
Hybrid Bayesian Eigenobjects: Combining Linear Subspace and Deep
Network Methods for 3D Robot Vision

Benjamin Burchfiel† and George Konidaris?

†Duke University, Durham NC
?Brown University, Providence RI

bcburch@cs.duke.edu, gdk@cs.brown.edu

Abstract— We introduce Hybrid Bayesian Eigenobjects
(HBEOs), a novel representation for 3D objects designed to
allow a robot to jointly estimate the pose, class, and full 3D
geometry of a novel object observed from a single viewpoint
in a single practical framework. By combining both linear
subspace methods and deep convolutional prediction, HBEOs
efficiently learn nonlinear object representations without di-
rectly regressing into high-dimensional space. HBEOs also
remove the onerous and generally impractical necessity of
input data voxelization prior to inference. We experimentally
evaluate the suitability of HBEOs to the challenging task of
joint pose, class, and shape inference on novel objects and show
that, compared to preceding work, HBEOs offer dramatically
improved performance in all three tasks along with several
orders of magnitude faster runtime performance.

I. INTRODUCTION

If we desire robots capable of functioning in arbitrary
home and office settings—environments that exhibit huge
amounts of variation—we require dramatic improvement to
our perceptual systems. It is no longer feasible to rely on
operating in known settings with previously encountered
objects; generally-intelligent robots require the ability to
generalize from objects they have previously observed to
similar but novel objects. Prior work has identified three
critical inference capabilities required by most robots inter-
acting with objects: classification, pose estimation, and 3D
completion [4]. For a single observed object, that entails
determining the object’s type, its position in the world,
and its full 3D geometry. These capabilities are critical for
many common robot tasks and constitute the perceptual
foundation upon which complex object-centric behavior may
be built. For instance, a household robot should be able to
reason about a new and somewhat oddly shaped coffee mug,
recognizing it as a coffee cup, inferring that it likely has
a handle protruding from the rear (even if that portion is
unseen), and estimating its pose.

This work presents a novel framework for object represen-
tation: Hybrid Bayesian Eigenobjects (HBEOs). HBEOs, like
BEOs [4] which preceded them, are designed to generalize
knowledge from previously encountered objects to novel
ones. HBEOs are trained from a set of 3D meshes with
known class and pose; they allow a novel object—observed
via a depth image from a single viewpoint—to have its class,
pose, and full 3D shape estimated.

HBEOs employ Variational Bayesian Principal Compo-
nent Analysis (VBPCA) to learn a linear subspace in which
objects lie. The critical insight is that the space spanned by
all possible 3D structures is far larger than the—still quite
sizable—space spanned by 3D objects encountered in the
everyday world. By explicitly learning a compact basis for
objects we wish our robot to reason about, we constrain the
inference problem significantly. This representation allows
a 3D object to be expressed as a low dimensional set of
VBPCA coefficients, facilitating efficient pose estimation,
classification, and completion without operating directly in
high-dimensional object space. HBEOs use a learned non-
linear method—specifically, a deep convolutional network
[16]—to determine the correct projection coefficients for a
novel partially observed object. By combining linear sub-
space methods with deep convolutional inference, HBEOs
draw from the strengths of both approaches.

Previous work on 3D shape completion employed either
deep architectures which predict object shape in full 3D
space (typically via voxel output) [33, 32, 10, 31] or linear
methods which learn linear subspaces in which objects tend
to lie [4]. Both approaches have had some success, but also
have significant weaknesses. End-to-end deep methods suffer
from the high dimensionality of object space; the data and
computation requirements of regressing into 50, 000 or even
million dimensional space are severe. Linear approaches, on
the other hand, perform their predictions in an explicit low
dimensional subspace. This approach is fast and quite data
efficient but requires partially observed objects be voxelized
before inference can occur, and lacks the expressiveness of a
non-linear deep network. Unlike existing approaches, which
are either fully linear or do not leverage explicit object
spaces, HBEOs have the flexibility of nonlinear methods
without requiring expensive regression directly into high-
dimensional space. Additionally, because HBEOs perform
inference directly from a depth image, they do not require
voxelizing a partially observed object, a process which
requires estimating a partially observed object’s full 3D
extents and pose prior to voxelization. Empirically, we show
our hybrid approach outperforms competing methods when
performing joint pose estimation, classification, and 3D com-
pletion of novel objects.

