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Abstract

A major goal of artificial intelligence (AI) is to create agents capable of acting ef-
fectively in a wide variety of complex environments. A popular framework for
modelling decision-making agents is reinforcement learning (RL), where an agent
learns from interaction with its environment. Though RL has proven successful in
solving a number of challenging tasks, one major hurdle to the development of truly
autonomous agents is the need to specify appropriate task representations. In RL,
the most common approach is for a human designer to simply provide the agent
with the task description by defining the state space, rewards, goals and actions
available to the agent. While this approach is feasible within the bounds of narrowly
defined tasks, it must clearly be dispensed with if we are ever to construct agents
with full autonomy.

In this thesis, we concern ourselves with the question of how an agent can acquire
its own representations from sensory data. We restrict our focus to learning repre-
sentations for long-term planning, a class of problems that state-of-the-art learning
methods are unable to solve. We take inspiration from the way humans reason
about the world—although we must sense and act in the real world, we do not
reason at such a low level. Rather, we use mental abstractions of our environment
that ignore irrelevant minutiae. When acting, we can make use of abstraction to em-
ploy high-level skills, known in RL as options. By learning and planning with both
state and action abstractions, we are ultimately able to construct plans consisting of
thousands of actions.

Importantly, a feature of human intelligence is that we are proficient at a wide
array of tasks. One key aspect that allows us to quickly solve new problems is our
ability to reuse previously learned abstract representations. For example, once we
acquire a conceptual representation of a door, we can simply apply this to any new
doors we may encounter, independent of the lighting conditions, the location of
the door or its colour. Since tabula rasa learning is infeasible for robots, learning
transferable representations is key to scaling AI approaches to real-world agents.

We propose various methods for autonomously learning symbolic representa-
tions of an agent’s environment. Importantly, these symbols are task-independent,
and so can be recycled to solve new tasks. In particular, we make three main
contributions. First, we demonstrate how an agent can use an existing set of op-
tions to acquire representations from egocentric observations. Since the resulting
abstractions are agent-centric, they can immediately be reused by the same agent
in new environments. We show how to combine these portable representations
with problem-specific ones to generate a sound task description that can be used
for abstract planning. Our results demonstrate that our approach allows an agent
to transfer previous knowledge to new tasks, improving sample efficiency as the
number of tasks increase.
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Our second contribution is to leverage the fact that the real world consists of
objects that an agent can observe and interact with. Based on this assumption,
we show how to construct object-centric abstractions that can be used when an
agent finds itself in a new task containing similar objects. As a result, an agent can
convert observations from a high-dimensional environment (such as a video game)
to object-centric textual symbols that can be given as input to classical planners.
Once more, the transferability of the learned representations allows an agent to
learn subsequent tasks using fewer environment observations.

Finally we show how to autonomously construct a multi-level hierarchy consist-
ing of increasingly abstract representations. Since these hierarchies are transferable,
higher-order concepts can be reused in new tasks, precluding the agent from re-
learning them and improving sample efficiency. The hierarchy further allows the
agent to plan at a variety of levels, reducing the size of the problem and thereby
improving planning efficiency.
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Chapter 1

Introduction

The ultimate goal of artificial intelligence (AI) is not just to understand the nature
of intelligence, but to construct entities or agents possessing the self-same character-
istics [Russell and Norvig 2009]. Although the definition of “intelligence” is open
to interpretation, we can generally agree that humans are examples of such agents,
and so a successful implementation of AI should be able to accomplish a multitude
of tasks in the real world, much like any human.

A popular paradigm for constructing decision-making agents is reinforcement
learning (RL), where an agent learns how best to act through trial-and-error inter-
action with its environment [Sutton and Barto 1998]. Recently, state-of-the-art RL
approaches have made several significant advances in challenging domains, ranging
from video games [Mnih et al. 2015] to Go [Silver et al. 2016], and even robotics
[Levine et al. 2016]. Despite these successes, it is clear that these approaches do
not capture a fundamentally remarkable aspect of human intelligence—namely, that
humans can solve not just a single problem, but a massively diverse array of tasks.

There appears to be a disconnect, then, between the above approaches and the
capabilities of humans—the former are aimed at solving a restricted set of tasks near-
optimally, while the latter achieve competence in a wide range of tasks. For example,
while the ALPHAZERO agent may possess superhuman abilities in playing chess
[Silver et al. 2017], it cannot drive a car, cook a meal or assemble a bookcase. While
the former approach is certainly useful in designing narrow, application-specific
solutions, it falls well short of the ultimate aim of generally intelligent agents.

