
Published as a conference paper at ICLR 2025

GEOMETRY OF NEURAL REINFORCEMENT LEARNING
IN CONTINUOUS STATE AND ACTION SPACES

Saket Tiwari ∗

Department of Computer Science
Brown University

Omer Gottesman
Amazon Web Services

George Konidaris
Department of Computer Science
Brown University

ABSTRACT

Advances in reinforcement learning (RL) have led to its successful application in
complex tasks with continuous state and action spaces. Despite these advances in
practice, most theoretical work pertains to finite state and action spaces. We pro-
pose building a theoretical understanding of continuous state and action spaces by
employing a geometric lens to understand the locally attained set of states. The set
of all parametrised policies learnt through a semi-gradient based approach induces
a set of attainable states in RL. We show that the training dynamics of a two-layer
neural policy induce a low dimensional manifold of attainable states embedded in
the high-dimensional nominal state space trained using an actor-critic algorithm.
We prove that, under certain conditions, the dimensionality of this manifold is of
the order of the dimensionality of the action space. This is the first result of its
kind, linking the geometry of the state space to the dimensionality of the action
space. We empirically corroborate this upper bound for four MuJoCo environ-
ments and also demonstrate the results in a toy environment with varying dimen-
sionality. We also show the applicability of this theoretical result by introducing
a local manifold learning layer to the policy and value function networks to im-
prove the performance in control environments with very high degrees of freedom
by changing one layer of the neural network to learn sparse representations.

1 INTRODUCTION

The goal of a reinforcement learning (RL) agent is to learn a policy that maximises its expected,
time discounted cumulative reward (Sutton & Barto, 1998). Recent advances in RL have lead to
agents successfully learning in environments with enormous state spaces, such as games (Mnih
et al., 2015; Silver et al., 2016; Wurman et al., 2022), robotic control in simulation (Lillicrap et al.,
2016; Schulman et al., 2015; 2017) and real environments (Levine et al., 2016; Zhu et al., 2020;
Deisenroth & Rasmussen, 2011; Kaufmann et al., 2023). However, we do not have an understanding
of the intrinsic complexity of these seemingly large problems.

We investigate the complexity of RL environments through a geometric lens. We build on the in-
tuition behind the manifold hypothesis, which states that most high-dimensional real-world datasets
actually lie on or close to low-dimensional manifolds (Tenenbaum, 1997; Carlsson et al., 2007; Fef-
ferman et al., 2013; Bronstein et al., 2021); for example, the set of natural images is a very small,
smoothly varying subset of all possible value assignments for the pixels. A promising geometric
approach is to model this data as a low-dimensional structure—a manifold—embedded in a high-
dimensional ambient space. In supervised learning, especially deep learning theory, researchers have
shown that the approximation error depends strongly on the dimensionality of the manifold (Sha-
ham et al., 2015; Pai et al., 2019; Chen et al., 2019; Cloninger & Klock, 2020), thus connecting
the learning complexity to the complexity of the underlying structure of the dataset. RL researchers
have previously applied the manifold hypothesis —- i.e. by hypothesizing that the effective state
space lies on a low-dimensional manifold (Smart & Kaelbling, 2002; Mahadevan, 2005; Machado
et al., 2017; 2018; Banijamali et al., 2018; Wu et al., 2019; Liu et al., 2021), but the assumption has
never been theoretically and empirically validated.

∗Corresponding author: saket tiwari@brown.edu

1

Published as a conference paper at ICLR 2025

RL shares many similarities with control theory (Bertsekas, 2012; 2024). In a control-theoretic
framework, the objective is to drive the system, over time, to a desired state or goal. Consequently,
theoreticians and practitioners are often interested in the reachability of a control system to un-
derstand what state is reachable given how system changes under control inputs, i.e. the system
dynamics. Locally reachable states are the set of states to which the system can possibly transition,
starting from a fixed state, under all smooth time variant controls. Control theorists have long stud-
ied the set of reachable states (Kalman, 1960) using a differential geometric framework (Sussmann,
1973; 1987). Theoretical research in the study of control systems is often focused on finding nec-
essary and sufficient conditions in the system dynamics such that all states are reachable (Isidori,
1985; Sun et al., 2002; Respondek, 2005; Sun, 2007) under all the admissible time-variant policies.
In RL, the objective is to maximize the discounted return via gradient-based updates to the policy
parameters, so the focus is on states attained through a sequence of policies determined by these
parameters.

Furthermore, a theoretical understanding of states attainable using neural network (NN) policies
gives us insight into the geometry and low-dimensional structure of data in RL. This requires utilis-
ing an analytically tractable model of NNs. Ever since the remarkable success of neural networks,
researchers have developed various theoretical models to better understand their efficacy. A theo-
retical model intended to study a complex object, such as a neural network, often ends up making
simplifying assumptions for tractability. One such theoretical model studies the evolution of neu-
ral networks linearly in parameters during training of wide neural networks (Lee et al., 2019; Jacot
et al., 2018), meaning in a setting where the width approaches infinity. This has helped researchers
develop theories of the generalization properties of neural networks (Jacot et al., 2018; Allen-Zhu
et al., 2019a; Wei et al., 2019; Adlam & Pennington, 2020). We similarly utilize a single hidden
layer neural network model for the policy that is linear in terms of its parameters, not linear in the
state, as the width approaches infinity, as has previously been applied to RL (Wang et al., 2019; Cai
et al., 2019a).

Within this theoretical framework, we provide a proof of the manifold hypothesis for deterministic
continuous state and action RL environments with wide two-layer neural networks. We prove that
the effective set of attainable states is subset of a manifold and its dimensionality is upper bounded
linearly in terms of the dimensionality of the action space, under appropriate assumptions, indepen-
dent of the dimensionality of the nominal state space. The primary intuition is that the set of states
locally attained are restricted by two factors: 1) the policy is time invariant and state dependent, and
2) the set of policies is constrained by the optimization of a wide, two-layer neural network using
stochastic policy gradients. Our theoretical results are for deterministic environments with con-
tinuous states and actions; we empirically corroborate the low-dimensional structure of attainable
states on MuJoCo environments (Todorov et al., 2012) by applying the dimensionality estimation
algorithm by Facco et al. (2017). To show the applicability and relevance of our theoretical result,
we empirically demonstrate that a policy can implicitly learn a low-dimensional representation with
marginal computational overhead using the CRATE framework (Yu et al., 2023a;b; Pai et al., 2024).
We present an algorithm that does two things simultaneously: 1) learns a mapping to a local low
dimensional representation parameterised by a DNN, and 2) uses this effectively low-dimensional
mapping to learn the policy and value function. Our modified neural network works out of the box
with SAC (Haarnoja et al., 2018) and we show significant improvements in high dimensional DM
control environments (Tunyasuvunakool et al., 2020).

2 BACKGROUND AND MATHEMATICAL PRELIMINARIES

We first describe the continuous-time Markov decision process (MDP), which forms the foundation
upon which our theoretical result is based. Then we provide mathematical background on various
ideas from the theory of manifolds that we employ in our proof.

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

We first analyse continuous-time reinforcement learning in a deterministic Markov decision process
(MDP) defined by the tupleM = (S,A, T , fr, s0, λ) over time t ∈ [0, T). S ⊂ Rds is the set of all
possible states of the environment. A ⊂ Rda is the rectangular set of actions available to the agent.
T : S × A × R+ → S and T ∈ C∞ is a smooth function that determines the state transitions:

2

Published as a conference paper at ICLR 2025

s′ = T (s, a, τ) is the state to which the agent transitions when it takes the action a at state s for the
time period τ . Note that T (s, a, 0) = s, which means that the agent’s state remains unchanged if
an action is applied for a duration of τ = 0. The reward obtained for reaching the state s is fr(s),
determined by the reward function fr : S → R. st denotes the state the agent is at time t and at is
the action it takes at time t. s0 is the fixed initial state of the agent at t = 0, and the MDP terminates
at t = T . The agent lacks access to f and fr, and can only observe states and rewards at a given time
t ∈ [0, T). The agent’s decision-making process is determined by its policy π : S → A. Simply
put, the agent takes action π(s) in state s. The agent’s goal is to maximize the discounted return
J(π) =

∫ ⊺
0
e−

l
λ fr(sl)dl, where st+ϵ = T (st, π(st), ϵ) for small ϵ and for all t ∈ [0, T). We define

the action tangent mapping, g : S ×A → Rds , for an MDP as

∇af(s, a) = lim
ϵ→0+

T (s, a, ϵ)− s
ϵ

=
∂T (s, a, ϵ)

∂ϵ
.

Intuitively, this captures the direction of change in the state s after taking an action a. We consider
the family of control affine systems that represent a wide range of control systems (Isidori, 1985;
Murray & Hauser, 1991; Tedrake, 2023), such that ṡt = g(s) +

∑da
i=1 hi(s)ai, where ṡt is the

time derivative of the state, g, hi : Rds → Rds are infinitely differentiable (or smooth) functions.
Similarly, π(s) = [π1(s), . . . , πda(s)] is the direction of change in the agent’s state following a
policy π at state s for an infinitesimally short time. The curve in the set of possible states, or the
state-trajectory of the agent, is a differential equation whose integral form is:

sπt = s0 +

∫ t

0

g(sπl) +

da∑
i=1

hi(s
π
l)πi(s

π
l)dl. (1)

This solution is also unique (Wiggins, 1989) for a fixed start state, s0, and Lipschitz continuous
policy, π. The above curve is smooth if the policy is also smooth. Therefore, given an MDPM and
a smooth deterministic policy π ∈ Π, the agent traverses a continuous time state-trajectory or curve
HM,π : [0, T) → S . The value function at time t for a policy π is the cumulative future reward
starting at time t:

vπ(st) =

∫ T

t

e−
l+t
λ fr(s

π
l)dl. (2)

Note that the objective function, J(π), is the same as vπ(s0). Our specification is very similar to
classical control and continuous time RL (Cybenko, 1989; Doya, 2000a) but we define the tran-
sitions, T , differently. More recently, researchers have developed the theory for continuous-time
RL in a model-free setting with stochastic policies and dynamics (Wang et al., 2020; Jia & Zhou,
2022a).

2.2 MANIFOLDS

In practice, MDPs have a low-dimensional underlying structure resulting in fewer degrees of free-
dom than their nominal dimensionality. In the Cheetah MujoCo environment, where the Cheetah
is constrained to a plane, the goal of the RL agent is to learn a policy to make the Cheetah move
forward as fast as possible. The actions available to the agent are to provide torques at each of
the 6 joints. For example, an RL agent learning from control inputs for the Cheetah MuJoCo envi-
ronment, one can “minimally” describe the cheetah’s state by its “pose”, velocity, and position as
opposed to the entirety of the input vector. The idea of a low-dimensional manifold embedded in a
high-dimensional state space formalises this.

A function h : X → Y , from one open subset X ⊂ Rl1 , to another open subset Y ⊂ Rl2 ,
is a diffeomorphism if h is bijective, and both h and h−1 are differentiable. Intuitively, a low
dimensional surface embedded in a high dimensional Euclidean space can be parameterised by a
differentiable mapping, and if this mapping is bijective we term it a diffeomorphism. Here, X is
diffeomorphic to Y . A manifold is defined as follows (Guillemin & Pollack, 1974; Boothby, 1986;
Robbin et al., 2011).
Definition 1. A subset M ⊂ Rk is called a smooth m dimensional submanifold of Rk iff every
point p ∈ M has an open neighborhood U ⊂ Rk such that U ∩M is diffeomorphic to an open
subset O ⊂ Rm. A diffeomorphism, ϕ : U ∩M → O is called a coordinate chart of M and the
inverse, ψ := ϕ−1 : O → U ∩M is called a smooth parameterisation.

3

Published as a conference paper at ICLR 2025

We illustrate this with an example in Figure 1. Further note that a coordinate chart is called local to
some point p ∈ U ⊂M the diffeomorphism property holds in the neighborhood U . It offers a local
”flattening” of the local neighborhood. It is called global if it holds everywhere in M but not all
manifolds have a global chart (e.g., Figure 1). If M ⊂ Rk is a smooth non-empty m-manifold, then
m ≤ k, reflecting the idea that a manifold is of lower or equal dimension than its ambient space. A
smooth curve γ : I → M is defined from an interval I ⊂ R to the manifold M as a function that
is infinitely differentiable for all t. The derivative of γ at t is denoted as γ̇(t). The set of derivatives
of the curve at time t, γ̇(t), for all possible smooth γ, forms a set that is called the tangent space
Tp(M) at the point p. For a precise definition, see the appendix A. Taking partial derivatives of ψ
with respect to each coordinate xj , we obtain the vectors in Rk:

∂ψ

∂xj
=

(
∂ψ1

∂xj
,
∂ψ2

∂xj
, . . . ,

∂ψk

∂xj

)
These vectors span the tangent space TpM at the point p. Therefore, locally the manifold can be
alternatively represented as the space spanned by the non-linear bases: Span(∂ψ

1

∂xj ,
∂ψ2

∂xj , . . . ,
∂ψk

∂xj).

2.3 VECTOR FIELDS, LIE-SERIES, AND CONTROL THEORY

Figure 1: The surface of an open cylinder of
unit radius, denoted by S2, in R3 is a 2D man-
ifold embedded in a 3D space. More formally,
S2 = {(x, y, z)|x2+y2 = 1, z ∈ (−h, h)} where
the cylinder’s height is 2h. One can smoothly pa-
rameterise S2 as ψ(θ, b) = (sin θ, cos θ, b). The
coordinate chart is ϕ(x, y, z) = (sin−1 x, z).

Curves and tangent spaces in manifolds natu-
rally lead to vector fields. In the same way
that a curve represents how an agent’s state
changes continuously, a vector field captures
this change locally at every point of the state
space. A tangent vector can be represented as
X = [v1, ..., vm]⊺, where each vi is a function.

Definition 2. The vector field X is called a
Cr vector field if, in any local coordinate chart
(U,φ) with coordinates (x1, . . . , xm), the com-

ponents of X in the local basis
{

∂
∂xi

}
are Cr

functions. That is, in local coordinates, X can
be written as X(x) =

∑m
i=1 vi(x)

∂
∂xi

, where
each component function vi : U → R is Cr.

