks of most robot appli-
cations involving interactions with objects in the world: object
detection, pose estimation, and classification. These tasks form
the perceptual foundation for many higher level operations
including object manipulation and world-state estimation. In
this work, we focus on the classification, pose estimation,
and geometric completion of novel objects and demonstrate
that Bayesian Eigenobjects (BEOs) are naturally suited to
facilitating these tasks.

Our work uses Variational Bayesian Principal Component
Analysis as the basis for a multi-class object representation.
By learning a compact basis for each class, we are able to

store previously encountered objects efficiently by storing only
their projection coefficients. Furthermore, novel objects can be
localized, classified, and completed by projecting them onto
class basis and then projecting back into object space. Because
we do not query a database of individual objects, our method
scales gracefully with the number of objects in each class—
requiring a constant amount of computation for projection and
reconstruction even as the number of previously encountered
data-points increases— and is able to handle objects of much
higher resolution than competing methods.

A key advantage of our single, unified, object representation
is its ability to perform partial object completion. Because
objects in real environments are rarely observable in their
entirety from a single vantage point, the ability to produce
even a rough estimate of the hidden regions of a novel object
can be extremely useful. Furthermore, being able to classify
partial objects dramatically improves the efficiency of object-
search tasks by not requiring the agent to examine all candidate
objects from multiple viewpoints. Experimentally, we applied
our method to several datasets consisting of scanned objects.
We were able to successfully estimate the rotational pose
of novel objects, reconstruct partially unobserved objects,
and categorize novel objects by class. We also show that
these completed objects are of suitable quality for use in
classification and pose estimation.

II. BACKGROUND

A. 3D Object Recognition

While significant work has been done on 3D object recogni-
tion of known objects [23, 19, 16, 10, 9, 14, 21], less progress
has been made on representing classes of 3D objects in a gen-
eral way. One class of related approaches are object-database
approaches [25, 2, 24, 12, 22, 13]. These methods construct
a large database of complete and high quality object scans.
When a novel object is encountered, it is used as a query into
the database. Commonly used features for matching include
local point features [2], shape features [12], global features
[25], or a mixture of local and global features [13]. While
these types of approaches have appealing properties, they
also have some limitations. Because the database explicitly
contains high quality models of object instances, extremely
accurate information on the query object is available if an
exact match to the query object exists. This is very effective
for tasks such as partially specified object completion [13]. A
significant drawback exists, however, if an exact match is not
found in the database. While some approaches still attempt



to find a nearest match in such a case [13, 2], the results
will be poor if the query object is sufficiently different from
any in the database. Looked at another way, instance-based
database models are necessarily discrete, containing only a
finite number of exemplars. If coverage of the object space
is not sufficient (does not include enough objects) then it will
yield poor results, in both match quality and in behavior trans-
fer. Furthermore, because the database is explicitly composed
of training examples, it necessarily scales with the size of the
training input. On moderately sized datasets this is often not
an insurmountable issue, but it can become a problem as both
the size of the class model and query latency increase with
the training size.

Another class of techniques consists of parts-based ap-
proaches. These methods learn a dictionary of parts and
represent objects via a combination of parts [8, 20, 17]. A key
advantage of parts-based approaches is compactness—a shared
dictionary of common parts means that maintaining a database
of all previously seen objects is unnecessary. Furthermore,
by associating an attribute (such as an affordance) to parts,
knowledge can be transferred to new objects. One drawback
of parts-based approaches is their inability to reconstruct
incomplete objects. Because objects are represented as a
collection of parts, a partial object model will not generally
specify what the hidden portion of the object geometry is.
While this is not necessarily an issue for recognition tasks,
it is a drawback in other contexts such as object interaction.
Furthermore, complex models consisting of numerous parts
may become computationally intractable to reason about as
the number of possible configurations is exponential in the
number of parts.

B. Variational Bayesian Principal Component Analysis

Our work uses Variational Bayesian Principal Component
Analysis (VBPCA) to learn compact bases for classes of
objects. VBPCA is an extension of probabilistic PCA (PPCA)
[15], which models each datapoint as

xi = Wci + �+ �i ∀xi ∈ X; (1)

where �i is zero mean Gaussian noise associated with datapoint
i. PPCA also makes the assumption that each projected data-
point, cj, is generated from a zero mean Gaussian distribution.
The model parameters for PPCA may be efficiently found
using the EM algorithm, which alternates between updating
the estimate of each datapoint’s coefficient, cj, and updating
W , �, and �. This probabilistic approach to PCA provides a
density model which is well suited to density estimation and
data compression. Bayesian PCA (BPCA) [5] further extends
this model by introducing (Gaussian) priors (parametrized by
H) over the elements of � and W . This allows BPCA to model
the entire posterior probability of model parameters:

p(W; �;C|X;H): (2)

Unfortunately, there is no analytic form for this probability, so
straightforward application of the EM algorithm is problem-

atic. VBPCA approximates this posterior probability as:

q(W; �;C) ≈ p(W; �;C|X;H); (3)

where q(W; �;C) is a factored approximation of the posterior:
[4, 1]

q(W; �;C) =

d∏
i=1

q(�i)

d∏
i=1

q(wi)

n∏
i=1

q(ci): (4)

This can be thought of as a regularized version of PPCA,
providing the advantages of PPCA (including intrinsic density
estimation) with increased resilience to over-fitting due to
the prior. This property makes it especially well suited for
situations where the dimensionality of the problem is high
compared to the number of datapoints, i.e. n <= d, as is true
in our case.