There are many challenges to overcome before we reach such a point. In this
work, we highlight three that we believe must be tackled if we are ever to develop
flexible, real-world agents.

i) Sample efficiency: Collecting data for training an RL agent can often be
expensive, since it requires that the agent interact with its environment. Con-
sequently, methods that can succeed using only a small amount of data are
highly desirable or, in many cases, a strict requirement. While this is less of
an issue in simulated environments, it is necessary for training agents that,
like humans, operate in the real world. For example, recent algorithms for
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playing Atari video games require billions of environment interactions [Badia
et al. 2020]. Such approaches clearly cannot be applied to real robots, since
training would be prohibitively time consuming, and wear and tear on the
physical agent would result in failure.

ii) Task representation learning: As we will see in the next chapter, tasks in RL
are formulated by human designers and provided to agents in a standardised
form. For example, a chess-playing agent may be given a compact encoding
representing the position of the pieces on the board, the legal moves available,
and whose turn it is to play. Though this practice is widespread, it sidesteps
an important question: where do these representations come from in the first
place?

It is obvious that this approach is infeasible in the long run: we cannot pre-
program an agent with every task it may encounter before deploying it in the
real world. Nor can we require that a human designer accompany the agent
throughout its lifetime, providing task representations as and when it requires
them. Clearly then, as Konidaris [2019] argues, the only option is for the
agent to learn its own representation for any newly encountered task directly
from its observations of the world.

iii) Multitask learning: If our goal is to have generally intelligent agents acting in
the real world, it is insufficient to design agents capable of optimally solving
only a handful of tasks. Rather, they must exhibit competence in a wide
variety of tasks. Owing to the sample efficiency requirements, it is infeasible
for an agent to solve every new task it encounters from scratch. Therefore, we
require learning approaches that can be leveraged by an agent to solve new
tasks quickly.

If we are to design a single agent capable of solving multiple tasks in the real
world, it must necessarily have a complex sensorimotor space. However, decision
making using high-dimensional observations requires large amounts of data, which
runs counter to our sample efficiency requirements. Therefore, we need sample-
efficient algorithms that allow a single agent to learn a suitable task representation
for any given task using its sensor data.

1.1 Sample efficient planning with learned abstractions

A class of particularly challenging problems involves those that require high-level
or long-term planning. Robots, in particular, face the difficult task of formulating
plans while sensing and acting in high-dimensional, continuous spaces. Planning at
this raw sensorimotor level is typically infeasible—the robot’s innate action space
involves directly actuating motors at a high frequency, but it would take thousands
of such actuations to accomplish most useful goals. This is further exacerbated by
its sensors, which often provide high-dimensional noisy signals.
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That being said, humans face a similar problem, and yet are still able to construct
long-term plans consisting of (at the very lowest level) millions of actions. One likely
reason for this is that we plan and reason about the world in terms of high-level
abstractions [Botvinick and Weinstein 2014]. For instance, when planning a vacation,
we do not construct a plan that includes every single step our legs must take (not to
mention the low-level muscle activations involved in walking) to deliver us to our
destination. Rather, we reason and plan using higher-order concepts, such as being
at an airport, which abstract away these low-level control details.

One way of building high-level concepts is action abstraction. In the options
framework, low-level actions are chained together to create skills, which are then
used when learning and planning [Sutton et al. 1999]. In the above example, an
agent might possess the skill GetToAirport, encapsulating all of the necessary low-
level actions required to transport the agent to the airport.

The use of skills alleviates the problem of having to reason using low-level actions.
However, the observations an agent makes about its environment may also be low-
level. These observations make up what is known as the agent’s state; examples of
low-level state representations include pixels from a video camera, and continuous
values representing the pose and joint positions of the agent. It is not hard to
see that, even with skills, planning using these low-level states remains a great
challenge. We may therefore also seek to perform state abstraction, where states
are aggregated into high-level states, reducing the size of the problem. Examples
of abstract states might be AtHome and AtAirport, representing all of the low-level
observations (likely consisting of many gigabytes of pixel data) that correspond to
the agent being at home or at the airport respectively.