II. BACKGROUND

A. 3D Object Representations

The most common 3D object representations are meshes,
voxel objects, multiview depth images, and pointclouds.
Voxels (volumetric pixels) are expressive and benefit from
being a fixed-size representation, but have cubic complexity
with respect to their linear resolution and are inefficient for
objects with regular geometry. Object meshes, which model
just the surface of an object, efficiently capture fine detail
but can be cumbersome to work with due to their variable
size and lack of explicit volume representation. It can also be
difficult to generate complete meshes from imperfect or noisy
data. Multiview representations offer efficiency advantages
compared to voxel approaches and ease of generation com-
pared to mesh models, but do not explicitly represent object
interiors. Pointclouds are often convenient to generate and
can be very expressive, but do not explicitly model free and
occupied space and are not a fixed size. Historically, depth
images and multiview representations have been popular for
3D classification while meshes, voxels, and pointclouds are
more common when performing object manipulation [23, 8].

While most modern object-centric perceptual systems use
convolutional networks at their core, other methods of per-
forming inference on 3D objects have been created over
the years for various tasks. Parts-based methods create a
parts dictionary and represent objects as a composition of
multiple dictionary entries [9, 19], while database methods,
common in robotics, construct an explicit database consisting
of known objects and perform various types of inference via
queries into that database [34, 17, 35].

B. 3D Classification

Object classification, the task of determining an object’s
semantic “type”, is a common perceptual task in robotics.
2D classification is extremely well studied [15, 3, 12] and
in recent years 3D classification has gained considerable
research attention. Modern approaches to 3D object classifi-
cation generally rely on convolutional deep networks which
are trained from full 3D models of objects. Broadly speak-
ing, most current 3D classification approaches fall into two
categories: multiview and volumetric. Volumetric approaches
explicitly represent 3D objects as volumes (generally via
voxels) [20, 22, 25, 33] while multiview approaches represent
a 3D object as a series of 2D or 2.5D views [28, 2]. Both
methods have shown promising results and research has been
conducted to combine the two representations [13].

C. 3D Pose Estimation

Pose estimation is the task of determining an object’s
position and orientation in the world. With rigid objects,
pose estimation generally consists of either a three degree
of freedom orientation estimate or a six degree of freedom
orientation and position estimate. Most methods apply to
single-instance pose estimation: a known object with un-
known pose. In these settings, when a full 3D model of the
object is available, techniques such as Iterative Closest Points
[21], Bingham Distribution Pose Estimation [14], and DNN

approaches [29] have shown to be effective. Nevertheless,
none of these methods are designed to predict the pose of
a novel object relative to a canonical class-specific baseline
pose. One method that has shown promise is proposed by
Elhoseiny et al. [11]; they developed a convolutional network
capable of predicting one degree of freedom pose (into
sixteen discrete bins) for a novel object. More recently,
Burchfiel and Konidaris [4] propose a representation capable
of performing up to three degree of freedom pose estimation
on novel objects, but computational performance remains a
bottleneck due to their pose estimation by search approach.

D. 3D Completion

3D object completion consists of inferring the full 3D
geometry of a partially observed 3D object. Initial work in
this area focused on model repair; objects were mostly ob-
served but contained holes and other small patches of missing
information. By exploiting surrounding geometry and sym-
metry properties, these approaches could repair small gaps
but were not designed to patch large missing portions of
objects [1]. More recently, new symmetry exploitation meth-
ods have been proposed which rely on global-scale object
symmetry to estimate the shape of unobserved object regions
[24, 27]. Unlike the initial hole filling work, these symmetry
methods can reconstruct large missing portions of objects but
fail when when their symmetry heuristic is not applicable.
Database methods have also been popular, particularly in
robotics. These methods treat a partially observed object as
a query into a database of known (complete) 3D objects
[34, 17]. When a close match is found they perform well.
Unfortunately—due to the huge amount of object variation
in household environments—database methods have scaling
issues and perform poorly when a close match is not found.
Hybrid approaches have also been proposed that attempt to
perform shape completion locally and use the completed
object as a database query to obtain a final estimate [10],
but these methods require a large and dense object model
database.

