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1. Introduction
Reinforcement learning researchers have employed a wide
variety of linear function approximation schemes for con-
tinuous domains, most commonly Radial Basis Functions
(RBFs) and CMACs (Sutton & Barto, 1998). For most
problems, choosing the right basis function set is criticial
for successful learning. Unfortunately, most approaches
require significant design effort or problem insight, and no
basis function set is both sufficiently simple and sufficiently
reliable to be generally satisfactory. Recent work (Mahade-
van, 2005) has focused on learning basis function sets from
experience, removing the need to design a function approx-
imator but introducing the need to gather data to create one
before learning can take place.

In the applied sciences the most common continuous func-
tion approximation method is the Fourier Series. Although
the Fourier Series is a simple and effective function approx-
imator with solid theoretical underpinnings, it is almost
never used in for value function approximation.

We describe the Fourier Basis, a simple fixed linear func-
tion approximation scheme using the terms of the Fourier
Series as basis functions. We present empirical results
showing that it performs well compared to RBFs and the
Polynomial Basis, and is competitive with Proto-Value
Functions.

2. The Fourier Basis
We define the univariate kth order Fourier Basis as:

φi(x) = cos(iπx), (1)

for i = 0, ..., k, and the kth order multivariate Fourier Basis
for m variables as:

φi(x) = cos(πci · x), (2)

where ci = [c1, ..., cm], cj ∈ [0, ..., k], 0 ≤ j ≤ m is a
coefficient vector which assigns integer weight cj for each
input variable xj . The full basis includes terms for all such
weight vectors (resulting in (k+1)n terms for n input vari-
ables), although prior knowledge of the domain can be used
to rule some out.

Although the Fourier Basis seems like a natural choice for
value function approximation, we know of very few in-
stances (e.g., (Kolter & Ng, 2007)) of its use in reinforce-
ment learning, and no empirical study of its properties.

3. Empirical Evaluation
3.1. The Swing-Up Acrobot

In the swing-up Acrobot (Sutton & Barto, 1998), we em-
ployed Sarsa(λ) (γ = 1.0, λ = 0.9, ε = 0) for Fourier
Bases of orders 3 (resulting in 256 basis functions), 5 (re-
sulting in 1296 basis functions) and 7 (resulting in 4096 ba-
sis functions) and RBF, Polynomial and (normalized Lapla-
cian) PVF bases of equivalent sizes. (We did not run PVFs
with 4096 basis functions because the nearest-neighbour
calculations for a graph that size proved too expensive) We
systematically varied α (the gradient descent term) to ob-
tain the best performance for each basis function type and
order combination.

The results (Figure 1) demonstrate that the Fourier Basis
learners outperformed all other types of learning agents
for all sizes of function approximators. In particular, the
Fourier Basis performs better initially than the Polynomial
Basis (which generalizes broadly) and converges to a bet-
ter policy than the RBF Basis (which generalizes locally).
It also performs slightly better than PVFs, even though the
Fourier Basis is a fixed, rather than learned, basis.

3.2. The Discontinuous Room

In the Discontinuous Room, show in Figure 2, an agent in a
room must reach a target; however the direct path to the tar-
get is blocked by a wall, which the agent must go around.
This domain is intended as a simple continuous domain
with a large discontinuity, to empirically determine how
the Fourier Basis handles such a discontinuity compared
to Proto Value Functions, which were specifically designed
to handle discontinuities.

In order to make a reliable comparison, agents using PVFs
were given a perfect adjacency matrix containing every le-
gal state and transition, thus avoiding sampling issues and



The Fourier Basis

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Episodes

S
te

ps

 

 
O(3) Fourier
4 RBFs
O(3) Polynomial
256 PVFs

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

Episodes

S
te

ps

 

 

O(5) Fourier

6 RBFs

O(5) Polynomial

1296 PVFs

(a) (b)

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

Episodes

S
te

ps

O(7) Fourier
8 RBFs
O(7) Polynomial

(c)

Figure 1. Learning curves for agents using (a) order 3 (b) order 5
and (c) order 7 Fourier Bases, and RBFs and PVFs with corre-
sponding number of basis functions.
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Figure 2. The Discontinuous Room and its learning curves for
agents using O(5) and O(7) Fourier Bases and agents using 36
and 64 PVFs.

removing the need for an out-of-sample extension method.
We used Sarsa(λ) (γ = 0.9, λ = 0.9, ε = 0) using Fourier
Bases of order 5 and 7 and agents using 36 and 64 PVFs.
The agents using the Fourier Basis do not initially perform
as well as the agents using PVFs, probably because of the
discontinuity, but this effect is transient and the Fourier Ba-
sis agents eventually perform better.

3.3. Mountain Car

For Mountain Car (Sutton & Barto, 1998), we employed
Sarsa(λ) (γ = 1.0, λ = 0.9, ε = 0), Fourier Bases of or-
ders 3 and 5, and RBFs and PVFs of equivalent sizes (we
were unable to learn with the Polynomial Basis). Here we
found it best to scale the α values for the Fourier Basis
by 1

1+m , where m was the maximum degree of the basis
function. This allocated lower learning rates to higher fre-
quency basis functions.

The results (shown in Figure 3) indicate that for low orders,
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Figure 3. Learning curves for agents using (a) order 3 (b) order 5
Fourier Bases, and RBFs and PVFs with corresponding number
of basis functions.

the Fourer Basis outperforms RBFs and PVFs. For higher
orders, we see a repetition of the learning curve in Figure 2,
where the Fourier Basis initially performs worse (because
it does not model the discontinuity in the value function
well) but converges to a better solution.

4. Summary
Our results show that the Fourier Basis provides a simple
and reliable basis for value function approximation. We
expect that for many smaller problems, the Fourier Basis
will be sufficient to learn a good value function without
any extra work.

Our experiences with the Fourier Basis show that it is a sim-
ple and easy to use basis set that reliably performs well on
a range of different problems. As such, although it may not
perform well for domains with several significant disconti-
nuities, its simplicity and reliability suggest that the Fourier
Basis should be the first function approximator used when
reinforcement learning is applied to a new continuous prob-
lem.

For the full version of this paper, please see Konidaris and
Osentoski (2008).
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