We denote by V∞(M) the set of all smooth
vector fields on manifold M . The rate of
change of a function f ∈ C∞(M) at a point
x along the vector field X is defined by

LX(f) = X(f(x)) =

m∑
i=1

vi
∂f(x)

∂xi
. (3)

Associated with every such vector field X ∈ V∞(M) and x0 ∈ M is the integral curve: x(t).
Intuitively, following along the direction X for time t, the curve starting from x0 reaches the point
x(t). The solution to the ODE with the starting condition x(0) = x0 is denoted as the exponential
map eXt (x0). One can imagine that vector fields have a connection to policies in the way a policy
determines the direction of change. Therefore, it is an effective way to model the change in an
agent’s state given a vector field and an arbitrary fixed starting state over a time period.

Taylor series help approximate complex functions with polynomials; analogously, we will use the
Lie series of the exponential map. To define this expansion, we first recursively define the derivative
of Lie LkX(f) = LX(Lk−1

X (f)) for k ∈ N+ where LX(·) is defined in equation 3. The Lie series of
the exponential map with f(x) = x is (Jurdjevic, 1997; Cheng et al., 2011)

eXt (x) =x+ tX(x) +

∞∑
l=1

tl+1

(l + 1)!
Ll+1
X (x). (4)

4

Published as a conference paper at ICLR 2025

3 MODEL FOR LINEARISED WIDE TWO-LAYER NEURAL POLICY

An RL agent in the policy gradient framework (Sutton et al., 1999; Konda & Tsitsiklis, 1999) is
equipped with a policy π parameterised by parameters θ and takes gradient ascent steps in the di-
rection of∇θJ(π(; θ)). Suppose that the agent’s policy is parameterised by a wide two-layer neural
network policy. This update direction can be estimated in different ways (Williams, 1992; Kakade,
2001). Such an algorithm generates a sequence of parameters:

θτ+1 ← θτ + η∇θJ(π(; θ)), (5)

where η is the learning rate. In our setting, a neural RL agent parameterises the policy as a two-layer
neural network with smooth activation. We highlight the salient details below.

3.1 LINEAR PARAMETERISATION OF NEURAL POLICY

For the set of permissible policies we consider the family of two-layer feed forward neural networks
with GeLU activation (Hendrycks & Gimpel, 2016), which is a smooth analog of the popular ReLU
activation (Nair & Hinton, 2010). We follow the parameterisation for a two-layer fully connected
neural network employed by Cai et al. (2019b) and Wang et al. (2019) for analysis of RL algorithms,
which is also used in theoretical analyses of wide neural networks in supervised learning (Allen-Zhu
et al., 2019b; Gao et al., 2019; Lee et al., 2019). For a weight vector W of the first layer and weights
C for the last layer a shallow, two-layer, fully connected neural network is parameterised as:

f(s;W,C) =
1√
n

n∑
κ=1

Cκφ(Wκ · s), (6)

where W ∈ Rnds is the vector of first layer parameters where each Wk is a ds length vec-
tor block and therefore the complete vector W = [W1,W2, ...,Wn], φ is GeLU activation, and
B ∈ Rda×n is a matrix comprised of n column vectors of dimension da denoted Ck, meaning
B = [C1, C2, ..., Cn]. Here n is the width of the neural network. The parameters are randomly
initialised i.i.d as Bk ∼ Unif(−1, 1) and Wk ∼ Normal(0, Ids/ds), where Ids is a ds × ds iden-
tity matrix and Unif is the uniform distribution. During training, Cai et al. (2019b) and Wang et al.
(2019) only updateW while keepingB fixed to its random initialisation despite which, for a slightly
different policy gradient based learning, the agent learns a near optimal policy. Researchers study
neural networks in simplified theoretical settings to advance the understanding of a complex system
while keeping the mathematics tractable (Li & Yuan, 2017; Jacot et al., 2018; Du et al., 2018; Mei
et al., 2018a; Allen-Zhu et al., 2019b). While this shallow model of neural networks does away with
complexity from multiple layers, it captures the over-parameterization in NNs.

LetW 0 be the initial parameters of the policy network defined in Equation 6. A linear approximation
of the policy is defined as

f lin(s;W) =f(s;W 0) +∇θf(s; θ)|θ=W0
(W −W 0) = f(s;W 0) + Φ(s;W0)(W −W 0) (7)

where Φ(x;W0) =
1√
n

[
C0

1φ
′(W 0

1 · s)s⊺, C0
2φ

′(W 0
2 · s)s⊺, ..., C0

nφ
′(W 0

n · s)s⊺
]

is a da× nds fea-
ture matrix for the input s, φ′ is the gradient of GeLU function w.r.t the input, · represents the dot
product, and the matrix Φ formed by the concatenation of da × ds matrices Bkφ′(W 0

k · s)s⊺ for
k = 1, ..., n. This results in a matrix of size da × nds. W is an nds vector as described above.
We will omit the parameters W,W 0, and B from the representation of policies when there is no
ambiguity. It is a linear approximation because it is linear in the weights W and non-linear, within
Φ, in the initial weights W 0 and the state s. This leads us to the definition of the family of linearised
policies for a fixed initialisation W 0, similar to Wang et al. (2019).
Definition 3. For a constant r > 0, and fixed W0. For all widths n ∈ N, we define

FW0,r,n =

{
f̂ =

1√
n

n∑
κ=1

C0
κφ

′(W 0
κ · s)s ·Wκ : ||W −W 0|| ≤ r

}
.

This linearised approximation of the policy simplifies our analysis of the set of reachable states. We
further note that it might seem restrictive to consider a network without bias, but we can extend this
analysis by adding another input dimension, which is always set to 1.

5

Published as a conference paper at ICLR 2025

3.2 CONTINUOUS TIME POLICY GRADIENT

Under the parameterisation described above, the sequence of neural net parameters as described by
the updates in equation 5, are determined by the semi-gradient update direction

∇θJ =E
[
∇aQπ(s, a, t)∇θf lin(s;W)

]
,

where the expectation is over the visitation measure ρπ and Qπ : S ×A× [0, T] is the action-value
function that represents the value of taking a constant action a at time t. For further details see
Appendix H. As is usually done, the following stochastic gradient based update rule approximates
the true gradient for the policy parameters

W(k+1)η −Wkη =
η

B

B∑
b=1

∇aQWkη (sb, ab, tb)Φ(sb;W0), (8)

whereWkη represents the parameters after k gradient steps with learning rate η, QWkη is the action-
value function associated with policy parameterised by f lin(;W kη), BWkη

= {(sb, ab, tb)}Bb=1 is
randomly chosen batch of data from samples of the SDE (Doya, 2000b; Jia & Zhou, 2022a)

dSt =

(
g(St) +

da∑
i=1

hi(St)f
lin
i (s;Wkη)

)
dt+ σ(St)dwt,

where W0 = W 0 (see Section 3.1), wt is the ds dimensional Wiener process where σ : Rds →
Rds×ds is the exploration component of the agent. We assume access to an oracle that gives us the
gradients ∇aQWkη , which do not need to be true in practice. Therefore, a sample BW is an i.i.d.
set of samples from {1, . . . , N ′}, for large N ′, of size B. Thus we can write the expectation of the
gradient update as follows

EBW

[
η

B

B∑
b=1

∇aQ̂Wkη (sb, ab, tb)Φ(sb;W0)

]
=

η

N ′

N ′∑
i=1

∇aQ̂Wkη (si, ai, ti)Φ(si;W0),

where we have an appropriate function Q such that the above condition is satisfied. Let the term
on the right hand side be denoted by ∇WJ(W) in the limit N ′ → ∞. Here, σ is the exploration
component of the dynamics. We re-write the update rule from equation 8 as follows,

W(k+1)η −Wkη = η∇WJ(W)|W=Wkη
+ ηξ(Wkη,BWkη

) = G(Wkη, η), (9)

where ξ(Wkη,BWkη
) =

(
1
B

∑B
b=1∇aQWkη (sb, ab, tb)Φ(sb;W0)−∇WJ(W)|W=Wkη

)
. There-

fore, we have EBW
[ξ(W,BW)] = 0 given an unbiased sampling mechanism for BW . Simiar formu-

lation of SGD is also used in supervised learning (Cheng et al., 2020; Ben Arous et al., 2022).

4 MAIN RESULT: LOCALLY ATTAINABLE STATES

The state space is typically thought of as a dense Euclidean space with all states reachable, but it is
not necessarily the case that all such states are reachable by the agent. Three main factors constrain
the states available to an agent: 1) the transition function, 2) the family of functions to which the
policy belongs, and 3) the optimization process which determines the dynamics of parameters of
the policies. We therefore are interested in the set of states attained by the trajectories of linearised
policy with parameters that are optimised as in Section 3.2 around a fixed state s for time δ. The
properties of this set gives us a proxy for the “local manifold” around any arbitrary state.

A vector field, its exponential map, and the corresponding Lie series described in Section 2.3 are
analogous to parameterised policy, the state transition based on this policy, and an approximation
of this rollout. To formalise this, we denote the vector field determined by the parameters W of a
linearised policy with initialisation W 0 is

X(W) = g(x) + h(x,Φ(x;W 0)W 0)Φ(x;W 0)W. (10)

The set of states attained by the rollout of this policy, parameterised by W,W 0, over time δ is
therefore eX(W)

(0,δ) (s), i.e. the image of the interval (0, δ) under the exponential map corresponding

6

Published as a conference paper at ICLR 2025

to the vector field X(W,W0). Moreover, W0 is randomly initialised, and the parameters W are
obtained through stochastic semigradient updates (equation 9).

There are two time scales: one is the time of policy rollouts and the other is the policy parameter
optimisation. This complicates the analysis. We will use t for time in the physical sense of an RL
environment and τ for the gradient update step. Continuous-time analogues for discrete stochas-
tic gradient descent algorithms at small step sizes have yielded remarkable theoretical analyses of
algorithms (Mei et al., 2018b; Chizat & Bach, 2018; Jacot et al., 2018; Lee et al., 2019; Cheng
et al., 2020; Ben Arous et al., 2022). Therefore, to analyse the evolution of the attainable states
under a time-discretized sequence of parameters, we derive an approximate continuous time dynam-
ics for the evolution of the randomly initialised parameters W . Many theoretical frameworks that
study SGD in continuous time seek to approximate the evolution of the high-dimensional parameter
distribution, but we seek to closely approximate the Lie series. We therefore utilise the theoret-
ical framework provided by Ben Arous et al. (2022), with appropriate modifications, to analyse
continuous-time dynamics of relevant statistics in the infinite-width limit.

Let ξn, Gn be the semi-gradients for linearised policy of width n, f lin
n . Let ηn be a sequence

of learning rates such that ηn → 0 as n → ∞ at rate 1√
n

. For a random variable Wn, which

determines the distribution of the nds parameters, let eX(Wn)
t (s) denote the push-forward of Wn of

the exponential map. In the case of random variables, the attained set of states is sampled from this
time-dependent push-forward of the distribution Wτ

n, where τ is the gradient time step. We make
the following assumptions.
Assumption 4. Suppose Hn(W,BW) = ξn(W,BW)−Gn(W) for any n and a given compact set
K there exists a constant σH,K such that EBW

[
L2(Hn(W,BW))4

]
≤ nσ2

H,K for W ∈ K, where
L2 is the 2-norm.

This assumption is a relaxed version of the assumption on the variance of the gradient update (as-
sumption 4.4) made by Wang et al. (2019). We make a further assumption about the Lipschitz
continuity of Hn and Gn, similar to Ben Arous et al. (2022).
Assumption 5. Gn is locally Lipschitz continuous in W .

Furthermore, we assume that the activation, φ, has bounded first and second derivatives everywhere
in R. This assumption holds for GeLU activation. We also denote by Jhj(s) the ds × ds Jacobian
of the ds × 1 vector-valued function hj(s). We also define the proximity of a random variable to a
manifold in a probabilistic manner.
Definition 6. A random variable, X , is concentrated around a manifold M with rate R if
Pr(distance(X,M) ≤ D −O(ϵ)) ≤ e−R(D).

Intuitively, this means that the probability that the random variable X lies at some distance decays
exponentially in distance.

Theorem 1. Given a continuous time MDP M, a fixed state s, a sequence of two-layer
linearised neural network policy, f lin

n , initialised with i.i.d samples from Normal(0, 1/ds),
semi-gradient based updates (ηn, ξn, Gn) which satisfy assumptions 4, 5, then for varying
δt ∈ (0, δ) and fixed τ > 0 the random variable defined by the push-forward of the ran-
dom variable W τ

n w.r.t the exponential map eX(W τ
n)

δt (s) converges weakly to a random variable
Ŝ + S̄ such that Ŝ concentrates around an m-dimensional manifold Mδ′,τ with m ≤ 2da + 1
at rate R, that depends on the operator norms of the matrices Jhj(s), j ∈ {1, . . . , da}, the
values gk(s), k ∈ {1, . . . , ds}, τ . Further, the variable S̄ is O(δ3).

Intuitively, this means that in the infinite width limit for very low learning rates the probability mass
of the push-forward of the exponential map is concentrated around a 2da + 1 dimensional manifold
and this probability decays exponentially as one moves away from this manifold. The proof is
provided in Appendix G. The proof sketch is as follows:

1. We expand the Lie series up to an error term of δ3 (Appendix B).
2. We then show the weak convergence of the dynamics of random variables that determine

the Lie series in Appendix F, this Section closely follows the proof by Ben Arous et al.
(2022).

7

Published as a conference paper at ICLR 2025

3. Finally, we show that the push forward of the random variable W τ through Lie series ex-
pansion is concentrated around a space spanned by 2da+1 vectors for fixed t and therefore
for variable t there is a 2da + 2 around which the data lie, modulo the δ3 distance.

The manifoldM is locally derived as being spanned by (hj , v
τ
j , tg + t2g′) locally at s. Here, the

directions in which the individual action dimensions change the state locally are h1, . . . , hda . The
mean second-order change: vτj =

∑ds
k=1

∂hj(s)
∂sk

∑da
j′=1 ā

τ
j′hj′,k(s), where Jhj is the Jacobian of the

function hj(s) and āτj′ is a constant that depends on the gradient time τ , and the paraboloid. g′ is first
order partial derivative of g, and therefore tg + t2g′ is a paraboloid. This is similar to how a local
neighborhood is defined as being spanned by bases vectors in Section 2.2. Informally extending
and intuiting this result, one can hypothesize that over the training dynamics of a linearised neural
network, if the parameters remain bounded, the union of trajectories starting from a state s over
a “small” time interval δ then the trajectories are concentrated around a 2da + 3 manifold. The
reason being that their is an additional degrees of freedom from the gradient dynamics. This means
“locally” the data is concentrated around some low-dimensional manifold whose dimensionality is
linear in da.