The current state of the art in 3D object completion
consists of approaches in two categories: deep regression
methods and linear subspace methods. They generally take
as input a partially observed voxel object and output a com-
pleted (fully specified) version. Deep approaches train con-
volutional networks to estimate either surface normals [30]
or full 3D structure of partially observed objects [33, 10, 26].
While these methods are quite powerful, they tend to be data
inefficient and can struggle with producing high-resolution
output, although Dai et al. [10] attempt to address this issue
by maintaining an explicit database of known high-resolution
objects. Linear subspace methods have the advantage of
operating in an explicitly constructed low-dimensional space
and have empirically demonstrated competitive performance
with deep approaches [4]. These methods learn a subspace
on which common objects lie and perform inference in that
subspace. Burchfiel and Konidaris [4] treat shape completion
as an under-constrained forward projection problem; given
some partially observed object, ô, find a good projection

onto the learned low-dimensional subspace.

E. Variational Bayesian Principal Component Analysis

Similarly to Burch�el and Konidaris [4], our work em-
ploys Variational Bayesian Principal Components Analysis
(VBPCA) [5] to learn an explicit low-dimensional object
space. VBPCA is a fully Bayesian version of probabilistic
PCA (PPCA) [18], itself a probabilistic extension of tradi-
tional linear Principal Component Analysis (PCA). PPCA
represents each datapoint,x i , as

x i = Wc i + � + � i ;

whereX is a data matrix where columni of X is x i , W is
a basis matrix,ci are the projection coef�cients ofx i onto
W , � is the mean datapoint, and� i is zero-mean Gaussian
noise for pointi . PPCA's parameters are typically estimated
via Expectation-Maximization (EM) by alternating between
updating the projection coef�cients for each datapoint,ci ,
and updatingW , � , and� .

Bayesian PCA (BPCA) [6] places (Gaussian) priors,H ,
overW and� , allowing BPCA to model the entire posterior
probability of model parameters:

p(W ; � ; CjX ; H): (1)

VBPCA overcomes the intractability of evaluating (1) by
(approximately) factorizing the posterior:

q(W ; � ; C) =
dY

i =1

q(� i)
dY

i =1

q(w i)
nY

i =1

q(ci);

allowing factors to be updated individually during EM [5].
Bishop [5] demonstrates that the regularizing nature of
VBPCA's priors make it far more suitable than PCA when the
number of datapoints (n) being learned from is signi�cantly
smaller than the dimensonality of the original space (d). For
object representation, where voxel space is typically on the
order of tens or hundreds of thousands of dimensions and
n � d, VBPCA offers signi�cant advantages over PCA [4].

F. Bayesian Eigenobjects

Bayesian Eigenbojects (BEOs) [4] are a uni�ed framework
for object representation. The key to the usefulness of BEOs
lies in a learned low-dimensional subspace in which common
objects lie. BEOs use VBPCA to learn a class-speci�c
subspace for each class and then construct a single shared
subspace that is well suited to represent all training classes.
Let W i and � i represent the VBPCA-learned subspace for
classi . The shared subspace,W , is

W = [W 1 ; :::; W m ; � 1 ; :::; � m]; (2)

whereW is ad� 2m matrix with rows corresponding to di-
mensions in voxel space and columns that form basis vectors
for representing objects in the low-dimensional subspace.
Without loss of generality (i.e. expressive power) we further
simplify W by �nding an orthonormal basis spanning the
columns ofW . Let W 0 = U 0 whereUSV T = W is the
singular value decomposition (SVD) ofW and U 0 is the

�rst rank (W) rows of U . For simplicity, we refer to this
orthonormal basis,W 0, asW for the remainder of the paper.