One particular form of state abstraction is based on the physical symbol system
hypothesis [Newell and Simon 1976], which states that the capacity to represent
a problem using abstract patterns (symbols), as well as the ability to manipulate
said symbols, is all that is necessary for truly intelligent behaviour. This is the
approach taken in the classical planning literature [Fikes and Nilsson 1971; Ghallab
et al. 2004]. Here a symbolic description of the world and available actions are
provided to the agent, which is then tasked with discovering a plan of action to
attain some goal. An example of a symbolic domain is given by Figure 1.1. However,
constructing a symbolic representation of a real-world domain requires substantial
domain knowledge that must be provided by a human designer.1

1Throughout this thesis, we use the term “symbolic representations” to refer to discrete abstrac-
tions that can take a small, finite number of values. For example, a proposition is a symbol that can
take the values 0 or 1. Such abstractions are desirable for a number of reasons. Since each symbol
has a finite domain, there is little uncertainty about its value at any given time. Further, the discrete
nature of the symbolic representations allows an agent to enumerate potential outcomes of its actions
quickly and precisely, allowing for fast forward-planning techniques. Finally, the decisions and plans
of an agent can be output in a human-readable form.
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(:action navigate
:parameters (?x - rover ?y - waypoint ?z - waypoint)

:precondition (and (can_traverse ?x ?y ?z) 
(at ?x ?y) 
(in_view ?y ?z) 
(>= (energy ?x) 8)

 )
:effect (and (decrease (energy ?x) 8) 

(not (at ?x ?y)) 
(at ?x ?z)

 )
)

Description of a navigation operation
for a rover moving between start and end points

If the rover can traverse from start to end
and it is at the start waypoint
and the end waypoint is visible from the start
and the rover has sufficient energy...

then the rover's energy levels decrease 
and it is no longer at the start waypoint
and it is at the end waypoint.

(not (at robot waypoint1))
(at robot waypoint2)
(energy 42)

(at robot waypoint1)
(energy 50)
(in_view waypoint1 waypoint2)
(can_traverse robot waypoint1 waypoint2)

waypoint1

waypoint2

Figure 1.1: An illustration and snippet of the “Mars Rover” domain from the 2002
International Planning Competition [Long and Fox 2003]. In the above diagram,
the robot wishes to navigate between two waypoints. The navigate action (bottom
left block) states that, in order for the agent to navigate between two waypoints
x and y, the agent must be present at x and be able to see y, the path between
the waypoints must be traversable, and the agent must have sufficient energy (see
description in bottom right block). Fortunately, the current state of the agent (top
left block) matches these conditions for waypoint1 and waypoint2. After executing
the action, the agent will find itself at waypoint2 and its energy will have decreased
by 8 (right block). Note how the difficulties and low-level details of navigating a
robot over unknown terrain are abstracted by a human designer—it is assumed that
the actions are able to take care of such details—and that these high-level symbolic
states are sufficient for reasoning and planning in the world.

Abstraction, then, is clearly both desirable and necessary, but the question of
how to link high-level reasoning with low-level sensing and control remains open. If
an agent’s abstractions are too high-level, it risks omitting important and necessary
details. However, if it seeks to preserve every last detail of the environment, then its
representations will be too low-level and planning will once again be infeasible. The
key question is how best to construct an abstract model of an environment while
retaining only the information required for planning.

Recent model-based RL algorithms learn a model of the environment’s dynamics
directly from observation data, and then perform planning in the learned latent
space [Hafner et al. 2019; Schrittwieser et al. 2020; Hafner et al. 2021]. Despite
some success, these approaches require an inordinate amount of data and engineer-
ing effort, and do not possess any soundness guarantees. An alternate approach is
the recent framework proposed by Konidaris et al. [2018], which uses both state and
action abstraction to construct a symbolic representation of an agent’s environment.
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In particular, given a set of high-level skills that have either been learned or provided
to an agent, abstract states are constructed to support planning with those specific
skills. Most importantly, the resulting symbolic representations are provably sound
for long-term planning.

1.2 The need for transfer

If the approach taken by Konidaris et al. [2018] can be used to learn a representa-
tion suitable for long-term planning, then the obvious question is: why is this not
sufficient? A major (and potentially fatal) deficiency in this approach is its lack of
generalisability—the learned symbols apply only to the current task, so an agent
must relearn the appropriate representation for each new task it encounters. This
is a data- and computation-intensive procedure that operates on extremely high-
dimensional data and requires repeated execution of actions within the environ-
ment.

To alleviate this issue, we can turn to the notion of transfer, where an agent
leverages its knowledge from previous tasks to solve new ones [Taylor and Stone
2009]. Much like abstraction, the ability to transfer knowledge is a key component
in our ability to generalise and adapt to new tasks quickly. For example, recent work
has shown that humans leverage their knowledge of objects and affordances when
playing video games—without this knowledge transfer we are no more efficient
than an RL agent learning from scratch [Dubey et al. 2018].