III. METHOD

Our approach is based on constructing a generative model
for each class of objects, and then using that model to answer
queries about novel or partial objects.

A. Class Models: Eigenobject Construction via VBPCA

We begin with a library of known objects of several classes,
consisting of a complete 3D scan of each object. For each
object in each class, we convert these scans into 3D voxel-
based objects with a canonical orientation. We use coordinate
descent congealing [11] to roughly align the objects in each
class and then manually inspect and refine the alignment
as needed. Congealing is a joint alignment algorithm that
iteratively seeks to minimize a measure of group dissimilarity
by warping group members at every iteration. We use element-
wise binary entropy across all voxel objects in a class as
our dissimilarity measure and allow rotation and translation
transformations. Some of our data was sourced from ShapeNet
[7] and generally arrived pre-aligned, while our manually
scanned objects required alignment.

To construct a model for each class, we performed VBPCA
on the registered 3D voxel representations of the class mem-
bers using a manually specified basis size, k. Our hyperpa-
rameters were all zero mean, unit variance Gaussians which
provided some regularization to the solution. A compact basis
for the objects in a given class can be found by retaining only
the first k rows of W. Given a novel object in voxel-vector
form, o, its projection onto W can be found via

o0 = WT (o− �): (5)

Conversely, any point in the space of W can be converted
back to a voxel object by solving

ô = Wo0 + �: (6)

We refer to ô as the “reconstructed” version of o and o0 as
the “projected” version of o (with respect to some class).

This formulation provides several benefits. First, we need
not store or query an entire object database; instead, we need
only store W and � for each object-class. Second, we can
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Fig. 1. The pipeline for obtaining a compressed representation of a query object. The upper left picture shows the objects used to create the plug-object
manifold. The 10 most principal components and a mean vector were retained, leading to a 50 percent reduction in database size and capturing approximately
86 percent of variance in the input. The lower row shows an example query and reconstruction.

represent any object in a given class using a single coefficient
vector of dimension ki. In practice, k � d, providing an
extremely compact representation.

Once a model is learned, it is not necessary to retain the
original objects, O, or their VBPCA coefficients, O0. Instead,
we retain an estimate of the learned (compressed) basis, W,
the estimated mean, �, and the estimated variance of the noise,
v�. Because it is assumed that the VBPCA coefficients for a
given object, o0i are normal, i.e.

p(o0i) = N (o0i : 0; v�(v�I + WTW)�1); (7)

this representation is also sufficient to provide a predictive
density in the learned class manifold.

B. Pose Estimation

Pose estimation, the determination of an object’s position
and orientation, is necessary for many robotic manipulation
and planning tasks. While it is relatively straightforward to ac-
quire a rough estimate of object position given object detection
and segmentation, determining orientation is more difficult.
Using BEOs, it is possible to determine object orientation
using a try-verify approach. We define a score based upon
the L2 error between two voxel objects,

ri(o; ôi) = 1− ||o− ôi||2
|o|

; (8)

where a score of 1 denotes a perfect match and a score of
0 indicates that all voxels differ between the two objects.
This score can be used to localize an object by projecting
it, in various orientations, onto a basis and then picking the
orientation that yields the highest reproduction score.

Let O = o1;o2; :::op be object o in p orientations. To
estimate the true orientation or o we solve

g(o) = arg max
oi2o

ri(o; ôi): (9)

In general, if a fine resolution orientation is required, there
may be a large number of candidate poses. With three degrees
of freedom for 3D rotations, discretizing to 1 degree of
precision requires 46; 656; 000 candidate poses. Fortunately,
two mitigating factors make this less daunting. First, each
query is totally independent and thus trivially parallelizable;
it is possible to distribute the workload to multiple processors
or accelerate it via GPU. Second, and more germane to this
paper, searching all of SE(3) is often unnecessary in practice.
For instance, objects in an environment often have a canonical
base upon which they sit. Leveraging this yields the common
“up is up” assumption which reduces the space of possible
orientations to those about the z axis only. Under such an
assumption, 1 degree of pose precision only requires 360
candidate poses.

C. Object Classification

Another essential part of many robotic tasks is the classi-
fication of novel objects. Let the learned models for multiple
classes be denoted �1; �2; :::; �m where �i = {Wi;mui; vi�}
and let the novel query object be denoted oq. We wish to
assign a label, li, to oq from the set L = {1; 2; :::;m} where
li corresponds to class i. Intuitively, a key attribute of an
object’s true class is the error between the original object and
the object obtained by projecting o into the basis learned for
its true class and then projecting back into voxel space. Care
must be taken in several areas, however, to create a successful
3D object classifier. Equation 8 works well for objects of the
same class, but can be misleading when applied to objects of
very different shape. Consider, for instance, the comparison
of two significantly different objects, both with little solid
volume. The first object is a bowl with thin sides while the
second is a tall and thin flower. Because both objects have
small filled volume, much of the unfilled space in the voxel
representation will correspond between the two object models.
Directly applying equation 8 in such a situation would lead to
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