BEOs treat (voxelized) objects as points ind-dimensional
voxel space by unraveling voxel objects intod-dimensional
vectors.o, a novel object, can be projected ontoW via

o0 = W T o: (3)

Furthermore, any point which has been projected ontoW
may be back-projected(converted back into voxel-object
form) by

ô = Wo 0: (4)

ô is generally referred to as the “completed” or “recon-
structed” version ofo, ando0 as the “projected” version of
o.1

The key to BEO's usefulness is partial-projection: the abil-
ity to project a partially observed object onto the subspace.
Given a partially observed voxel object consisting of known-
�lled, known-empty, and unobserved voxels, BEOs seek to
minimize the reconstruction error with respect to only the
known-�lled and known-empty portions of the object. LetV
be an object-speci�cd0 by d binary selection matrix such that
Vo = w, wherew is a lengthd0 < d vector consisting of
the known elements ofo. The error induced by an arbitrary
projection ofo is

E(o0) = jjV (Wo 0) � w jj2
2

and the gradient of this error is

2W T V T [V (Wo 0) � w]:

We can estimateo0 via

Ao 0 = b;

or in the regularized case

o0 = arg min
o0

jjAo 0 � bjj2 + � jjo0jj1 ; (5)

where
A = W T V T VW

and
b = W T V T w:

Once a projection into the learned subspace is found, back-
projection (to obtain an estimate of the object's full 3D ge-
ometry) can proceed as normal via equation (4). To perform
classi�cation and pose estimation in this subspace, BEOs
learn a Gaussian mixture model (GMM) over object class
and pose from the training data. When a novel object is en-
countered, it is perturbed into multiple candidate orientations,
each candidate is projected onto the subspace, and the most
likely class-pose pair is estimated via

f r̂; ĉg = arg max
r 2 R; c 2 C

P(r)D (o
0r jc)P(c)

P
r j 2 R

P
cj 2 C P(r j)D (o0r j jcj)P(cj)

;

1After applying Equation (3), values will generally no longer be exactly
0 or 1. In our work, we threshold at0:5 to rebinarize the completed object.

Fig. 1: The architecture of HBEONet (containing approximately 15 million parameters). Each convolution has a stride of
2x2 and pooling is not used. The non-trained softmax layer applying to the class output is not pictured.

where P(r) is the prior probability of rotation r ,
D (o

0r jc)P(c) is the probability of the completed object
conditioned on classc, P(c) is the prior probability of class
c, C is a set of classes,or denotes the object rotated byr ,
and R is a set of rotations. While BEOs exhibit reasonable
performance when estimating 1-DOF pose, this process be-
comes prohibitively expensive for additional degrees of free-
dom. Furthermore, BEOs assume that a partially observed
object with unknown pose can be properly (and consistently)
voxelized. In practice, this voxelization is challenging and
often infeasable, relying on aligning a small portion of a
novel object correctly in 7 degrees of freedom (orientation,
translation, and scale).

III. H YBRID BAYESIAN EIGENOBJECTS

HBEOs use an internal voxel representation, similar to
both Wu et al. [33] and Burch�el and Konidaris [4], but
operate over raw depth images as input, avoiding the onerous
requirement of voxelizing input at inference time. Like
BEOs, HBEOs learn a single shared object-subspace; how-
ever, HBEOs learn a mapping directly from depth input into
the learned low-dimensional subspace and predict class and
pose simultaneously, allowing 1-shot pose, class, and shape
estimation. Once HBEOs have projected an object into the
learned subspace, the object's full 3D geometry may be
estimated via equation (4). HBEOs:

1) Operate directly on (segmented) depth images.
2) Use a learned non-linear mapping (HBEONet) to

project novel objects onto an object subspace.
3) Predict the subspace projection jointly with class and

pose in a single shot.

A. Learning a Projection into the Subspace

HBEOs use a partially convolutional deep-network
(HBEONet) to jointly predict class, pose, and a projection
into the low-dimensional subspace given a depth image.
HBEONet consists of four shared strided convolutional lay-
ers followed by three shared fully connected layers with
a �nal separated layer for classi�cation, pose estimation,
and subspace projection. Figure 1 provides an overview of
HBEONet's structure. This shared architecture incentivises
the predicted class, pose, and predicted 3D geometry to

be mutually consistent and ensures that learned low-level
features are useful for multiple tasks. In addition to be-
ing fast, HBEOs leverage much more nuanced information
during inference than BEOs. When BEOs perform object
completion via (5), each piece of object geometry is equally
important. A voxel representing the side of a toilet, for
instance, is weighted equivalently to a voxel located in the
toilet bowl. In reality however, certain portions of geometry
contain far more information than others. Observing a por-
tion of toilet bowl is far more informative than observing
a piece of geometry on the side of the tank. HBEONet
is able to learn these relationships: some learned features
may be far more germane to the estimated output than
others, providing a signi�cant performance increase. Because
HBEONet predicts subspace-projections instead of directly
outputting 3D geometry (like end-to-end deep approaches),
it need only produce several hundred dimensional output
instead of regressing into tens or hundreds of thousands of
dimensions. HBEOs thereby combine appealing elements of
both deep inference and ef�cient subspace techniques.