1.3 Aims and contributions

In this work we seek to develop algorithms capable of learning transferable symbolic
representations from low-level data that can be used for long-term planning. More
concretely, we extend the symbol-learning framework of Konidaris et al. [2018] so
that the learned representations are portable—given a new task, an agent can reuse
the symbols it has learned previously to speed up learning. Our approach results in
agents that are i) more sample efficient; ii) able to learn their own representation;
and iii) able to use their learned representations to solve a variety of tasks. In
particular, we make the following three contributions (summarised by Figure 1.2):

Agent-centric abstractions In Chapter 3 we propose a method that allows an
agent to learn an egocentric representation of its environment directly from data.
By assuming the existence of a single agent equipped with sensors that is common
across all tasks, we demonstrate how to learn a high-level symbolic representation
that can not only be used by an off-the-shelf planner, but can also be transferred to
new domains.2

2This chapter is based on work presented in James et al. [2020].
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Object-centric abstractions We can extend our assumptions to include not only
the existence of agents but also of objects. In Chapter 4 we demonstrate how such
an assumption can be leveraged to learn object-centric representations that can be
transferred to new environments that share similar types of objects.

Portable abstraction hierarchies The previous methods focus on building a sin-
gle level of abstraction, which is then used for planning. In Chapter 5 we show how
this can be extended to produce hierarchies of increasingly abstract representations
that can also be transferred to new tasks. Constructing these hierarchies does not
require further environment interaction, and we demonstrate how it can be used to
decrease the size of the problem, thereby making planning easier.

Taken together, these approaches allow an agent to autonomously learn symbolic
representations that are decoupled from the task in which they were learned. These
representations can be accumulated over the lifetime of an agent, and then deployed
to quickly solve any new task an agent encounters. We see this as an important step
towards creating adaptable agents that sense, act and learn in the real world.
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(a) Adopting the framework of Konidaris et al. [2018] results in task-specific abstractions,
represented by the different coloured building blocks. Representations from one task cannot
be reused in a new task, which must be learned from scratch.
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(b) In Chapters 3 and 4 we learn agent- and object-centric representations (orange blocks)
that can be transferred between tasks. We combine these portable representations with
non-portable abstractions to construct a model suitable for planning.
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(c) In Chapter 5 we learn portable hierarchies of abstractions (orange triangles). These
hierarchies, as well as parts thereof (orange trapezoids), can be transferred to new tasks
and combined with task-specific abstractions to produce a model for the new task.

Figure 1.2: Illustration of our approach to learning abstractions. (a) Abstractions
are task-specific and cannot be transferred to new tasks. (b) Learning a mixture of
portable and task-specific abstractions. We can transfer the portable representations
to a new task, and then learn fewer task-specific abstractions to complete the model.
(c) Learning a mixture of task-specific abstractions with portable hierarchies of
abstractions. We can transfer the hierarchies to a new task, and then complete the
model by learning certain task-specific representations.



Chapter 2

Background

There are broadly speaking two fundamental problem areas when it comes to de-
signing intelligent decision-making agents: learning and planning. Learning is char-
acterised by an agent interacting with the world and using the resulting data to
decide on the best course of action. Planning, on the other hand, involves an agent
using a model of the world to decide how best to act. This model, which allows an
agent to simulate the outcomes of different actions “in its head”, can either be given
to the agent or learned itself through environment interactions.

In this chapter, we outline the formalisms used for learning and planning with
both unstructured and structured representations, and then show how the two
can be linked. In Section 2.1 we outline the unstructured representations used
in reinforcement learning, and then contrast them with the structured ones used
in classical planning (Section 2.2). Then we outline in detail the framework of
Konidaris et al. [2018], which can be used to learn a structured representation from
low-level unstructured data. Finally, we conclude with a discussion of alternate
techniques for representation learning in Section 2.4.

2.1 Unstructured representations in reinforcement learn-
ing

Reinforcement learning (RL) is concerned with constructing agents capable of acting
optimally in sequential decision processes. Here an agent attempts to maximise its
utility by making a sequence of action choices. At each time step, the agent receives
an observation from its environment1 and acts accordingly. As a consequence of
its action, the agent receives feedback (reward) and finds itself, by way of some
transition function, in a new environment configuration, or state. Whereas the
rewards represent only the instantaneous outcome of an action, utility captures the

1The environment can be defined as that which cannot be arbitrarily changed by the agent [Sutton
and Barto 1998].
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long-term consequences of actions. The goal of the agent is simply to maximise its
utility over time.