5 EMPIRICAL VALIDATION

Our empirical validation is threefold. First, we show the validity of the linearised parameterisation
of the policy (Equation 7) as a theoretical model for canonical NNs (Equation 6). Second, we
verify that the bound on the manifold dimensionality as in Theorem 1 holds in practice. In the third
subsection, we demonstrate the practical relevance of our result by demonstrating the benefits of
learning compact low-dimensional representations, without significant computational overhead.

5.1 APPROXIMATION ERROR WITH LINEARISED POLICY

Figure 2: We observe that the difference
between the returns approaches zero as
we increase the width.

We empirically observe the impact of our choice of lin-
earised policies as a theoretical model for two-layer NNs
by measuring the impact on the returns of this choice.
We calculate the difference in returns for DDPG using
canonical NNs and linearised NNs as parameterisations
for its policy network, while only training the weights
of the first layer. Let the empirically observed return to
which the DDPG algorithm converges using a canonical
NN policy be J∗

n, and J lin
n be the same for a linearised

policy. In figure 2 we report the value (J∗
n−J lin

n) on the y-
axis and log2 n on the x-axis for the Cheetah environment
(Todorov et al., 2012; Brockman et al., 2016). We present
additional training curves in the appendix (figure 7) that
compare how the returns vary as training progresses. In-
terestingly, at large widths (log2 n > 15) the discounted returns match across training steps for
canonical and linearised policy parameterisations. This suggests that the agent’s learning dynamics
are captured by a linearised policy as n→∞. All results are averaged across 16 seeds.

5.2 EMPIRICAL DIMENSIONALITY ESTIMATION

We empirically corroborate our main result (Theorem 1) in the MuJoCo domains provided in the
OpenAI Gym (Brockman et al., 2016). These are all continuous state and action spaces with da < ds
for simulated robotic control tasks. The states are typically sensor measurements such as angles,
velocities, or orientation, and the actions are torques provided at various joints. We estimate the
dimensionality of the attainable set of states upon training. To sample data from the manifold, we
record the trajectories of multiple DDPG evaluation runs across different seeds (Lillicrap et al.,
2016), with two changes: we use GeLU activation (Hendrycks & Gimpel, 2016) instead of ReLU
in both policy and value networks, and we also use a single hidden layer network instead of 2
hidden layers for both networks. Performance is comparable to the original DDPG architecture (see
Appendix L). For background on DDPG refer to Appendix J. These choices keep our evaluation of

8

Published as a conference paper at ICLR 2025

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 3: Estimated dimensionality of the attainable states, in blue, is far below ds (green line) and
also below 2da + 1 (red line) for four tasks, estimated using the method by Facco et al. (2017).

the upper bound as close to the theoretical assumptions as possible while still resulting in reasonably
good discounted returns. We then randomly sample states from the evaluation trajectories to obtain
a subsample of states, D = {si}ni=1. We estimate the dimensionality with 10 different subsamples
of the same size to provide confidence intervals.

We employ the dimensionality estimation algorithm introduced by Facco et al. (2017), which es-
timates the intrinsic dimension of datasets characterized by non-uniform density and curvature, to
empirically corroborate Theorem 1. More details on the dimensionality estimation procedure are
presented in the Appendix I. Estimates for four MuJoCo environments are shown in Figure 3. For
all environments, the estimate remains below the limit of 2da + 1 in accordance with Theorem 1.

5.3 EMPIRICAL VALIDATION IN TOY LINEAR ENVIRONMENT

Figure 4: The intrinsic dimensionality
estimate of attainable states linear fully
reachable system under linearised pol-
icy on y-axis.

A deterministic system is fully reachable if given any start
state, s0 ∈ Rds , the system can be driven to any goal state
in Rds . To contrast our result to classic control theory,
we demonstrate that for a control environment which is
fully reachable using a time-variant or open loop policy
the set of all the attainable states using a bounded family
of linearised neural nets (definition 3) is low-dimensional.
A common example of a fully reachable ds-dimensional
linear control problem with 1D controller is:

ṡ(t) =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 0

 s(t) +

0
0
...
1

π(t), (11)

which is fully reachable. This follows from the fact that a linear system ẋ = Ax + Bu(t) is
fully reachable if and only if its controllability matrix defined by C = [B,AB,A2B, . . . , Ads−1B]
is full rank (Kalman, 1960; Jurdjevic, 1997). We instead evaluate the intrinsic dimension of the
locally attainable set under feedback policies within our theoretical framework. We do so for the
set of states attained for small t under the dynamics ˙s(t) = As(t) + BΦ(x)W , where A,B are
as in equation 11. To achieve this, for a fixed embedding dimension ds we obtain neural networks
sampled uniformly randomly from the family of linearised neural networks as in definition 3, with
r = 1.0, t ∈ (0, 5), n = 1024. Consequently, we obtain 1000 policies with δt = 0.01, and therefore
a sample of 500000 states to estimate the intrinsic dimension of the attained set of states using
the algorithm of Facco et al. (2017). We vary the dimensionality of the state space, ds, from 3 to
10 to observe how the intrinsic dimension of the attained set of states varies with the embedding
dimension while keeping da fixed at 1. The dimensionality of the attained set of states remains
upper-bounded by 2da + 1 = 3 for this system (figure 4). This bound is even lower (at da + 1 = 2)
for linear environments because the Lie series expansion (equation 4) gets truncated at l = 1 for
GeLU activation owing to the fact that the second derivative is close to zero in most of R.

5.4 REINFORCEMENT LEARNING WITH LOCAL LOW-DIMENSIONAL SUBSPACES

To demonstrate the applicability of our theoretical result, we apply a fully-connected sparisifica-
tion MLP layer introduced by Yu et al. (2023a). In a series of works named the CRATE frame-

9

Published as a conference paper at ICLR 2025

(a) Ant (b) Dog Stand (c) Dog Walk (d) Quadruped Walk

Figure 5: Discounted returns of SAC (blue) and sparse SAC (red) απ = 0.5, αQ = 0.4

work (Coding RAte reduction TransformEr) (Chan et al., 2022; Yu et al., 2023a;b; Pai et al., 2024),
researchers have argued for a better design of neural networks that compress and transform high-
dimensional data given that it is sampled from low-dimensional manifolds. They assumed that
the data lie near a union of low-dimensional manifolds ∪iMi, where each manifold has dimen-
sion di ≪ ds. An innovation that has remarkable empirical and theoretical results under the
manifold hypothesis learns sparse high-dimensional representations of the data ϕ : Rds → Rn
with n ≥

∑
i di. These representations are orthogonal for data points across two manifolds,

xi ∈ Mi, xj ∈ Mj , i ̸= j =⇒ ϕ(si) · ϕ(sj) = 0, and low-rank on or near the same man-
ifold, rank([ϕ(x1i), ϕ(x

2
i), . . . , ϕ(x

k
i)]) ≈ di for xji ∈ Mi. This can be viewed as disentangling

representations across different manifolds via sparsification. The sparsification layer of width n (Yu
et al., 2023a) is defined as

Zℓ+1 = ReLU
(
Zℓ + αW ⊺

(
Zℓ −WZℓ

)
− αλ1

)
, (12)

where α is the sparse rate step size parameter, Zℓ is the input to the ℓ-th layer,W are the n×nweight
matrix. For further explanation of this sparsification layer, refer to Appendix M. As is evident, this
is a linear transformation of the feed-forward layer and therefore does not add computational over-
head. To verify the efficacy of disentangled low-dimensional representations, under the manifold
hypothesis, we replace one feed-forward layer of all the policy and Q networks with a sparsifica-
tion layer within the SAC framework (see Appendix K for background on SAC). We also use wider
networks of width 1024, for both the baseline and modified architecture, for comparison. This is to
satisfy the assumption n ≥

∑
i di described above. With a simple code change of about 5 lines with

same number of parameters and two additional hyperparameters, απ, αQ, we see improvements in
the discounted returns for high-dimensional control environments: Ant (Brockman et al., 2016),
Dog Stand, Dog Walk and Quadruped Walk (Tunyasuvunakool et al., 2020), averaged across 16
seeds. Discounted returns are reported on the y-axis against the number of samples on the x-axis in
Figure 5. We observe that SAC with fully connected network fails to learn in high-dimensional Dog
environments where as SAC equipped with a single sparsification layer instead of a fully connected
layer does far better. This demonstrates the efficacy of learning local low-dimensional representa-
tions which arise from wide neural nets. We use the same hyperparameter for learning rates and
entropy regularization for both the sparse SAC and vanilla SAC as those provided in the CleanRL
library (Huang et al., 2022). We report ablation for Ant and Humanoid domains over the step size
parameter in Appendix N.

6 DISCUSSION

We have proved that locally there exists a low-dimensional structure to the continuous time trajecto-
ries of policies learned using a semi-gradient ascent method. We develop a theoretical model where
both transition dynamics and training dynamics are continuous-time. Ours is not only the first result
of its kind, but we also introduce new mathematical models for the study of RL. In addition, we
exploit this low-dimensional structure for efficient RL in high-dimensional environments with min-
imal changes. For detailed related work, refer to Appendix O and address the broader applicability
of our theoretical work in Appendix P. We also assume access to the true value function Q, this is
not practical and warrants an extension to the setting where this function is noisy. A key challenge
that remains is extending this theory to very high-dimensional datasets where ds → ∞ as n → ∞.
We anticipate that noise in this settings will further complicate analysis. Additionally, the impact of
stochastic transitions remains unexplored, as our current analysis assumes deterministic transitions.

10

Published as a conference paper at ICLR 2025

7 ACKNOWLEDGMENTS

This research was partially funded by the ONR under the REPRISM MURI N000142412603 and
ONR #N00014-22-1-2592. Partial funding for this work was provided by The Robotics and AI
Institute, for which we are very grateful. This research was conducted using computational resources
and services at the Center for Computation and Visualization, Brown University. We thank Sam
Lobel, Rafael Rodriguez Sanchez, Akhil Bagaria, and Tejas Kotwal for fruitful conversations and
guidance on the project. This work would not have been possible without their input. We would
like to thank the members of Brown Intelligent Robot Lab for their continued support. We thank
Wasiwasi Mgonzo, Alessio Mazzetto, Ji Won Chung, Renato Amado, Pedro Lopes De Almeida,
Kalaiyarasan Arumugam, the second floor community at the Center for Information Technology, and
the larger Brown University graduate student community for their moral support and encouragement.
The anonymous reviewers who have contributed very significantly to our work over time have our
sincere gratitude.

REFERENCES

Ben Adlam and Jeffrey Pennington. The neural tangent kernel in high dimensions: Triple descent
and a multi-scale theory of generalization. In International Conference on Machine Learning, pp.
74–84. PMLR, 2020.

Andrei A. Agrachev and Yu. L. Sachkov. Control theory from the geometric viewpoint. 2004.

Anayo K. Akametalu, Shahab Kaynama, Jaime Fernández Fisac, Melanie Nicole Zeilinger,
Jeremy H. Gillula, and Claire J. Tomlin. Reachability-based safe learning with gaussian pro-
cesses. 53rd IEEE Conference on Decision and Control, pp. 1424–1431, 2014.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019b.

Rika Antonova, Maksim Maydanskiy, Danica Kragic, Sam Devlin, and Katja Hofmann. Ana-
lytic manifold learning: Unifying and evaluating representations for continuous control. ArXiv,
abs/2006.08718, 2020.

Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Hai Bui, and Ali Ghodsi. Robust
locally-linear controllable embedding. In AISTATS, 2018.

Ronen Basri and David W. Jacobs. Efficient representation of low-dimensional manifolds using
deep networks. ArXiv, abs/1602.04723, 2017.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-dimensional limit theorems for
sgd: Effective dynamics and critical scaling. Advances in Neural Information Processing Systems,
35:25349–25362, 2022.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scien-
tific, 2012.

Dimitri P Bertsekas. Model predictive control and reinforcement learning: A unified framework
based on dynamic programming. arXiv preprint arXiv:2406.00592, 2024.

Anthony M Bloch and Anthony M Bloch. An introduction to aspects of geometric control theory.
Nonholonomic mechanics and control, pp. 199–233, 2015.

William M Boothby. An introduction to differentiable manifolds and Riemannian geometry. Aca-
demic press, 1986.

Michael Bowling, Ali Ghodsi, and Dana F. Wilkinson. Action respecting embedding. Proceedings
of the 22nd international conference on Machine learning, 2005.

11

Published as a conference paper at ICLR 2025

Roger W. Brockett. Lie theory and control systems defined on spheres. Siam Journal on Applied
Mathematics, 25:213–225, 1973.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. ArXiv, abs/1606.01540, 2016.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velivckovi’c. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. ArXiv, abs/2104.13478, 2021.

Sam Buchanan, Dar Gilboa, and John Wright. Deep networks and the multiple manifold problem.
ArXiv, abs/2008.11245, 2021.

Francesco Bullo and Andrew D Lewis. Geometric control of mechanical systems: modeling, analy-
sis, and design for simple mechanical control systems, volume 49. Springer, 2019.

Keith Bush and Joelle Pineau. Manifold embeddings for model-based reinforcement learning under
partial observability. In NIPS, 2009.

Q. Cai, Zhuoran Yang, Jason Lee, and Zhaoran Wang. Neural temporal-difference and q-learning
provably converge to global optima. arXiv: Learning, 2019a.

Qi Cai, Zhuoran Yang, Jason D. Lee, and Zhaoran Wang. Neural temporal-difference learning con-
verges to global optima. Advances in Neural Information Processing Systems, 32, 2019b. ISSN
1049-5258. Publisher Copyright: © 2019 Neural information processing systems foundation. All
rights reserved.; 33rd Annual Conference on Neural Information Processing Systems, NeurIPS
2019 ; Conference date: 08-12-2019 Through 14-12-2019.

G. Carlsson, T. Ishkhanov, V. D. Silva, and A. Zomorodian. On the local behavior of spaces of
natural images. International Journal of Computer Vision, 76:1–12, 2007.

Pablo Samuel Castro and Doina Precup. Using bisimulation for policy transfer in mdps. In AAAI
Conference on Artificial Intelligence, 2010.

Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. Redunet:
A white-box deep network from the principle of maximizing rate reduction. Journal of machine
learning research, 23(114):1–103, 2022.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Efficient approximation of deep relu
networks for functions on low dimensional manifolds. ArXiv, abs/1908.01842, 2019.

Daizhan Cheng, Xiaoming Hu, and Tielong Shen. Analysis and design of nonlinear control systems.
In Analysis and Design of Nonlinear Control Systems, 2011.

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and langevin
processes. In International Conference on Machine Learning, pp. 1810–1819. PMLR, 2020.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018.

Alexander Cloninger and Timo Klock. Relu nets adapt to intrinsic dimensionality beyond the target
domain. ArXiv, abs/2008.02545, 2020.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2:303–314, 1989.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient ap-
proach to policy search. In ICML, 2011.

Kenji Doya. Reinforcement learning in continuous time and space. Neural Computation, 12:219–
245, 2000a.

Kenji Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):
219–245, 2000b.

12

Published as a conference paper at ICLR 2025

Simon Shaolei Du, J. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. ArXiv, abs/1811.03804, 2018.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and P. Abbeel. Benchmarking deep reinforce-
ment learning for continuous control. In ICML, 2016.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimen-
sion of datasets by a minimal neighborhood information. Scientific Reports, 7, 2017.

C. Fefferman, S. Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. arXiv: Statis-
tics Theory, 2013.

Norm Ferns, P. Panangaden, and Doina Precup. Metrics for finite markov decision processes. In
AAAI Conference on Artificial Intelligence, 2004.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and J. Lee. Convergence of adver-
sarial training in overparametrized neural networks. In Neural Information Processing Systems,
2019.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. ArXiv, abs/1906.02736,
2019.

Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model minimization
in markov decision processes. Artif. Intell., 147:163–223, 2003.

Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modelling the influence of
data structure on learning in neural networks. ArXiv, abs/1909.11500, 2020.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew M. Botvinick,
H. Larochelle, Sergey Levine, and Yoshua Bengio. Infobot: Transfer and exploration via the
information bottleneck. ArXiv, abs/1901.10902, 2019a.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Ben-
gio. Reinforcement learning with competitive ensembles of information-constrained primitives.
ArXiv, abs/1906.10667, 2019b.

Anirudh Goyal, Yoshua Bengio, Matthew M. Botvinick, and Sergey Levine. The variational band-
width bottleneck: Stochastic evaluation on an information budget. ArXiv, abs/2004.11935, 2020.

Victor Guillemin and Alan Pollack. Differential Topology. Prentice-Hall, 1974.

Tuomas Haarnoja, Haoran Tang, P. Abbeel, and Sergey Levine. Reinforcement learning with deep
energy-based policies. In ICML, 2017.

Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. arXiv
preprint arXiv:1909.05989, 2019.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv: Learning, 2016.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoÃĢo GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

David Isele, Alireza Nakhaei, and Kikuo Fujimura. Safe reinforcement learning on autonomous
vehicles. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
1–6, 2018.

13

Published as a conference paper at ICLR 2025

Alberto Isidori. Nonlinear control systems: an introduction. Springer, 1985.

Riashat Islam, Hongyu Zang, Manan Tomar, Aniket Didolkar, Md. Mofijul Islam, Samin Yeasar
Arnob, Tariq Iqbal, Xin Li, Anirudh Goyal, Nicolas Manfred Otto Heess, and Alex Lamb. Repre-
sentation learning in deep rl via discrete information bottleneck. In International Conference on
Artificial Intelligence and Statistics, 2022.

Arthur Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In NeurIPS, 2018.

Odest Chadwicke Jenkins and Maja J. Mataric. A spatio-temporal extension to isomap nonlinear
dimension reduction. In ICML ’04, 2004.

Xiang Ji, Minshuo Chen, Mengdi Wang, and Tuo Zhao. Sample complexity of nonparametric off-
policy evaluation on low-dimensional manifolds using deep networks. ArXiv, abs/2206.02887,
2022.

Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and space:
Theory and algorithms. Journal of Machine Learning Research, 23(275):1–50, 2022a.

Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and
space: Theory and algorithms. Journal of Machine Learning Research, 23(275):1–50, 2022b.
URL http://jmlr.org/papers/v23/21-1387.html.

Yanwei Jia and Xun Yu Zhou. q-learning in continuous time. Journal of Machine Learning Research,
24(161):1–61, 2023. URL http://jmlr.org/papers/v24/22-0755.html.

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George Dimitri Konidaris. Exploration in
reinforcement learning with deep covering options. In ICLR, 2020.

Velimir Jurdjevic. Geometric control theory. Cambridge university press, 1997.

Sham M. Kakade. A natural policy gradient. In NIPS, 2001.

Rudolf E Kalman. On the general theory of control systems. In Proceedings First International
Conference on Automatic Control, Moscow, USSR, pp. 481–492, 1960.

Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113.
springer, 2014.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Charline Le Lan, Marc G. Bellemare, and Pablo Samuel Castro. Metrics and continuity in reinforce-
ment learning. In AAAI Conference on Artificial Intelligence, 2021.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Sergey Levine, Chelsea Finn, Trevor Darrell, and P. Abbeel. End-to-end training of deep visuomotor
policies. ArXiv, abs/1504.00702, 2016.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
In NIPS, 2017.

14

http://jmlr.org/papers/v23/21-1387.html
http://jmlr.org/papers/v24/22-0755.html

Published as a conference paper at ICLR 2025

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. CoRR, abs/1509.02971, 2016.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Puze Liu, Davide Tateo, Haitham Bou-Ammar, and Jan Peters. Robot reinforcement learning on the
constraint manifold. In CoRL, 2021.

Winfried Lohmiller and Jean-Jacques E. Slotine. On contraction analysis for non-linear systems.
Autom., 34:683–696, 1998.

Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data
via lossy data coding and compression. IEEE transactions on pattern analysis and machine
intelligence, 29(9):1546–1562, 2007.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. ArXiv, abs/1703.00956, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Mur-
ray Campbell. Eigenoption discovery through the deep successor representation. ArXiv,
abs/1710.11089, 2018.

Sridhar Mahadevan. Proto-value functions: developmental reinforcement learning. Proceedings of
the 22nd international conference on Machine learning, 2005.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learn-
ing representation and control in markov decision processes. J. Mach. Learn. Res., 8:2169–2231,
2007.

Peter Marbach and John N Tsitsiklis. Approximate gradient methods in policy-space optimization
of markov reward processes. Discrete Event Dynamic Systems, 13:111–148, 2003.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences of the United States of
America, 115:E7665 – E7671, 2018a.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Richard M Murray and John Edmond Hauser. A case study in approximate linearization: The
acrobat example. Electronics Research Laboratory, College of Engineering, University of . . . ,
1991.

V. Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
ICML, 2010.

Henk Nijmeijer and Arjan van der Schaft. Non-linear dynamical control systems. 1990.

Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. Geometric
compression of invariant manifolds in neural networks. Journal of Statistical Mechanics: Theory
and Experiment, 2021, 2020.

Druv Pai, Sam Buchanan, Ziyang Wu, Yaodong Yu, and Yi Ma. Masked completion via structured
diffusion with white-box transformers. In The Twelfth International Conference on Learning
Representations, 2024.

15

Published as a conference paper at ICLR 2025

Gautam Pai, Ronen Talmon, Alexander M. Bronstein, and Ron Kimmel. Dimal: Deep isometric
manifold learning using sparse geodesic sampling. 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 819–828, 2019.

Quang-Cuong Pham, Nicolas Tabareau, and Jean-Jacques Slotine. A contraction theory approach to
stochastic incremental stability. IEEE Transactions on Automatic Control, 54(4):816–820, 2009.
doi: 10.1109/TAC.2008.2009619.

Balaraman Ravindran and Andrew G. Barto. Symmetries and model minimization in markov deci-
sion processes. 2001.

Balaraman Ravindran and Andrew G. Barto. Model minimization in hierarchical reinforcement
learning. In Symposium on Abstraction, Reformulation and Approximation, 2002.

Balaraman Ravindran and Andrew G. Barto. Smdp homomorphisms: An algebraic approach to
abstraction in semi-markov decision processes. In International Joint Conference on Artificial
Intelligence, 2003.

Jerzy Respondek. Controllability of dynamical systems with constraints. Systems & Control Letters,
54(4):293–314, 2005.

Joel W. Robbin, Uw Madison, and Dietmar A. Salamon. INTRODUCTION TO DIFFERENTIAL
GEOMETRY. Preprint, 2011.

Johannes Schmidt-Hieber. Deep relu network approximation of functions on a manifold. ArXiv,
abs/1908.00695, 2019.

John Schulman, S. Levine, P. Abbeel, Michael I. Jordan, and P. Moritz. Trust region policy opti-
mization. ArXiv, abs/1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Uri Shaham, Alexander Cloninger, and Ronald R. Coifman. Provable approximation properties for
deep neural networks. ArXiv, abs/1509.07385, 2015.

Yifei Shao, Chao Chen, Shreyas Kousik, and Ram Vasudevan. Reachability-based trajectory safe-
guard (rts): A safe and fast reinforcement learning safety layer for continuous control. IEEE
Robotics and Automation Letters, 6:3663–3670, 2020.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529:484–489, 2016.

William D Smart and L Pack Kaelbling. Effective reinforcement learning for mobile robots.
In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.
02CH37292), volume 4, pp. 3404–3410. IEEE, 2002.

Yimin Sun. Necessary and sufficient condition for global controllability of planar affine nonlinear
systems. IEEE transactions on automatic control, 52(8):1454–1460, 2007.

Zhendong Sun, Shuzhi Sam Ge, and Tong Heng Lee. Controllability and reachability criteria for
switched linear systems. Automatica, 38(5):775–786, 2002.

Héctor J Sussmann. Orbits of families of vector fields and integrability of distributions. Transactions
of the American Mathematical Society, 180:171–188, 1973.

Hector J Sussmann. A general theorem on local controllability. SIAM Journal on Control and
Optimization, 25(1):158–194, 1987.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

16

Published as a conference paper at ICLR 2025

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, NIPS’99, pp. 1057–1063, 1999.

Russ Tedrake. Underactuated Robotics. 2023. URL https://underactuated.csail.
mit.edu.

Joshua B. Tenenbaum. Mapping a manifold of perceptual observations. In NIPS, 1997.

Saket Tiwari and George Konidaris. Effects of data geometry in early deep learning. Advances in
Neural Information Processing Systems, 35:30099–30113, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based con-
trol. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Touchette and Lloyd. Information-theoretic limits of control. Physical review letters, 84 6:1156–9,
1999.

Hugo Touchette and Seth Lloyd. Information-theoretic approach to the study of control systems.
Physica A-statistical Mechanics and Its Applications, 331:140–172, 2001.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

George E. Uhlenbeck and Leonard Salomon Ornstein. On the theory of the brownian motion. Phys-
ical Review, 36:823–841, 1930.

Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A. Oliehoek, and Max Welling. Mdp
homomorphic networks: Group symmetries in reinforcement learning. ArXiv, abs/2006.16908,
2020.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Haoran Wang and Xun Yu Zhou. Continuous-time mean–variance portfolio selection: A reinforce-
ment learning framework. Mathematical Finance, 30(4):1273–1308, 2020.

Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous
time and space: A stochastic control approach. J. Mach. Learn. Res., 21:198:1–198:34, 2020.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. ArXiv, abs/1909.01150, 2019.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Stephen Wiggins. Introduction to applied nonlinear dynamical systems and chaos. In SPRINGER,
1989.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

John Wright and Yi Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Princi-
ples, Computation, and Applications. Cambridge University Press, 2022.

Yifan Wu, G. Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with efficient
approximations. ArXiv, abs/1810.04586, 2019.

17

https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu

Published as a conference paper at ICLR 2025

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory
Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602:223 – 228,
2022.

Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
dient: Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159–2169. PMLR,
2022.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin David
Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023a.

Yaodong Yu, Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, and Yi Ma.
Emergence of segmentation with minimalistic white-box transformers. In Conference on Parsi-
mony and Learning (Proceedings Track), 2023b.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.
Learning invariant representations for reinforcement learning without reconstruction. ArXiv,
abs/2006.10742, 2020.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. ArXiv,
abs/2004.12570, 2020.

18

Published as a conference paper at ICLR 2025

Appendix
A MANIFOLD BACKGROUND

Here, we provide precise definitions which are essential to the theory of differential geometry but
might not be absolutely essential to understanding our results in the main body of our work. The
tangent space characterises the geometry of the manifold and it is defined as follows.

Definition 7. LetM be anm-manifold in Rk and p ∈M be a fixed point. A vector v ∈ Rk is called
a tangent vector of M at p if there exists a smooth curve γ : I →M such that γ(0) = p, γ̇(0) = v.
The set TpM := {γ̇(0)|γ : R→ M is smooth, γ(0) = p} of tangent vectors of M at p is called the
tangent space of M at p.

Continuing our example, the tangent space of a point p in S2 is the vertical plane tangent to the
cylinder at that point. For a small enough ϵ and a vector v ∈ TpS

2 there exists a unique curve
γ : [−ϵ, ϵ] → S2 such that γ(0) = p and γ̇(0) = v. The union of tangent spaces at all points is
termed the tangent bundle and denoted by T (M). At point p, the tangent space TpM is spanned by

the vectors

{
∂

∂xi

∣∣∣∣
p

}
. Any tangent vector v ∈ TpM can be expressed as a linear combination:

v =

m∑
i=1

vi
∂

∂xi

∣∣∣∣
p

,

where vi ∈ R are the components of v in the basis

{
∂

∂xi

∣∣∣∣
p

}
.

B FEEDBACK ACTION LIE SERIES

Consider the vector fields for a feedback policy a(x) ∈ C∞:

X =g(x) + h(x)a(x).

Consider the Lie series and its first term:

eXt =x+ tX(x) +
∞∑
l=1

tl+1

(l + 1)!
Ll+1
X (x)

LX1(x) =g(x) + h(x)a(x).

The second order term can be written as:

(L2
X1
x)i =

ds∑
k=1

gk(x) + da∑
j=1

hj,k(x)aj(x)

 ∂gi(x) + hi(x)a(x)

∂xk

=

ds∑
k=1

(
gk(x)

∂gi(x)

∂xk
+

da∑
j=1

hj,k(x)aj(x)
∂gi(x)

∂xk

+ gk(x)

 da∑
j′=1

∂hi,j′(x)

∂xk
aj′(x) +

∂aj′(x)

∂xk
hi,j′(x)

+

da∑
j=1

da∑
j′=1

hj,k(x)aj(x)
∂hi,j′(x)

∂xk
aj′(x) + hj,k(x)aj(x)

∂aj′(x)

∂xk
hi,j′(x)

)
.