B. Input-Output Encoding and Loss

HBEOs take a single pre-segmented depth image (such as
that produced via a Kinect or RealSense sensor) at inference
time and produce three output predictions: A subspace pro-
jection (a vector inRd), a class estimate (via softmax), and
a pose estimate (via three element axis-angle encoding).

The loss function used for HBEONet is

L = cL c + oL o + pL p;

whereL c, L o, andL p represent the classi�cation, orientation,
and projection losses (respectively) and c, o, and p weight
the relative importance of each loss. BothL O and L P are
given by Euclidean distance between the network output
and target vectors whileL C is obtained by applying a
soft-max function to the network's classi�cation output and
computing the cross-entropy between the target and soft-max
output. During training, depth-target pairs are provided to
the network in the traditional supervised fashion. Figure 2
illustrates the complete training and inference pipeline used
in HBEOs.

Fig. 2: Overview of the HBEO framework. Portions above the dotted line correspond to training operations while the bottom
area denotes inference.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of HBEOs using the Mod-
elNet10 dataset [33] which consists of4889common house-
hold object across 10 classes:f Bathtubs, Beds, Chairs,
Desks, Dressers, Monitors, Night Stands, Sofas, Tables,
Toiletsg. ModelNet10 objects are provided in mesh form,
are aligned to a standard pose, and are scaled to be a
consistent size. While ModelNet10 has been widely used as
a dataset, most of this use has been for benchmarking 3D
classi�cation from fully observed objects. Here, we employ
ModelNet10 to evaluate performance on partially observed
(single-viewpoint) objects in the challenging setting of joint
pose, class, and 3D geometry estimation.

To obtain a shared object basis, each object mesh in
ModelNet10 was voxelized to sized = 303 and then
converted to vector form (i.e. each voxel object was reshaped
into a 27; 000 dimensional vector). VBPCA was performed
separately for each class to obtain 10 class speci�c sub-
spaces, each with basis size automatically selected to capture
60 percent of variance in the training samples (equating to
between 30 and 70 retained components per class). We also
employed zero-mean unit-variance Gaussian distributions as

regularizing hyperparameters during VBPCA. After VBCPA,
the class speci�c subspaces were combined via equation (2)
into a single shared subspace with344 dimensions.

We then generated roughly 7 million synthetic depth
images of size320by 240from the objects in our training set
by sampling multiple random viewpoints from each of the
3991training objects. The ground truth subspace projection
for each training object was obtained using equation (3) and
fed to HBEONet during training2 along with the true pose
and class of the object depicted in each depth image.

We compared HBEOs to vanilla BEOs as well as a
baseline end-to-end deep method (3DShapeNets). An apples-
to-apples comparison here is somewhat dif�cult; HBEOs, by
their very nature, reason over possible poses due to their
training regime while 3DShapeNets do not. Furthermore,
BEO results in 3-DOF for combined classi�cation and pose
estimation proved to be computationally infeasible. As a
result, we report 3DShapeNets results with known pose and
BEO results with both known pose and 1-DOF unknown

2HBEONet required roughly 2 training epochs (16 hours on a single
Nvidia GTX1070 GPU) to converge and was implemented using TensorFlow
1.5. The encoded and compressed depth-image dataset required roughly
200GB of storage space.