2.1.1 Markov decision processes

One of the most common classes of sequential decision processes, especially in RL,
are Markov Decision Processes (MDPs). A sequential decision problem is an MDP if its
transition and reward functions are Markovian—that is, the probability of reaching
state st+1 from state st, as well as the associated reward, depends only on st and the
selected action and not on the history of earlier states [Puterman 2009]. Formally,

Pr(st+1, rt+1 | s0, a0, s1, a1, . . . , st−1, at−1, st, at) = Pr(st+1, rt+1 | st, at). (2.1)

An MDP is defined by the tuple 〈S,A, T ,R, γ〉, where

• S ⊆ Rn is the (possibly infinite) n-dimensional set of environment states;

• A is the (possibly infinite) set of actions;

• T : S ×A× S → [0, 1] defines the probability of transitioning between states
under an action;

• R : S ×A → R is the reward function; and

• γ ∈ [0, 1] is used to discount future rewards.

Together the transition and reward functions are known as the model and govern
the dynamics of the MDP. At time t, the agent receives state st ∈ S and executes
an action a ∈ A according to its policy π—a mapping from states to actions. The
agent then receives a scalar reward rt+1 ∈ R and transitions to the new state st+1.
In stochastic shortest path problems [Bertsekas and Tsitsiklis 1991], an agent begins
at some initial state distribution ρ0 and must learn a policy to reach a set of goal
states G ⊆ S optimally.

The series of states, actions and rewards constitutes the agent’s experience. This
is used to modify the agent’s policy to maximise the total expected utility or return
Gt, given by

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =

∞∑
k=0

γkrt+k+1. (2.2)

2.1.2 Solving MDPs with optimal policies

The ultimate aim of the agent is to learn an optimal policy π∗ that maximises its
expected return at all states. To define the optimal policy, we first require the notion
of a value function. Under policy π, the value function at state s is defined as

V π(s) =
∑
s′∈S

Pr
(
s′ ∈ S | s, π(s)

) [
R(s, π(s)) + γV π(s′)

]
, (2.3)
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which captures the expected return from a state under the given policy. A policy π∗

is said to be optimal if ∀s ∈ S, V π∗(s) = max
π

V π(s). It is also useful to define the

related action-value function, defined as

Qπ(s, a) =
∑
s′∈S

Pr
(
s′ ∈ S | s, a

) [
R(s, a) + γV π(s′)

]
. (2.4)

This captures the expected return after executing a in state s, and thereafter follow-
ing policy π. The optimal action-value function Q∗ is given by the set of Bellman
equations:

Q∗(s, a) =
∑
s′∈S

Pr
(
s′ | s, a

) [
R(s, a) + γmax

a′∈A
Q∗(s′, a′)

]
. (2.5)

For deterministic transitions, the above are |S| non-linear equations in |S| un-
knowns, and can be solved with techniques such as dynamic programming [Bell-
man 1957]. Having computed the optimal action-value function, it is then triv-
ial to derive the optimal policy π∗, which is greedy with respect to Q∗: π∗(s) =
argmaxa∈AQ

∗(s, a)∀s ∈ S.

2.1.3 Reducing the state space

While the above approach to computing optimal policies is feasible when the MDP is
relatively small, we can see from Equation 2.5 that it quickly becomes problematic
for extremely large (or infinite) state spaces. Unfortunately, this is often the case in
many real-world problems.

One way to overcome this is through the use of function approximation, where
the value function is represented as a parameterised function. Here we approximate
S using a set of features or basis functions φ, the dimension of which is much
smaller than that of the state space. A common approach is to use a weighted
linear combination of features to represent the value function, which then takes the
compressed form

Ṽ (s) ≈
N∑
i=1

θiφi(s) = θTφ(s), (2.6)

where N � |S| is the dimension of φ, θ ∈ RN is a weight vector learned by an RL
algorithm, and φ is a mapping φ : S → RN . The feature vector φ may be provided
to the agent, or it may be learned directly from data. The latter is most commonly
achieved by combining neural networks with RL algorithms [Riedmiller 2005; Mnih
et al. 2015]. In either case, function approximation allows an agent to generalise its
state values to similar, but unseen, states.

Another closely related approach is state aggregation, where sets of states are
treated as single units. For example, a continuous state space may be discretised
so that similar states (defined using an appropriate distance metric) are aggregated
into a single logical abstract state. Often states are grouped to preserve some prop-
erty of the original MDP; for example, bisimulation [Givan et al. 2003] creates an
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abstraction that preserves the transition and reward function, while utile distinction
[McCallum and Ballard 1996] preserves the optimal action and its value. We dis-
cuss other state aggregation methods in Section 2.4, but refer the reader to Li et al.
[2006] for a thorough overview.

2.1.4 Action abstraction

Another major challenge is posed by environments that require long sequences of
low-level actions to be executed before any reward is received. For example, a robot
manipulating an object may only receive a reward once it has positioned its body
and arm appropriately, and grasped the object in its hand. If this requires hundreds
of low-level actions to achieve, then the reward signal will be extremely sparse and
learning will be difficult, even when state abstraction is used.