19

Published as a conference paper at ICLR 2025

While we do not use this third order term we present it to demonstrate that tracking the statistics of
this gets exponentially difficult:

(L3
X1
x)i =

ds∑
k′=1

gk(x) + da∑
j=1

hj,k(x)aj(x)

 (L2
X1
x)i

∂xk′

=

ds∑
k′=1

g′k(x) + da∑
j′′=1

hj′′,k′(x)aj′′(x)

(ds∑
k=1

∂gk(x)

∂xk′
+ gk(x)

∂gi(x)

∂xk′∂xk

+

da∑
j=1

∂hj,k(x)

∂xk′
aj(x)

∂gi(x)

∂xk
+ hj,k(x)

∂aj(x)

∂xk′

∂gi(x)

∂xk
+ hj,k(x)aj(x)

∂2gi(x)

∂xk′∂xk

+

da∑
j′=1

∂gk(x)

∂xk′

∂hi,j′(x)

∂xk
aj′(x) + gk(x)

∂2hi,j′(x)

∂xk′∂xk
aj′(x) + gk(x)

∂hi,j′(x)

∂xk

∂aj′(x)

∂xk′

+

da∑
j′=1

∂gk(x)

∂xk′

∂aj′(x)

∂xk
hi,j′(x) + gk(x)

∂2aj′(x)

∂xk′∂xk
hi,j′(x) + gk(x)

∂aj′(x)

∂xk

∂hi,j′(x)

∂xk′

+

da∑
j=1

da∑
j′=1

(
∂hj,k(x)

∂xk′
aj(x)

∂hi,j′(x)

∂xk
aj′(x) + hj,k(x)

∂aj(x)

∂xk′

∂hi,j′(x)

∂xk
aj′(x) + hj,k(x)aj(x)

∂2hi,j′(x)

∂xk′∂xk
aj′(x)

+ hj,k(x)aj(x)
∂hi,j′(x)

∂xk

∂aj′(x)

∂xk′
+
∂hj,k(x)

∂xk′
aj(x)

∂aj′(x)

∂xk
hi,j′(x) + hj,k(x)

∂aj(x)

∂xk′

∂aj′(x)

∂xk
hi,j′(x)

+ hj,k(x)aj(x)
∂2aj′(x)

∂xk′∂xk
hi,j′(x) + hj,k(x)aj(x)

∂aj′(x)

∂xk

∂hi,j′(x)

∂xk′

))
.

C SOME HELPFUL DERIVATIONS

Here we derive various expressions to bound their magnitude in terms of the width of the NN n.
First we consider the gradient term:

G(Y) = lim
N ′→∞

1

N ′

N ′∑
i=1

∇aQ̂Y (si, ai, ti)Φ(si;W0)

= lim
N ′→∞

η

N ′

N ′∑
i=1

qi(si)Φ(si;W0)

= lim
N ′→∞

1

N ′√n

N ′∑
i=1

sikφ′(W 0
m · si)

da∑
j=1

qij(si)C
0
j,m

m(ds−1)+k

=
1√
n

 da∑
j=1

C0
j,m lim

N ′→∞

1

N ′

N ′∑
i=1

sikφ
′(W 0

m · si)qij(si)

m(ds−1)+k

=
1√
n

 da∑
j=1

C0
j,mG

′
j,m(ds−1)+k(Y)

m(ds−1)+k

.

20

Published as a conference paper at ICLR 2025

The fourth equality suggests that individual elements of the vector G at any point are iid samples
from the same random variable. Similarly we expand the term for M2(Y)

ξ(Y) =

√
η
√
n
EBY

 1

B

B∑
b=1

da∑
j=1

qj(s
b)C0

j,mφ
′(W 0

m · sb)sbk −
da∑
j=1

C0
j,mG

′
j,m(ds−1)+k(Y)

m(ds−1)+k

=

√
η
√
n
EBY

 da∑
j=1

C0
j,m

 1

B
qj(s

b)

B∑
b=1

φ′(W 0
m · sb)sbk −

da∑
j=1

G′
j,m(ds−1)+k(Y)

m(ds−1)+k

=

√
η
√
n

da∑
j=1

C0
j,mEBY

 1

B
qj(s

b)

B∑
b=1

φ′(W 0
m · sb)sbk −

da∑
j=1

G′
j,m(ds−1)+k(Y)

m(ds−1)+k

M2(Y) =
η

n
EBY

[1

B

B∑
b=1

da∑
j=1

qj(s
b)C0

j,mφ
′(W 0

m · sb)sbk −
da∑
j=1

C0
j,mG

′
j,m(ds−1)+k(Y)

 1

B

B∑
b′=1

da∑
j′=1

qj′(s
b′)C0

j′,m′φ′(W 0
m′ · sb

′
)sb

′

k′ −
da∑
j′=1

C0
j′,m′G′

j′,m′(ds−1)+k′(Y)

]
m(ds−1)+k,m′(ds−1)+k′

=
η

n
EBY

[1

B2

B∑
b′=1

da∑
j′=1

B∑
b=1

da∑
j=1

qj(s
b)qj′(s

b′)C0
j,mφ

′(W 0
m · sb)sbkC0

j′,m′φ′(W 0
m′ · sb

′
)sb

′

k′

−

 1

B

da∑
j′=1

B∑
b=1

da∑
j=1

qj(s
b)C0

j,mφ
′(W 0

m · sb)sbkC0
j′,m′G′

j′,m′(ds−1)+k′(Y)

− 1

B

da∑
j=1

B∑
b′=1

da∑
j′=1

C0
j,mG

′
j,m(ds−1)+k(Y)qj′(s

b′)C0
j′,m′φ′(W 0

m′ · sb
′
)sb

′

k′

+

da∑
j=1

da∑
j′=1

C0
j,mG

′
j,m(ds−1)+k(Y)C0

j′,m′G′
j′,m′(ds−1)+k′(Y)

]
m(ds−1)+k,m′(ds−1)+k′

,

which we combine to form:

M2(Y) =
η

n

[
da∑
j=1

da∑
j′=1

C0
j,mC

0
j′,m′EBY

[
1

B2

B∑
b′=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

−

(
1

B

B∑
b=1

qj′(s
b)Cφ′(W 0

m · sb)sbkG′
j′,m′(ds−1)+k′(Y)

)

−

(
1

B

B∑
b=1

qj(s
b)φ′(W 0

m′ · sb)sbkG′
j,m(ds−1)+k(Y)

)

+G′
j,m(ds−1)+k(Y)G′

j′,m′(ds−1)+k′(Y)

]]
m(ds−1)+k,m′(ds−1)+k′

.

21

Published as a conference paper at ICLR 2025

Let the internal term in the summation be defined as follows:

Hj,j′

m(ds−1)+k,m′(ds−1)+k′ =EBY

[
1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

−

(
1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j′,m′(ds−1)+k′(Y)

)

−

(
1

B

B∑
b=1

qj′(s
b)φ′(W 0

m′ · sb)sbkG′
j,m(ds−1)+k(Y)

)

+G′
j,m(ds−1)+k(Y)G′

j′,m′(ds−1)+k′(Y)

]

=EBY

[(
1

B

B∑
b′=1

qj(s
b′)φ′(W 0

m · sb
′
)sb

′

k −G′
j,m(ds−1)+k(Y)

)
(

1

B

B∑
b′=1

qj′(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k −G′
j′,m′(ds−1)+k′(Y)

)]

D COVARIATE TERMS

We denote∇aQW (sb, a, tb)|a=ab by [q1(s
b), . . . , qda(s

b)] as shorthand. Consider the term:

E
[
M

Aj

l M
Aj′

l

]
=∇YAj(s) ·M2(Y)∇YAj′(s)

=Φj(s,W0) ·M2(Y)Φj′(s,W0)

=
1

n3/2
Φj(s,W0) ·

[
n∑

m′=1

ds∑
k′=1

da∑
l=1

da∑
l′=1

C0
l,mC

0
l′,m′H

l,l′

m′(ds−1)+k,m(ds−1)+k′(Y)

C0
j′,m′φ′(W 0

m′ · s)sk′
]
m(ds−1)+k

.

22

Published as a conference paper at ICLR 2025

We further expand the dot product with the nds × 1 vector Φj(s,W0)

E
[
M

Aj

l M
Aj′

l

]
=

1

3n2

n∑
m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

da∑
l=1

da∑
l′=1

C0
l,mC

0
l′,m′C0

j′,m′C0
j,m

H l,l′

m′(ds−1)+k,m(ds−1)+k′(Y)φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk′

=
1

3n2

n∑
m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

da∑
l=1

da∑
l′=1

C0
l,mC

0
l′,m′C0

j′,m′C0
j,m

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

EBY B′
Y

[
1

B2

B∑
b=1

B∑
b′=1

ql(s
b)φ′(W 0

m · sb)sbkql′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

−

(
1

B

B∑
b=1

ql(s
b)Cφ′(W 0

m · sb)sbkG′
l′,m′(ds−1)+k′(Y)

)

−

(
1

B

B∑
b=1

ql′(s
b)φ′(W 0

m′ · sb)sbkG′
l,m(ds−1)+k(Y)

)

+G′
l,m(ds−1)+k(Y)G′

l′,m′(ds−1)+k′(Y)

]

=
2

3n2
EBY B′

Y

[
n∑

m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

(

(C0
j′,m′)2(C0

j,m)2
1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj′(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

− (C0
j′,m′)2(C0

j,m)2
1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j′,m′(ds−1)+k′(Y)

− (C0
j′,m′)2(C0

j,m)2
1

B

B∑
b′=1

qj′(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k G
′
j,m(ds−1)+k(Y)

+ (C0
j′,m′)2(C0

j,m)2G′
j,m(ds−1)+k(Y)G′

j′,m′(ds−1)+k′(Y)

)]

+
∑

l,l′ ̸=j,j′

2

3n2
M2
l,l′ .

In the n→∞ we note that 2
3n2M

2
l,l′,j,j′ → 0 because we have E[Cl]E[Cl′]→ 0 as a multiplicative

term, while the other terms are finite and bounded in second moment because of the boundedness

23

Published as a conference paper at ICLR 2025

properties of gradient GeLU activation φ′. For j = j′ we have the following expression

E
[
M

Aj

l M
Aj

l

]
=

2

3n2
EBY B′

Y

[
n∑

m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

(

(C0
j,m′)4

1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

− (C0
j,m′)4

1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j,m′(ds−1)+k′(Y)

− (C0
j,m′)4

1

B

B∑
b′=1

qj(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k G
′
j,m(ds−1)+k(Y)

+ (C0
j,m′)4G′

j,m(ds−1)+k(Y)2

)]
+O

(
1

n

)
,

(13)

where the O
(
1
n

)
term is a result of the convergence rate of the strong law of large numbers (Ver-

shynin, 2018).

E SUFFICIENT STATISTICS

We want to determine the dynamics of some linear or quadratic function of these parameters, for
example the j -th output of the policy network Aj(s;W) = Φj(s;W0)W . Therefore, we find a
setting where a continuous time SDE such as

dAj(s;W) = µ(Aj(s;W))dτ + σ(Aj(s;W))dwτ , (14)

represent the dynamics ofAj(s;Wkη). In other words, we find the conditions under whichWkη, Ykη
are close together in some sense.

Furthermore, we assume that the activation, φ, has bounded first and second derivatives almost
everywhere in R. This assumption holds for GeLU activation. Moreover, we would like to show
that we can track the statistics corresponding to elements of the Lie series

Aτj (s) = f lin
j (s;W τ),

Aτj,k(s) =
∂Aτj (s)

∂xk
,

Aτj,k,k′(s) =
∂2Aτj (s)

∂xk′∂xk
.

The manner in which the push forward of the distribution of parameters described in Section 4,
e
X(Wn)
t (s), changes with gradient steps is central to our work. In this Section we derive the suf-

ficient statistics that determine how the distribution over actions and their quadratic combinations
evolve over gradient steps. We present the following lemma for the learning setup described in Sec-
tion 3.2 and the sufficient statistic required to track the changes in the action Aj(s;W) as described

24

Published as a conference paper at ICLR 2025

in Appendix E. First, we define the following random variables for a fixed s ∈ S:

Ânj (s;W) =
1√
n

n∑
m=1

C0
j,mφ

′(W 0
m · s)(Wm −W 0

m) · s

=
1√
n

n∑
m=1

C0
j,mφ

′(W 0
m · s)(Wm −W 0

m) · s

=
1√
n

n∑
m=1

C0
j,mφ

′(W 0
m · s)∆Wm · s,

=
1√
n

n∑
m=1

C0
j,mφ

′(W 0
m · s)

ds∑
k=1

sk∆Wm(ds−1)+k,

=
1√
n

ds∑
k=1

n∑
m=1

C0
j,mφ

′(W 0
m(ds−1)+k · s)sk∆Wm(ds−1)+k

=

ds∑
k=1

Zj,k(s;W)

where ∆W = W −W 0, Φj(s;W 0) is as defined in Section 3.1, and C0
j,m∆Wm,k ∼ Zj,k(s;W)

is the random variable that determines the action j corresponding to the action j and state space
dimension k given parameters W . This is because individual m random parameters ∆Wm,ksk can
be viewed as i.i.d samples from a distribution (see Section C).

Similarly, we derive
∂Âτ

j (s)

∂sk
from the fifth equality above as follows:

∂Âτj (s)

∂xk
=

1√
n

ds∑
k=1

n∑
m=1

C0
j,m∆Wm(ds−1)+k

∂φ′(W 0
m(ds−1)+k · s)sk
∂sk

,

where once again the i.i.d copies of a random variable: C0
j,m∆Wm,k ∼ Zj,k(s;W) appear in the

expression . Therefore, to track the random variables corresponding to the quantities of interest in
the first and second order Lie series in Section B we need to track dads random variables: Zj,k with
j ∈ {1, . . . , da}, k ∈ {1, . . . , ds}.

F TRACKING STATISTICS

Notation: In this Section we use x ≲ y to denote that x is less than y times some constant. We also
write Ln∞(EnK) denoting the supremum of a function that depends on n on the compact set K. As
noted in Section E we aim track the following statistics for fixed s across gradient steps

Anj (s,W), Anj (s,W)Anj′(s,W), Anj,k(s,W).