Known Pose Bathtub Bed Chair Desk Dresser Monitor Night Stand Sofa Table ToiletTotal

BEO [4] 48:0 95:0 93:0 46:5 64:0 91:0 55:8 92:0 75:0 80:0 76:3
3DShapeNets [33] 76:0 77:0 38:0 22:1 90:7 74:0 38:4 57:0 1:0 79:0 54:4

Unknown Pose Bathtub Bed Chair Desk Dresser Monitor Night Stand Sofa Table ToiletTotal

BEO [4] (1-DOF) 4:0 64:0 83:0 16:3 51:2 86:0 36:0 49:0 76:0 46:0 54:5
HBEO (3-DOF) 91:3 86:4 84:1 57:6 79:7 97:9 81:3 75:4 72:3 92:3 81:8

TABLE I: ModelNet10 classi�cation accuracy (percent) with single-viewpoint queries comparing HBEOs with 3DShapeNets
and BEOs.

Fig. 3: Pose estimation error in 3-DOF for HBEOs, BEOs, and an ICP baseline. Mean error is indicated by circular dots.

pose as comparisons to HBEOs full 3-DOF results.

A. Classi�cation

Despite HBEOs being required to solve a harder problem
than 3DShapeNets and BEOs, classi�cation performance was
signi�cantly better than both of them, outperforming (with
unknown 3-DOF pose) 3DShapeNets and BEOs with known
pose. Table I illustrates these results; HBEOs operating on
data with unknown pose in 3-DOF has less than half of the
misclassi�cation rate of BEOs operating on data with only
a single unknown pose DOF. One classi�cation advantage
HBEOs posess over BEOs is their ability to perform forward
projection jointly with classi�cation. Because BEOs �rst
project into the learned subspace and then classify objects,
small details which do not signi�cantly affect shape, but
are germane to determining object type, may be missed.
This is particularly evident in the case of disambiguating
desks, dressers, and nightstands: three classes which have
similar overall shape and where small details are important
for determining class. Because HBEOs learn to perform
classi�cation and subspace projection jointly, they perform
much better in this scenario.

B. Pose Estimation

We evaluate the pose estimation performance of HBEOs
by comparing with BEOs and an ICP baseline (see Figure
3). In the HBEO case, class, pose, and 3D geometry are
estimated jointly as described in the preceding sections. Due
to performance constraints, it was infeasable to directly com-
pare to BEOs. Instead, we provided BEOs with the ground
truth class and only required the BEO pipeline to estimate
pose and 3D shape. The ICP baseline was also provided
with the ground truth class and attempted to estimate pose
by aligning the partial input with the mean training object
in that class. Despite not having access to the input query's
class, HBEOs signi�cantly outperformed both BEOs and the

baseline method, achieving a mean pose error less than half
that of BEOs. Part of the advantage HBEOs enjoy over BEOs
is their direct prediction of pose; because BEOs employ pose
estimation by search, they can only sample candidate poses at
a relatively course resolution in 3-DOF due to computational
constraints, even with known class. HBEOs do not suffer
from this drawback as they predict pose parameters directly
in a single inference step.

C. 3D Completion

While classi�cation accuracy and angular pose error are
relatively straightforward to evaluate, 3D completion error
is slightly more dif�cult. The naive approach of measuring
completion error is simply

e(o;ô) = 1 �
jjo � ô jj2

joj
; (6)

however this metric is extremely sensitive to misalignment.
Because it considers voxel-wise differences between the
completed object and ground truth, a completion which is
offset slightly but otherwise accurate may still receive a poor
score. We thus follow Burch�el and Konidaris [4] in using a
more robust metric by extracting the (unsigned) Euclidean
Distance Transform (EDT) [7] from both the completed
objects and the target objects. The EDT creates a distance
�eld where locations in the �eld that lie on or inside an
object have a value of 0 and locations outside of the object
receive a value corresponding to the distance of the closest
on-object point. GivenD and D̂ denoting the EDT of the
target and estimated objects, we can construct a more robust
completion score:

e0(o;ô r) = jjD � D̂ jj2:

This EDT-based metric is sensitive to shape change but far
less sensitive to small misalignment than equation (6).