Hierarchical reinforcement learning [Barto and Mahadevan 2003] tackles this
problem by abstracting away low-level control details, allowing the agent to learn
and plan using high-level actions called skills. We focus here on the options frame-
work [Sutton et al. 1999], but note that there exists other approaches, such as
Hierarchicies of Abstract Machines [Parr and Russell 1998] and MAXQ [Dietterich
2000], for creating high-level actions.

An option o is a temporally-extended action defined by the tuple 〈Io, πo, βo〉,
where Io = {s | o ∈ O(s)} is the initiation set that specifies the states in which
the option can be executed, πo : S → A represents the option policy, and βo is the
termination condition, where βo(s) is the probability of option o halting in state s.
Note that options are strict generalisations of regular (primitive) actions, since an
action a can be formulated as a one-step option that is executable everywhere, has
a policy that selects a at all states, and terminates in all states with probability 1.

Replacing the set of actions in an MDP with a set of options results in a semi-
Markov decision process (SMDP). This is characterised by the tuple 〈S,O, T ,R, γ〉,
where

• S is the set of states as before;

• O(s) is the set of options available to the agent at state s;

• T specifies the probability of arriving in state s′ after option o is executed from
s for τ timesteps: Pr(s′, τ | s, o);

• R(s, o, τ, s′) specifies the feedback the agent receives from the environment
when it executes option o from state s and arrives in state s′ after τ steps; and

• γ is the discount factor as before.

2.1.5 MDP-based planning

The main aim of an RL agent is to learn an optimal policy through trial-and-error
interaction with its environment. One approach is to optimise the policy or value
function directly, using samples from the environment. Alternatively, we can use
knowledge of T and R to compute an optimal policy without explicit environment
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interaction. In the case of certain domains, such as board games, it is feasible for a
human to specify the transition and reward functions for the agent. More generally,
though, an agent may be required to first use environment samples to estimate
the model, and then use those estimates to compute an optimal policy. Using data
generated from a model (either given or learned) is known as planning.

For planning in small domains, dynamic programming techniques such as value
or policy iteration [Bellman 1957; Howard 1960] can be used to compute an opti-
mal policy. For larger domains, a popular planning algorithm is Monte Carlo tree
search (MCTS) [Coulom 2006; Kocsis and Szepesvári 2006]. MCTS constructs an
asymmetric lookahead tree starting at the agent’s current state, and uses randomised
simulations to estimate the value of states in the tree. This tree is continually grown
until some time budget has elapsed, at which point the best action is selected and
executed and the planning procedure repeats (see Figure 2.1). Note that, unlike
other RL approaches, MCTS does not compute a value function or policy, which are
defined at every state. Rather, it is an online planning algorithm that attempts to
estimate the best action for only the current state.

(a) Selection (b) Expansion

(c) Simulation

(d) Backpropagation

Figure 2.1: Phases of the Monte Carlo tree search algorithm. Each node in the
tree is a state, with the current state serving as the root node. The tree is grown
by performing a lookahead search, adding new nodes (states) to the tree when
a leaf node is encountered, and then simulating a full episode using a model to
estimate the value of the new state. This is repeated until a fixed time budget has
been exhausted, at which point the action leading to the next state with the highest
estimate is selected.

2.2 Structured representations in classical planning

In contrast to MDP-centric formulations, the classical planning literature describes
environments using a more structured, symbolic representation. In this paradigm,
the aim is not to interact with an environment, but rather to use the provided domain
model to compute an optimal plan (a sequence of actions) that solves a specific task.
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2.2.1 Classical planning domains

In the classical representation, environments are modelled as classical planning
domains (CPDs) Σ = 〈S̃, Ã, γ̃, cost〉, representing the state space, action space, tran-
sition dynamics and cost function respectively.2 The state space is described using
vocabulary L, consisting of predicate symbols that take zero or more variable argu-
ments. We refer to a predicate as ground if it possesses no arguments (a proposition),
or if its arguments have been instantiated with constants or objects in the world.
Each state in the environment is represented as a conjunction of ground predicates,
and all predicates not explicitly mentioned are assumed to be false. The planning
domain definition language (PDDL) [McDermott et al. 1998] is one of the most
common standards used to encode these representations.

Each action or operator a in Ã is represented by the triple

〈pre(a), effects−(a), effects+(a)〉,

where pre(a) is the precondition specifying the conditions that must hold in order
for a to be executable; effects−(a) are the negative effects (the set of predicates
set to false by the operator); and effects+(a) are the positive effects (the set of
predicates made true).