Moreover, we seek to derive their dynamics in the continuous-time limit. Given linearised parame-
terisation of a two-layer network policy (equation 7) and the gradient update is as described in Sec-
tion 3.2. We present a lemma, whose proof follows the proof of Theorem 2.2 provided by Ben Arous
et al. (2022), except that in our case the dimensionality of the input data remains constant, on the
dynamics of summary statistics linear in the parameters that describe the learning dynamics under
SGD. Here the sufficient statistics that determine the dynamics of the action Anj is denoted by Xτ .
We prove the dynamics of the j-th action.
Lemma 8. Given a fixed state s the j-th action, Anj (s; ·), determined by a linearised neural pol-
icy with two hidden layers as described and initialised in Section 3, we assume W0 ∼ X0 =
Normal(0, Ids/ds) i.i.d whose gradient dynamics are described in equation 8 with learning rates
ηn → 0, and under assumptions 4, 5, we have that in the limit n→∞ the dynamics of Anj converge
weakly to the following random ODE

dĀj(s;Xτ) = vj(s;Xτ)dt, (15)
with the random variable Xτ is the limit point of the sufficient staistics, Xnt , of the parameters
updated according to stochastic policy gradient based updates laid out in Section 3.2 with η = ηn.

25

Published as a conference paper at ICLR 2025

Proof. Suppose the evolution of W over gradient steps is as follows

Wτ =Wτ−1 + ηnξn(W,BWτ−1
), where

ξn(W,BWτ−1
) =

1

B

∑
sb,ab∈BW

∇aQW (sb, a)|a=abΦn(sb, ab).

We further letGn(Wτ−1) = EBWτ−1

[
ξn(W,BWτ−1)

]
. LetHn(W,BY) = ξ(W,BWτ−1)−Gn(W).

Further let
Ξn(W) = EBW

[Hn(W,BY)Hn(W,BY)⊺] .
For the statistic Anj consider the following evolution

ντj − ντ−1
j =ΦnjGn(Wτ),

ςτj − ςτ−1
j =ΦnjHn(Wτ ,BWτ

),
(16)

where Φnj represents the feature vector for the j-th action at state s. Omitting the subscript in ηn,
since we take the limit ηn → 0 as n→∞, we now consider the uj as follows,

uτj = u0j + η

τ∑
τ ′=1

(ντ
′

j − ντ
′−1
j) + η

τ ′∑
τ ′=1

(ςτ
′

j − ςτ
′−1

j).

Now for l ∈ [0, L] we define,

ν′j(l) = ν
[l/η]
j − ν[l/η]−1

j , and ς ′j(l) = ς
[l/η]
j − ς [l/η]−1

j .

If we let

µnj (l) =

∫ l

0

ν′j(l)dl
′ = ν′j(η[l/η]) + (s− η[l/η])

(
ν
[l/η]
j − ν[l/η]−1

j

)
σnj (l) =

∫ l

0

ς ′j(l)dl
′ = ς ′j(η[l/η]) + (s− η[l/η])

(
ς
[l/η]
j − ς [l/η]−1

j

)
,

be the continuous linear interpolations based on the discrete random variables ν, ς and combine them
together to obtain

vnj (l) = vnj (0) + µnj (l) + σnj (l). (17)

Given a compact set K ⊂ R and the exit time τK we aim to show that for all 0 ≤ s, t ≤ T ,

E||vnj (s ∧ τK)− vnj (t ∧ τK)||2 ≲K,T (t− s)4,

where the expectation over the stochastic updates. This proves that vnj (s ∧ τK) is 1/4 Hölder-
continuous by Kolmogorov’s continuity theorem (see Section 2.2 in the textbook by Karatzas &
Shreve (2014)). We have for all s, t

||vnj (s)− vnj (t)|| ≤ ||µnj (s)− µnj (t)||+ ||σnj (s)− σnj (t)||.

For a fixed W the action j corresponding to the linearised policy in the limit n→∞ is defined as:

āj(s,W) = lim
n→∞

Φnj (s)W
n.

Now further suppose W is a stochastic variable where each of its entries is sampled i.i.d. from
some distribution X ∈ P(R), where P(R) is a probability space over R with the canonical sigma
algebra. Therefore, the push forward of this stochastic random variable Wn in the limit n→∞ can
be defined as:

Āj(s,X) = lim
n→∞

1√
n

n∑
m=1

C0
j,mφ

′(W 0
m · s)

ds∑
i=1

siWds(m−1)+i,

26

Published as a conference paper at ICLR 2025

which converges in distribution to a Normal distribution, with the mean and the variance are depen-
dent on the state and the distribution Xn, by the Lindeberg–Lévy central limit theorem (Vershynin,
2018; Cai et al., 2019b) which is also a consequence of using GeLU activation which has bounded
derivatives a.e. We drop the argument X in the wherever it is implicit. The first term in the inequal-
ity, the norm of µnj , is upper-bounded as below:

E
[
|µnj (s ∧ τK)− µnj (t ∧ τK)|2

]
≲KE

∣∣∣∣∣∣η

[t/η]∧τK/η∑
τ ′=[s/η]∧τ ′

K/η

ΦnjG(W
n
τ ′)

∣∣∣∣∣∣
2

≤ (t− s)2||ΦnjG(Wn
τ ′)||2Ln

∞(En
K)

≲K,LG,s (t− s)2,

where the second inequality is from the continuity of the function ΦnjG(W
n) in Wn. The last

inequality is from the Lipschitz condition on the gradient function G 5. For the second term, which
is a martingale, in equation 17 we seek a similar bound to the one presented above:

E
[
|σnj (s ∧ τK)− σnj (t ∧ τK)|4

]
=E

η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(ςτ
′

j − ςτ
′−1

j)

4

=E

η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

ΦnjHn(W,BWτ′)

4

≲ E

η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(W,BWτ′)

)22
 ,

where the last inequality is from the Burkholder’s inequality. We further expand the last term in the
inequality as follows:

E

η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(W,BWτ′)

)22
 =η4

∑
τ ′,τ ′′

E
[(
ΦnjHn(W,BWτ′)

)2 (
ΦnjHn(W,BWτ′′)

)2]

≤

(
η
∑
τ ′

(
η2E

[(
ΦnjHn(W,BWτ′)

)4])1/2)2

≲K,LH
(t− s)2,

where the inequality in the second line is from Cauchy-Schwarz and for the last inequality we use
the fact that (assumption 4) and the fact that η → 0 at rateO(1√

n
). This proves that σn is 1/4 Hölder-

continuous by Kolmogorov’s continuity theorem. Since both the sequences µnj and σnj are uniformly
1/2 Hölder-continuous we have that vnj (s∧τK) (equation 17) is also 1/2 Hölder-continuous. Further,
we note that vnj (s ∧ τK) forms a tight sequence in n with 1/2 Hölder-continuous limit point and
vnj (s∧ τK)−µnj (s∧ τK) is a martingale with a martingale limit point that is 1/4 Hölder-continuous
limit point.

Now that we have proved that limit points exists and are 1/2 Hölder-continuous we seek to derive
this limit. To do so we derive the quadratic variation

σnj (t ∧ τK)2 −
∫ t

0

ηEB
Wl/η∧τK

[
(ΦnjHn(W[l/η]∧τK ,BWτ))

2
]
,

which is a Martingale process. We seek to derive expression for the expectation above in the limit
n→∞. To do so we derive the following:

EB
Wl/η∧τK

[
(ΦnjHn(W[l/η]∧τK ,BWτ

))2
]
= Φnj Ξn(W[l/η]∧τK)(Φnj)

⊺,

27

Published as a conference paper at ICLR 2025

where we omit the subscript BWl/η∧τK
under the expectation in the expression on right side for

brevity. Letting Y =W[l/η]∧τK and writing out rhe above expression based on equation 13

Φnj Ξn(Y)(Φnj)
⊺ =

2

3n2
EBY B′

Y

[
n∑

m=1

ds∑
k=1

n∑
m′=1

ds∑
k′=1

φ′(W 0
m′ · s)sk′φ′(W 0

m · s)sk

(

(C0
j,m′)4

1

B2

B∑
b=1

B∑
b′=1

qj(s
b)φ′(W 0

m · sb)sbkqj(sb
′
)φ′(W 0

m′ · sb
′
)sb

′

k′

− (C0
j,m′)4

1

B

B∑
b=1

qj(s
b)Cφ′(W 0

m · sb)sbkG′
j,m′(ds−1)+k′(Y)

− (C0
j,m′)4

1

B

B∑
b′=1

qj(s
b′)φ′(W 0

m′ · sb
′
)sb

′

k G
′
j,m(ds−1)+k(Y)

+ (C0
j,m′)4G′

j,m(ds−1)+k(Y)2

)]
+O

(
1

n

)
.

Given that the gradient updates have finite and bounded variance (assumption 4) the expression
including the expectation converges to a value that is O(1) and dependent on s,G(Y), j, σH,K by
the strong law of large numbers at the rate O

(
1
n

)
. We have therefore have the following

lim
n→∞

ηnΦ
n
j Ξn(W[l/η]∧τK)(Φnj)

⊺ = 0.

Therefore, as n → ∞ and by localization technique (Karatzas & Shreve, 2014) we prove conver-
gence of equation 17 to:

dĀj(s;Wt) = v(s;Xt)dt, (18)

which admits a unique solution due to the assumption of Lipschitz condition ,assumption 5. Given
that we initialise W0 as drawn from a distribution in P(R) then the distribution of Aj is a push
forward of this distribution and therefore evolves as in equation 18 and gives us the result.

Similarly, from the linearity ofAj,k inW using a similar derivation as above we can derive an ODE.
To do so we first note

Anj,k(s;W) = Φnj (1k)W +Φnj,k(s)W,

where 1k is a ds-dimensional vector with value at index k is set to 1 and rest 0, Φj,k(s) is defined
as below

Φnj,k(s) =
1√
n

[
W 0

1,kC
0
1,jφ

′′(W 0
1 · s)s⊺,W 0

2,kC
0
2,jφ

′′(W 0
2 · s)s⊺, ...,W 0

n,kC
0
n,jφ

′′(W 0
n · s)s⊺

]
∈ R1×nds .

Therefore, in the limit n→∞
dĀj,k(s) = v′(s;Xt)dt.

Now we derive and prove the dynamics of the quadratic term Aj(s;W)Aj′(s;W).

Lemma 9. Given a fixed state s the j-th action, Anj (s; ·), determined by a linearised neural pol-
icy with two hidden layers as described and initialised in Section 3, we assume W0 ∼ X0 =
Normal(0, Ids/ds) i.i.d whose gradient dynamics are described in equation 8 with learning rates
ηn → 0, and under assumptions 4, 5, we have that in the limit n→∞ the dynamics of Anj converge
weakly to the following random ODE

dĀj(s;Xτ)Āj′(s;Xτ) =
(
vj(s;Xτ)Āj′(s;Xτ) + vj′(s;Xτ)Āj(s;Xτ)

)
dτ, (19)

with the random variable Xτ is the limit point of the sufficient random variables, Xnt , of the pa-
rameters updated according to stochastic policy gradient based updates laid out in Section 3.2 with
η = ηn, and vj , vj′ are as described in Lemma 8.

28

Published as a conference paper at ICLR 2025

Anj (s;W)Anj′(s;W) = (Φnj (s;W0)W)(Φnj′(s;W0)W).

Proof. Since we know that Āτj , Ā
τ
j′ follow the ODE in equation 15 we want to show that the update

for Anj (s;W)Anj′(s;W) converges weakly to

d(Āj(s;Xt)Āj′(s;Xt)) =
(
vj(s;Xt)Āj′(s;Xt) + vj′(s;Xt)Āj(s;Xt)

)
dt

To do so consider the increments as in equation 16 for the statistic which a product of two actions
AnjA

n
j′ :

ντj,j′ − ντ−1
j,j′ =ΦnjGn(Wτ)(Φ

n
j′Wτ) + (ΦnjWτ)Φ

n
j′Gn(Wτ),

ςτj,j′ − ςτ−1
j,j′ =

(
ΦnjHn(Wτ ,BWτ

)
)
Φnj′Wτ +

(
ΦnjWτ

)
Φnj′Hn(Wτ ,BWτ

)

+ η
((
ΦnjHn(Wτ ,BWτ

)
)
Φnj′Gn(Wτ) +

(
ΦnjGn(Wτ

)
Φnj′Hn(Wτ ,BWτ

)
)

Omitting the subscript in ηn we obtain

uτj = u0j + η
τ∑

τ ′=1

(ντ
′

j − ντ
′−1
j) + η

τ ′∑
τ ′=1

(ςτ
′

j − ςτ
′−1

j).

Now for l ∈ [0, L] we define,

ν′j(l) = ν
[l/η]
j − ν[l/η]−1

j , ς ′j(l) = ς
[l/η]
j − ς [l/η]−1

j ,

Similar to the rpevious proof, we let

µnj (l) =

∫ l

0

ν′j(l)dl
′ = ν′j(η[l/η]) + (s− η[l/η])

(
ν
[l/η]
j − ν[l/η]−1

j

)
σnj (l) =

∫ l

0

ς ′j(l)dl
′ = ς ′j(η[l/η]) + (s− η[l/η])

(
ς
[l/η]
j − ς [l/η]−1

j

)
,

be continuous linear interpolations based on discrete random variables ν, ς and combine them to-
gether to obtain

vnj (l) = vnj (0) + µnj (l) + σnj (l). (20)

With exit time τK we want to show that for all 0 ≤ s, t ≤ T ,
E||vnj (s ∧ τK)− vnj (t ∧ τK)||4 ≲K,T (t− s)2,

where the expectation over the stochastic updates. This proves that vnj (s ∧ τK) is 1/4 Hölder-
continuous according to Kolmogorov’s continuity theorem (as opposed to 1/2 in the previous proof).

We have for all s, t
||vnj (s)− vnj (t)|| ≤ ||µnj (s)− µnj (t)||+ ||σnj (s)− σnj (t)||.