0 200 400 600 800 1000 1200
Completion Error

0

100

200
O

cc
ur

en
ce

s

HBEO 3��DOF

0 500 1000 1500 2000

Completion Error

0

100

O
cc

ur
en

ce
s

BEO ����DOF

0 200 400 600 800
0

100

O
cc

ur
en

ce
s

�%�(�2���.�Q�R�Z�Q���3�R�V�H

0 200 400 600 800

Completion Error

0

100

O
cc

ur
en

ce
s

ShapeNet
�&�R�P�S�O�H�W�L�R�Q���(�U�U�R�U

0 200 400 600 800
0

100

O
cc

ur
en

ce
s

Ours

0 200 600 800
0

100

O
cc

ur
en

ce
s

���'�6�K�D�S�H�1�H�W�V���.�Q�R�Z�Q���3�R�V�H

400
�&�R�P�S�O�H�W�L�R�Q���(�U�U�R�U

Fig. 4: 3D completion error using the Euclidean Distance Metric defined in Equation (6).

Input Depth
Image

HBEO
Completion

Ground
Truth

Fig. 5: Sample completions from the ModelNet10 test set.

Figure 4 illustrates completion performance of HBEOs
relative to BEOs and 3DShapeNets. HBEOs, when perform-
ing inference directly from depth images with unknown 3-
DOF pose, perform competitively with BEOs operating on
perfectly voxelized and aligned input with known pose and
significantly outperforms 3DShapeNets (with known pose)
and BEOs (with unknown pose in a single DOF). Figure
5 illustrates several example HBEO object completions. In
our experience, BEOs become brittle when the query object
has unknown pose due to the alignment sensitivity of voxel
representations. A small error in estimated pose causes a
voxel representation to change dramatically while depth
images change in a much smoother fashion. Because of this
phenomenon, HBEO completion performance is far more
robust to pose estimation errors.

D. Inference Runtime Performance

3DShapeNets [33] (Known Pose) 3.57s
BEO [4] (Known Pose) 1.13s
BEO [4] (1-DOF Pose) 672.97s
BEO [4] (3-DOF Pose) 3529.88s
HBEO (3-DOF Pose) 0.01s

TABLE II: Mean runtime performance.

Comparing timing performance between methods can be
difficult; differences in programming language and hardware
can affect methods differently. For our testing, HBEOs
were implemented in Python (with HBEONet trained us-
ing TensorFlow) while BEOs and 3DShapeNets are both
implemented in Matlab. As a result, direct comparison of
runtimes should be taken with a grain of salt, and small
(i.e. 2x or 3x) speed differences between algorithms are

not necessarily meaningful in this context. Furthermore, the
HBEONet portion of HBEOs is fully GPU accelerated while
portions of 3DShapeNets and BEOs are not. Nevertheless,
large speed differences (an order of magnitude or more) do
highlight gross computational efficiency differences between
approaches. Table II shows mean run-time performance of
3DShapeNets (for inference on objects of known pose)
as well as BEOs and HBEOs. Critically, because HBEOs
perform inference in a single shot, they are able to estimate
pose in 3-DOF without incurring the large speed penalty that
the BEO approach of pose estimation by search produces.
While the speed of BEOs can be tweaked to some degree
(by adjusting the coarseness of the pose discretization),
HBEOs are orders of magnitude faster in the full 3-DOF
setting. Indeed, HBEOs are fast enough for realtime use
while BEOs—in 1-DOF or 3-DOF—are not (without access
to a cluster of machines).3

V. DISCUSSION

HBEOs are significantly faster than preceding methods, of-
fer substantially improved performance, and are much more
readily applicable to real problems because they perform
inference directly from depth-images. A key property of
HBEOs is combining subspace methods with deep learning,
learning a low-dimensional subspace into which regression
is performed. Because the space of all possible 3D structures
is vastly larger than the space of reasonable 3D objects,
operating in this subspace dramatically shrinks the size of
the inference task. Compared to purely linear methods (such
as BEOs) HBEO’s use of convolutional nonlinear inference
allows it to be far more expressive and less brittle to
misalignment or pose-estimation errors.

3All algorithms were evaluated on a 4-core Intel CPU with 32GB of
RAM coupled with an Nvidia GTX1070 GPU.

	Introduction
	Background
	3D Object Representations
	3D Classification
	3D Pose Estimation
	3D Completion
	Variational Bayesian Principal Component Analysis
	Bayesian Eigenobjects

	Hybrid Bayesian Eigenobjects
	Learning a Projection into the Subspace
	Input-Output Encoding and Loss

	Experimental Evaluation
	Classification
	Pose Estimation
	3D Completion
	Inference Runtime Performance

	Discussion
	Acknowledgments