The transition function γ̃ predicts the next state given the current state s and
operator a, where

γ̃(s, a) =

{
{s \ effects−(a)} ∪ effects+(a) if pre(a) ⊆ s
undefined otherwise.

The dynamics can also model stochastic transitions by assigning each potential
outcome its own probability, as in the probabilistic planning domain definition
language (PPDDL) [Younes and Littman 2004]. Finally, the cost function represents
some metric that should be minimised (or maximised) when planning, analogous
to the negative reward function in MDPs. If omitted, the cost function is assumed
to be 1 everywhere.

Example 1. Consider the environment illustrated by Figure 2.2 consisting of two robots
and two doors. In the MDP formulation, the state of the world might be specified by a
vector containing the robots’ xy-positions and the angles of the doors. By contrast, a
classical representation of the state is as follows:

near(r1, d1) and is-closed(d1) and is-closed(d2).

2We use ·̃ to disambiguate the classical representation and MDP variables when they are identical.
For example S is an MDP state space, while S̃ is a classical planning state space.
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r2

d2d1

r1

Figure 2.2: An environment with two robots (r1,r2) and two doors (d1,d2). One
robot is near the first door and can interact with it, while the other is out of range
of either door.

An operator for opening the door might take the following form:

(action: open-door
parameters: (?x - robot, ?y - door)
precondition: near(x, y) and is-closed(y)
negative effect: is-closed(y)
positive effect: is-open(y)

)

The operator is parameterised by two objects—a robot and door—and states that,
in order for a robot to open a door, it must be near the door and the door must be closed.
As a result of executing the operator, the door is no longer closed but open. Note that
given this action operator, it is clear that it can be instantiated with r1 and d1, but not
with r2 and any other door, since the precondition would not be satisfied in the initial
state.

2.2.2 Solving CPDs with optimal plans

In the classical planning formalism, the domain description is decoupled from the
task the agent is required to solve. While the CPD specifies the dynamics of the
environment, the problem description specifies what the agent is required to achieve.
In particular, a classical planning problem is given by the tuple 〈Σ, s0, g〉, where Σ
is the domain description, s0 is the initial state and g is a set of ground predicates
representing the goal.

The aim of an agent is to discover an optimal plan that satisfies the goal condition
starting from the initial state. A plan π̃ is simply a finite sequence of operators

π̃ = 〈a1, a2, . . . , an〉,

and the cost of a plan is given by sum of each operator’s cost in the plan. We say that
π̃ = 〈a1, a2, . . . , an〉 is a solution to a planning problem 〈Σ, s0, g〉 if there exists states
s1, . . . , sn such that γ̃(si, ai) = si+1 for all 1 ≤ i < n and g ⊆ sn. In other words,
a plan is a solution to a problem if it can be executed according to the transition
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function, starting at the initial state and reaching (satisfying) the goal condition.
Finally, we refer to a plan as optimal if there is no other solution that incurs smaller
cost: π̃ = argmin

π̃′∈ all plans
{cost(π̃′) | π̃′ is a solution} [Ghallab et al. 2004].3

2.2.3 Classical planning methods

One of the main differences between MDP-based planning and classical planning is
the structure imposed by the latter’s representation. Since the problem definition
specifies the start and goal states, we can apply backward- or forward-search algo-
rithms, such as breadth-first or A* search, to find the shortest path between start
and end states.

Importantly, the domain structure can be leveraged to automatically produce
heuristics that can then be combined with forward search algorithms to speed up
planning. For example, the Heuristic Search Planner [Bonet and Geffner 1999]
performs search on a relaxation of the given domain—in particular, the negative
effects of operators are not accounted for. The resulting solution never overestimates
the length of the optimal plan in the original problem, and can therefore serve as an
admissible heuristic for various search algorithms. Owing to the domain structure
and heuristics, classical planners can solve extremely large problems efficiently—
domains consisting of more than 330 000 ground actions were easily solved at the
2003 International Planning Competition [Long and Fox 2003].

2.3 From unstructured to structured representations

In the previous sections, we reviewed two approaches to representing agents acting
in environments. The MDP-based formulation can be used to capture low-level
details of real-world tasks, such as high dimensional observations and continuous
actions. However, learning in such a regime is often difficult and computationally
expensive. On the other hand, the classical representation uses symbols to describe
an idealised world where low-level details are dispensed with.