The first term in the inequality, the norm of µnj , is upper-bounded as below:

E
[
|µnj (s ∧ τK)− µnj (t ∧ τK)|4

]
≲K E

[∣∣∣η [t/η]∧τK/η∑
τ ′=[s/η]∧τ ′

K/η

ΦnjGn(Wτ ′)(Φnj′Wτ ′)

+ (ΦnjWτ ′)Φnj′Gn(Wτ ′)
∣∣∣4]

≤ (t− s)4||(ΦnjWτ ′)Φnj′Gn(Wτ ′)

+ ΦnjGn(Wτ ′)(Φnj′Wτ ′)||4L∞(En
K)

≲K,LG,s (t− s)4.

29

Published as a conference paper at ICLR 2025

where the second inequality is from the continuity of the function ΦnjWτ ′)Φnj′Gn(Wτ ′) inWn. The
last inequality is from the Lipschitz condition on the gradient function G 5.

Further consider the second term

E
[
|σnj (s ∧ τK)− σnj (t ∧ τK)|4

]
=E

η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(ςτ
′

j − ςτ
′−1

j)

4

=E

η [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

ςτ
′

j − ςτ
′−1

j)

4

≲ E

η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ςτ

′

j − ςτ
′−1

j

)22
 .

Using Cauchi-Schwarz inequality we can bound the two different types of terms separately. We can
first upper bound

E

η2 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(Wτ ′)

)
Φnj′Wτ ′

2

=η4
∑
τ ′,τ ′′

E
[((

ΦnjHn(Wτ ′)
)
Φnj′Wτ ′

)2 ((
ΦnjHn(Wτ ′′)

)
Φnj′Wτ ′′

)2]

≤

(
η
∑
τ ′

(
η2E

[((
ΦnjHn(Wτ ′)

)
Φnj′Wτ ′

)4])1/2)2

≲K,LH ,s (t− s)2,

where the inequality in the second line is from Cauchy-Schwarz and for the last inequality we use
assumption 4, η → 0 at rate 1√

n
and the fact that Φj only depends on s. Similarly, we bound the

other term below

E

η4 [t/η]∧τK/η∑

τ ′=[s/η]∧τK/η

(
ΦnjHn(Wτ ′)

)
Φnj′Gn(Wτ ′)

2

= η8
∑
τ ′,τ ′′

E
[((

ΦnjHn(Wτ ′)
)
Φnj′Gn(Wτ ′)

)2 ((
ΦnjHn(Wτ ′′)

)
Φnj′Gn(Wτ ′′)

)2]

≤

(
η6
∑
τ ′

(
η2E

[((
ΦnjHn(Wτ ′)

)
Φnj′Gn(Wτ ′)

)4])1/2)2

≲K,LG
(t− s)2.

Where the last inequality follows from Assumptions 4, convergence of η → 0 and Lipschitz conti-
nuity of G. Combining these together we obtain the 1/2-Hölder-continuous limit point. Finally, to
derive the dynamics we once again show that the quadratic variation goes to 0.

σnj (t ∧ τK)2 −
∫ t

0

ηEB
Wl/η∧τK

((
ΦnjHn(Wτ)

)
Φnj′Wτ +

(
ΦnjWτ

)
Φnj′Hn(Wτ)

)2
.

Since we have already shown that EB
Wl/η∧τK

[
(ΦnjHn(W[l/η]∧τK))2

]
= O(1) +O(1/n) (see Sec-

tion C), similarly we have (Φnj′Wτ)
2 = O(1) +O(1/n). Therefore, as n→∞ and by localization

technique we have as required:
d(Āj(s;Xt)Āj′(s;Xt)) =

(
vj(s;Xt)Āj′(s;Xt) + vj′(s;Xt)Āj(s;Xt)

)
dt

30

Published as a conference paper at ICLR 2025

Similarly, we can show the convergence to a random ODE for the product of two linear terms
AjkAj′ .

G PROOF OF MAIN RESULT

Proof. We put together the dynamics we have derived and proved convergence in the n→∞ limit.
We re-arrange the terms of second order expansion of the Lie series to group together the terms
that have the same multiplicative vector. We additionally denote the vector ∂g(s)∂sk

by g′k(s) similarly
∂hj(s)
∂sk

as h′j,k(s). From the derivation in section B we have the following:

e
X(W)
t (s) =s+ t

g(s) + da∑
j=1

hj(s)Aj(s;W)

t2

(
ds∑
k=1

(
gk(s)g

′
k(s) +

da∑
j=1

hj,k(s)Aj(s,W)g′k(s)

+ gk(s)

 da∑
j′=1

h′j′,k(s)Aj′(s,W) +Aj′,k(s,W)hj′(s)

+

da∑
j=1

da∑
j′=1

hj,k(s)Aj(s,W)h′j′,k(s)Aj′(s,W) + hj,k(s)Aj(s,W)Aj′,k(s)hj′(s)

))

=s+ (tg(s) + t2
ds∑
k=1

gk(s)g
′
k(s))

+

da∑
j=1

thj(s)

(
Aj(s,W) + t

 ds∑
k=1

gk(s)

(
Aj′,k(s,W) +

da∑
j′=1

hj′,k(s)Aj′(s,W)Aj,k(s)

))

+ t2
da∑
j′=1

Aj′(s,W)

 ds∑
k=1

h′j′,k(s)

gk(s) + da∑
j=1

hj,k(s)Aj(s,W)

 .

The first four expressions in the summation account for da + 2 degrees of freedom. In other words,
the first three terms in the summation are spanned by da + 2 vectors. For the last term in the
summation consider the following representation:

fτj′ =A
τ
j′(s)

(
ds∑
k=1

h′j′,k(s)
(
hj,k(s)A

τ
j (s)

))

=Aτj (s)

ds∑
k=1

h′j′,k(s)

da∑
j′=1

Aτj′(s)hj′,k(s),

=Aτj (s)Jhj(s)h(s)A
τ (s),

Where Jhj is the Jacobian of the function hj(s). This leads us to the following vector:

vτj =

ds∑
k=1

∂hj(s)

∂sk

da∑
j′=1

āτj′(s)hj′,k(s),

=Jhj(s)h(s)B̄
τ
j (s),

B̄τj represents the da× 1 vector [E[AτjAτ1], . . . ,E[AτjAτ1]], where the expetation is over the stochas-
ticity of initialisation..

where Jhj(s) is the ds × ds Jacobian of hj w.r.t s, āτj (s) is the process determined by E
[
ντj
]
, and

h(x) is a concatenation of da vectors. We seek to upper bound the following, by showing that there

31

Published as a conference paper at ICLR 2025

is a continuous time martingale process in the limit n→∞,

D(fτ , vτ) = D(

da∑
j=1

fτj ,Span(vτ1 , . . . , v
τ
da)),

where D(fτ , vτ) is the distance between fτ and the span of vτ1 , . . . , v
τ
da

. This distance is upper
bounded as follows:

D(fτ , vτ) ≤L2(

da∑
j=1

D(fτj , v
τ
j))

≤L2

 da∑
j=1

D(fτj , v
τ
j)

≤L2

 da∑
j=1

aτj (s)Jhj(s)h(s)A
τ (s)− Jhj(s)h(s)B̄τj (s)

≤L2

 da∑
j=1

Jhj(s)h(s)(a
τ
j (s)A

τ (s)− B̄τj)

 ,

where both āj , Ā are the mean processes, and L2 denotes the L-2 norm. Therefore, the data is
concentrated around the space spanned by the vectors: h1, . . . , hda , v

τ
1 , . . . , v

τ
da

and the paraboloid
tg + t2g′. Let this product space be M then dim(M) ≤ 2da + 1. The concentration property is a
result of the concentration of aτj (s)A

τ (s) around B̄τj due to the dynamics in 19.

While proofs in Appendix F closely follow that of Ben Arous et al. (2022) we list our contibtuions
in this work:

1. We show that the distribution of outputs, and its quadratic combinations, of a two-layer
linearised NNs deviate only in mean and variance, and are dependent on a finite set of
summary statistics, despite the width and parameter size going to infinity as the learning
rate goes 0.

2. In this appendix section, We combine this with the idea of the exponential map being a
push forward of the parameter distribution at gradient time step τ , for a fixed state s, and
show that the distribution is concentrated around a low-dimensional manifold.

H CONTINUOUS TIME POLICY GRADIENT

In this section we define the continuous time policy gradient and the assumptions needed for it to
converge. We define the i-th component of the gradient over the value function with respect to the
actions as follows:

(∇aQπ(s, a, t))i = lim
h→0+

Qπh(s, a+ hei, t)− V π(s, t)
h

,

where ei is a da dimensional vector with 1 at i and 0 otherwise, finally the function Qh is defined
as:

Qπh(s, a+ hei, t) =v
π(st+h) +

∫ h

0

e−
l+t
λ fr(s

a+hei
l)dl, such that

sa+heil =T (s, a+ hei, l),

where T is the transition function as defined in Section 2.1. This is an application of the policy
gradient theorem (Sutton et al., 1999; Lillicrap, 2015) which is a semi-gradient based optimisation
technique.

32

Published as a conference paper at ICLR 2025

It is not always guaranteed that the policy gradient algorithm will converge to globally optimal
policies for general dynamics in a straightforward manner (Sutton et al., 1999; Konda & Tsitsiklis,
1999; Marbach & Tsitsiklis, 2003; Xiong et al., 2022). The rate of convergence affects the constant
Rτ introduced above. While we do not argue this formally, our main result holds as long as the RL
algorithm does not diverge.

I DIMENSIONALITY ESTIMATION

We describe the algorithm for dimensionality estimation in the context of sampled data from the
state manifold Se. Let the dataset be randomly sampled points from a manifold Se embedded in
Rds denoted by D = {si}Ni=1. For a point si from the dataset D let {ri,1, ri,2, ri,3, ...} be a sorted
list of distances of other points in the dataset from si and they set r0 = 0. Then the ratio of the two
nearest neighbors is µi = ri,2/ri,1 where ri,1 is the distance to the nearest neighbor in D of si and
ri,2 is the distance to the second nearest neighbor. Facco et al. (2017) show that the logarithm of the
probability distribution function of the ratio of the distances to two nearest neighbors is distributed
inversely proportional to the degree of the intrinsic dimension of the data and we follow their algo-
rithm for estimating the intrinsic dimensionality. We describe the methodology provided by Facco
et al. (2017) in context of data sampled by an RL agent from a manifold. Without loss of generality,
we assume that {si}Ni=1 are in the ascending order of ri. We then fit a line going through the origin
for {(log(µi),− log(1− i/N)}Ni=1. The slope of this line is then the empirical estimate of dim(Se).
We refer the reader to the supplementary material provided by Facco et al. (2017) for the theoretical
justification of this estimation technique. The step by step algorithm is restated below.

1. Compute ri,1 and ri,2 for all data points i.

2. Compute the ratio of the two nearest neighbors µi = ri,2/ri,1.

3. Without loss of generality, given that all the points in the dataset are sorted in ascending
order of µi the empirical measure of cdf is i/N .

4. We then get the datasetDdensity = {(log(µi),− log(1− i/N)} through which a straight line
passing through the origin is fit.

The slope of the line fitted as above is then the estimate of the dimensionality of the manifold.

J DDPG BACKGROUND

An agent trained with the DDPG algorithm learns in the discrete time but with continuous states
and actions. With abuse of notation, a discrete time and continuous state and action MDP is defined
by the tuple M = (S,A, P, fr, s0, λ), where S,A, s0 and fr are the state space, action space,
start state and reward function as above. The transition function P : S × A × S is the transition
probability function, such that P (s, a, s′) = Pr(St+1 = s′|St = s,At = a), is the probability
of the agent transitioning from s to s′ upon the application of action a for unit time. The policy,
in this setting, is stochastic, meaning it defines a probility distribution over the set of actions such
that π(s, a) = Pr(At = a|St = s). The discount factor is also discrete in this setting such that an
analogous state value function is defined as

vπ(st) = Esl,al∼π,P

[
T∑
l=t

λl−tfr(sl, al)|st

]
,

which is the expected discounted return given that the agent takes action according to the policy
π, transitions according to the discrete dynamics P and st is the state the agent is at time t. Note
that this is a discrete version of the value function defined in Equation 2. The objective then is to
maximise J(π) = vπ(s0). One abstraction central to learning in this setting is that of the state-action
value function Qπ : S ×A → R, for a policy π, is defined by:

Qπ = Esl,al∼π,P

[
T∑
l=t

λl−tfr(sl, al)|st, at

]
,

33

Published as a conference paper at ICLR 2025

which is the expected discounted return given that the agent takes action at at state st and then fol-
lows policy π for its decision making. An agent, trained using the DDPG algorithm, parametrises the
policy and value functions with two deep neural networks. The policy, π : S → A, is parameterised
by a DNN with parameters θπ and the action value function, q : S × A → R,is also parame-
terised by a DNN with ReLU activation with parameters θQ. Although, the policy has an additive
noise, modeled by an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930), for exploration
thereby making it stochastic. Lillicrap et al. (2016) optimise the parameters of the Q function, θQ,
by optimizing for the loss

LQ =
1

N

N∑
i=1

(yi −Q(si, ai; θ
Q))2, (21)

where yi is the target value set as yi = ri + λQ(s′i+1, π(si+1; θ
π); θQ). The algorithm updates the

parameters θQ by θQ ← θQ + αQ∇θQLQ, where LQ is defined as in Equation 21. The gradient of
the policy parameters is defined as

∇θπJ(θπ) =
1

N

∑
i

∇aQ(s, a; θQ)|s=si,a=π(si)∇θQπ(s; θ
π)|s=si , (22)

and the parameters θπ are updated in the direction of increasing this objective.

K BACKGROUND ON SOFT ACTOR CRITIC

The goal of the SAC algorithm is to train an RL agent acting in the continuous state and action but
discrete time MDPM = (S,A, P, fr, s0, λ), which is as described in Appendix J. The SAC agent
optimises for maximising the modified objective:

J(θπ) =

T∑
t=0

Est,at∼π,P [fr(st, at) +H(π(·, st; θπ))] ,

where H is the entropy of the policy π. This additional entropy term improves exploration (Schul-
man et al., 2017; Haarnoja et al., 2017). Haarnoja et al. (2018) optimise this objective by learning 4
DNNs: the (soft) state value function V (s; θV), two instances of the (soft) state-action value func-
tion: Q(s1, at; θ

Q
i) where i ∈ {1, 2}, and a tractable policy π(st, at; θπ). To do so they maintain

a dataset D os state-action-reward-state tuples: D = {(si, ai, ri, s′i)}. The soft value function is
trained to minimize the following squared residual error,

JV (θ
V) = Es∼D

[
1

2

(
V (s; θV)− Ea∼π

[
Q(s, a; θQ)− log π(s, a; θπ)

])2]
, (23)

where the minimum of the values from the two value functions Qi is taken to empirically estimate
this expectation. The soft Q-function parameters can be trained to minimize the soft Bellman resid-
ual

JQ(θ
Q) = Es,a,r,s′∼D

[
1

2

(
Q(s, a; θQ)− r − λV (s′; θ̄V)

)2]
, (24)

where θ̄V are the parameters of the target value function. The policy parameters are learned by
minimizing the expected KL-divergence,

J(θπ) = Es∼D

[
DKL

(
π(s, ·; θπ), exp(Q(s, ·; θQ))

ZθQ(s)

)]
, (25)

where ZθQ(s) normalizes the distribution.

L DDPG WITH GELU ACTIVATION

We provide the comparison between single hidden layer network and multiple hidden layer network
because our results in Section 4 are for single hidden layer. The same architecture is used by Lilli-
crap et al. (2016) for the policy and value function DNNs which is two hidden layers of width 300

34

Published as a conference paper at ICLR 2025

(a) Walker2D (b) Cheetah (c) Reacher (d) Swimmer

Figure 6: Comparison of single hidden layer with GeLU activation (blue) and multiple hidden layer
with ReLU activation (red) architectures for DNNs.

and 400 with ReLU activation. Here we provide the comparison to a single hidden layer width 400
with GeLU activation for the architecture used by Lillicrap et al. (2016). We provide this compari-
son in Figure 6 and note that the performance remains comparable for both architectures. All results
are averaged over 6 different seeds. We use a PyTorch-based implementation for DDPG with modi-
fications for the use of GeLU units. The base implementation of the DDPG algorithm can be found
here:https://github.com/rail-berkeley/rlkit/blob/master/examples/ddpg.py. The hyperparameters are
as in the base implementation.

M BACKGROUND ON SPARSE REPRESENTATION LEARNING VIA SPARSE
RATE REDUCTION

We further explain and provide intuition on how the layer introduced in equation 12 learns a sparse
representation. For a detailed explanation, we refer to the work by Yu et al. (2023a). While equation
12 performs a linear transform to the pre-activation of the layer, it is built upon the idea of sparse
rate reduction that follows the principle of parsimony: learning representations by successively
compressing and sparcifying the input signal to maximally differentiate different data points for the
task (Wright & Ma, 2022).

We first establish notation in the setting of batched learning with neural networks. Suppose the
objective is to represent d data points as n-dimensional vectors. This problem can be formulated as
obtaining a representation for d × n, denoted by Z which represents a batch of data. The coding
rate, as defined by Ma et al. (2007), is as follows,

R(Z) =
1

2
log det (I+ Z⊺Z) . (26)

To promote sparsity, which in turn learns a low-rank representation of data with a non-linear low-
dimensional structure, Yu et al. (2023a) optimize the following term:

max
Z

[R(Z)− λ||Z||0] = min
Z

[
λ||Z||0 −

1

2
log det

(
I+

d

nϵ2
Z⊺Z

)]
.

The iterative approach to learning a representation that minimizes the coding rate takes gradient
steps in reducing this rate. As opposed to optimizing for these objectives in a loop, as in linear
programming, Yu et al. (2023a) formulate this as representation learning over successive layers of
NNs. Yu et al. (2023a) derive this iterative step, as representation over successive layers as follows,

Zl+1 = ReLU
((

1 +
4

9(1 + α′)

)
D⊺Zl − 4λ

9α′ I

)
,

where Zl are assumed to be normalised, α′ is the step size, and D⊺ is assumed to be an orthogonal
dictionary for the batched dataset. A parameterised version of this transform, where both the con-
stant terms are interpreted as being independent, is used in equation 12. The sparsity layer adds a
constant computation factor of 2n2 in the forward and backward passes, we show the impact on the
steps per second metric in Figure 9 of the appendix.

35

Published as a conference paper at ICLR 2025

(a) log2 width = 12 (b) log2 width = 13

(c) log2 width = 14 (d) log2 width = 15

(e) log2 width = 16 (f) log2 width = 17

Figure 7: The canonical policy (in red) tracks the returns for linearised policy (in blue) at higher
widths (log2 n > 15).

36

Published as a conference paper at ICLR 2025

(a) Ant Ablation (b) Humanoid Stand

(c) Humanoid Walk

Figure 8: Ablation over the αQ parameter.

(a) Ant (b) Dog Stand

Figure 9: We show the steps per second for SAC (blue) and sparse SAC (red) as training progresses.
We observe that, in the ant environment, for the baseline the steps per second is as high as 90
whereas in the sparse implementation this drops to 65. Similarly, in the dog stand environment this
difference is 81 to 61. While this increases the computation requirements and wall clock time it
does not make our method intractable given the significant gains in performance.

37

Published as a conference paper at ICLR 2025

N FURTHER EXPERIMENTAL RESULTS

We observe that the discounted returns don’t vary for the ant MujoCo domain (Todorov et al., 2012)
as shown in figure 8 with the environment steps on the x-axis. We see a lot of variance across and
within choices of αQ for humanoid walk and stand environment of DM control suite (Tunyasuvu-
nakool et al., 2020) even though the sparse method remains superior to SAC with fully connected
feedforward. We attribute this to being an exploration problem, while our method is able to over-
come learning-related bottlenecks, it is unable to overcome the efficient exploration issue, which
holds back the agent from attaining optimum returns in higher-dimensional control tasks.

O RELATED WORK

There has been significant empirical work that assumes the set of states to be a manifold in RL.
The primary approach has been to study discrete state spaces as data lying on a graph which has
an underlying manifold structure. Mahadevan & Maggioni (2007) provided the first such frame-
work to utilise the manifold structure of the state space in order to learn value functions. Machado
et al. (2017) and Jinnai et al. (2020) showed that PVFs can be used to implicitly define options
and applied them to high dimensional discrete action MDPs (Atari games). Wu et al. (2019) pro-
vided an overview of varying geometric perspectives of the state space in RL and also show how the
graph Laplacian is applied to learning in RL. Another line of work, that assumes the state space is
a manifold, is focused on learning manifold embeddings or mappings. Several other methods ap-
ply manifold learning to learn a compressed representation in RL (Bush & Pineau, 2009; Antonova
et al., 2020; Liu et al., 2021). Jenkins & Mataric (2004) extend the popular ISOMAP framework
(Tenenbaum, 1997) to spatio-temporal data and they apply this extended framework to embed hu-
man motion data which has applications in robotic control. Bowling et al. (2005) demonstrate the
efficacy of manifold learning for dimensionality reduction for a robot’s position vectors given addi-
tional neighborhood information between data points sampled from robot trajectories. Continuous
RL has been applied to continuous robotic control (Doya, 2000a; Deisenroth & Rasmussen, 2011;
Duan et al., 2016) and portfolio selection (Wang et al., 2020; Wang & Zhou, 2020; Jia & Zhou,
2023; 2022b). We apply continuous state, action and time RL as a theoretical model in conjuction
with a linearised model of NNs to study the geometry of popular continuous RL problem for the
first time.

More recently, the intrinsic dimension of the data manifold and its geometry play an important role
in determining the complexity of the learning problem (Shaham et al., 2015; Cloninger & Klock,
2020; Goldt et al., 2020; Paccolat et al., 2020; Buchanan et al., 2021; Tiwari & Konidaris, 2022)
for deep learning. Schmidt-Hieber (2019) shows that, under assumptions over the function being
approximated, the statistical risk deep ReLU networks approximating a function can be bounded
by an exponential function of the manifold dimension. Basri & Jacobs (2017) theoretically and
empirically show that SGD can learn isometric maps from high-dimensional ambient space down
to m-dimensional representation, for data lying on an m-dimensional manifold, using a two-hidden
layer neural network with ReLU activation where the second layer is only of width m. Similarly,
Ji et al. (2022) show that the sample complexity of off-policy evaluation depends strongly on the
intrinsic dimensionality of the manifold and weakly on the embedding dimension. Coupled with our
result, these suggest that the complexity of RL problems and data efficiency would be influenced
more by the dimensionality of the state manifold, which is upper bounded by 2da + 1, as opposed
to the ambient dimension.

We summarise several approaches for better representation learning in RL using information bot-
tlenecks. Like our work, this approach reduces noise and irrelavant signal One common approach
is to compress the state representation that is used by the agent for learning (Goyal et al., 2019a;b;
2020; Islam et al., 2022). The central idea is to extract the most informative bits with an auxiliary
objective. This auxiliary objective could be exploration based (Goyal et al., 2019a), enables hierar-
chical decision making (Goyal et al., 2019b), predicting the goal (Goyal et al., 2020), and relevance
to task dynamics (Islam et al., 2022). While these are practical methods they do not provide a the-
oretical limit on the dimension of the bottleneck. In contrast, our representation is a local manifold
embedding that preserves the geometry of the emergent state manifold.

38

Published as a conference paper at ICLR 2025

Another closely related line of research exploits the underlying structure and symmetries in MDPs.
Ravindran & Barto (2001) provide a detailed and comprehensive study on on reducing the model size
for MDPs by exploiting the redundancies and symmetries. There have been with other more specific
approaches to this (Ravindran & Barto, 2003; 2002) and more recent work follow ups by van der Pol
et al. (2020). The broader study of manifolds, within differential geometry, is related to the study of
symmetries and invariances. We anticipate that further reducing the effective state manifold based
on redundancies, to extend our work, would be highly promising. Givan et al. (2003) and Ferns et al.
(2004) also provide closely related state aggregation techniques based on bisimulation metrics which
have been developed further (Castro & Precup, 2010; Gelada et al., 2019; Zhang et al., 2020; Lan
et al., 2021). The bi-simulation literature defines metrics that incorporates transition probabilities
or environment dynamics of the environments. The underlying metric is probabilistic in nature.
The manifold and metric are defined in such a way as to facilitate better representation learning for
RL. The primary difference is that our approach proves how a low-dimensional manifold “emerges”
from the design and structure of certain continuous RL problems.

We finally contextualize our work in light of various control theoretic frameworks. Control systems
on a non-linear manifolds have been studied widely (Sussmann, 1973; Brockett, 1973; Nijmeijer &
van der Schaft, 1990; Agrachev & Sachkov, 2004; Bloch & Bloch, 2015; Bullo & Lewis, 2019).
Like most control theoretic frameworks the transitions, dynamics, and the geometry of the system
are assumed known to the engineer. (Liu et al., 2021) recently provide a framework for controlling
a robot on the constraint manifold using RL. As noted previously, our work is also closely related to
the notion reachability in control theory (Kalman, 1960; Jurdjevic, 1997; Touchette & Lloyd, 1999;
2001) which deals with sets reachable under fixed and known dynamics of a system. Reachability
sets from control theory have been applied for safe control under the RL framework (Akametalu
et al., 2014; Shao et al., 2020; Isele et al., 2018). While the objective is similar, to find the sets of
states reached with any controller, the assumptions, on the underlying dynamics are different leading
to different results.

P EXTENSION TO OTHER ACTIVATIONS AND ARCHITECTURES

It is a difficult to theoretically analyse complex engineered systems such as neural networks for
continuous control learned using policy gradient methods. We have simplified this setting by us-
ing linearised policies (Section 3.1) with GeLu activation and access to the true gradient of the
value function (Section 2.1). We show results in GeLu activation because it is the closest (smooth)
analogue to the most popularly used ReLu activation which is very commonly used in continuous
control with RL (Lillicrap, 2015; Schulman et al., 2017; Haarnoja et al., 2018). Despite our choice
of GeLu, as noted in Section 4, our results extend to activations which are twice differentiable ev-
erywhere with bounded derivatives. Moreover, our results capture the setting of neural policies that
have a very high-dimensional parameter space but also have structured outputs (Lee et al., 2017;
Ben Arous et al., 2022). In study of supervised deep learning results emanating from theoretical
models that approximate shallow wide NNs have been extended to deeper networks, e.g. the neural
tangeent kernel (NTK) framework (Jacot et al., 2018). Moreover, there have also been mechanisms
to make finite depth and width corrections to NTK (Hanin & Nica, 2019). Theoretical inferences
made in simplified settings have been extended to applications and a wide range of architectures
as well (Yang & Hu, 2021; Yang et al., 2022; Fort et al., 2020; Wang et al., 2022). We anticipate
that extending our results to a broader set of activations, architectures, and reinforcement learning
algorithms would lead to better applications by means of improved theoretical understanding.

Another assumption we make is deterministic transitions. While this is true in many popular bench-
mark environments (Todorov et al., 2012; Tunyasuvunakool et al., 2020), the most general setting of
RL as a model for intelligent agent the transitions are stochastic. This is a common feature in control
theory where results in deterministic control: ṡ(t) = g(s(t), u(t), t), with continuous states, actions,
and time, can be extended to stochastic transitions by considering bounded stochastic perturbations

ṡ(t) = g(s(t), u(t), t) + d(s(t), u(t), t)dwt,

where d is the stochastic perturbation aspect with wt being the Wiener process and u(t) is the open
loop control. Tor example, the contraction analysis by Lohmiller & Slotine (1998) in deterministic
transitions is extended to stochastic perturbations by Pham et al. (2009). We anticipate that our
analysis, under appropriate assumptions on the stochastic perturbations, has promise of extensions.

39

	Introduction
	Background and Mathematical Preliminaries
	Continuous-Time Reinforcement Learning
	Manifolds
	Vector Fields, Lie-Series, and Control Theory

	Model for Linearised Wide Two-Layer Neural Policy
	Linear Parameterisation of Neural Policy
	Continuous Time Policy Gradient

	Main Result: Locally Attainable States
	Empirical Validation
	Approximation Error With Linearised Policy
	Empirical Dimensionality Estimation
	Empirical Validation in Toy Linear Environment
	Reinforcement Learning with Local Low-Dimensional Subspaces

	Discussion
	Acknowledgments
	Manifold Background
	Feedback Action Lie Series
	Some Helpful Derivations
	Covariate terms
	Sufficient Statistics
	Tracking Statistics
	Proof of Main Result
	Continuous Time Policy Gradient
	Dimensionality Estimation
	DDPG Background
	Background on Soft Actor Critic
	DDPG with GeLu Activation
	Background on Sparse Representation Learning via Sparse Rate Reduction
	Further Experimental Results
	Related Work
	Extension to Other Activations and Architectures