Abstract symbolic representations of a low-level task are extremely attractive,
since agents can efficiently construct plans to solve tasks of a hierarchical nature.
This allows agents to tackle sparse-reward problems by planning at a high level,
reducing the effective horizon of the problem. A major issue, however, is the connec-
tion between the symbolic representation of the environment, and the environment
itself. In the paradigm described in Section 2.2, symbols are typically provided
to the agent by a human expert, but clearly this approach does not scale to real-
world agents. Therefore, the agent must concern itself with first acquiring these
symbols autonomously. This must be done in such a way that the symbols (or the
logical conclusions reached by manipulating them) are grounded in reality, and not

3In the stochastic setting, a plan is optimal if there is no other solution that incurs smaller expected
cost [Younes and Littman 2004].
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simply imaginary hallucinations of the agent. Since we are interested in planning,
the obvious question then is: how can an agent sensing and acting in a low-level,
high-dimensional domain learn a sound symbolic CPD useful for planning?

In this section, we discuss the skills-to-symbols framework [Konidaris et al. 2018]
for learning a probablistic representation in the form of PPDDL. A defining fea-
ture of this approach is that it uses both state and action abstraction to construct
a representation that is provably sound and useful for planning. Throughout this
work, we assume the agent is equipped with a set of options; these options may be
hand-designed and provided to the agent, but more generally may be learned using
any appropriate skill discovery algorithm (e.g. [Stolle and Precup 2002; Konidaris
and Barto 2009b; Ranchod et al. 2015; Machado et al. 2017; Bacon et al. 2017;
Jinnai et al. 2019; Bagaria and Konidaris 2019]). In either case, the framework
then constructs abstract states to support planning with those very options. Con-
sequently, the learned representation is provably sound and complete, forming a
bridge between low-level control and high-level planning.

2.3.1 Learning preconditions and effects

The first question to ask is: what exactly should an agent learn? To answer this,
recall first that we wish to learn an abstract representation to facilitate planning. In
particular, while classical planning primarily centres around deterministic domains,
we are instead interested in the stochastic case. This will allow us to model MDPs
with stochastic dynamics and account for the uncertainly inherent in learning with
a finite number of samples.

A probabilistic plan π̃Z = {o1, . . . , on} is defined as a sequence of options to
be executed, starting from some state drawn from distribution Z. It is useful to
introduce the notion of a goal option, which can only be executed when the agent
has reached its goal. Appending this option to a plan means that the probability
of successfully executing a plan is equivalent to the probability of reaching some
goal. Our representations should therefore allow us to compute the probability of
π̃Z succeeding.

As a plan is simply a chain of options, it is therefore necessary (and sufficient) to
learn when an option can be executed, as well as the outcome of doing so [Konidaris
et al. 2018]. This corresponds to learning the precondition Pre(o) = Pr(s ∈ Io),
which expresses the probability that option o can be executed at state s ∈ S, and
the image

Im(Z, o) =

∫
S Pr(s′ | s, o)Z(s) Pr(s ∈ Io)ds∫

S Z(s) Pr(s ∈ Io)
,

which represents the distribution of states an agent may find itself in after executing
o from states drawn from distribution Z. Note that even though the precondition
for an option is a set, we allow for it to be probabilistic to account for uncertainty
and error in its estimation. Figure 2.3 illustrates how the precondition and image
are used to calculate the probability of executing a two-step plan.
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Z

o1?

Io1

(a) The agent begins at distribution
Z, and must determine the probabil-
ity with which it can execute the first
option o1.

Z

o1

o2?

Z1

Io2

(b) The agent estimates the effect of
executing o1, given by Z1. It must
then determine the probability of ex-
ecuting o2 from Z1.

Figure 2.3: An agent attempting to calculate the probability of executing the plan
π̃Z = {o1, o2}, which requires knowledge of the conditions under which o1 and o2
can be executed, as well as the effect of o1. Reused with permission from Konidaris
et al. [2018].

2.3.2 Partitioned subgoal options

For large or continuous state spaces, representing the image of an arbitrary option
presents difficulties, since in the worst case we would need to model Pr(· | s, o)
conditioned on every s. However, we can do so for a subclass known as subgoal
options [Precup 2000], of which there are two variants [Konidaris et al. 2018]. An
option is said to possess the weak subgoal property if the probability of executing
the next available options is the same, regardless of the initial state of the agent. In
other words, for all options o, n ∈ O and states s, t ∈ Io

Pr(s′ ∈ In | s, o) = Pr(t′ ∈ In | t, o),

where s′ ∼ Pr(· | s, o) and t′ ∼ Pr(· | t, o). Alternatively, an option possesses
the strong subgoal property if its terminating states are independent of its starting
states. That is, for any strong subgoal option o, Pr(s′ | s, o) = Pr(s′ | o). We can
thus substitute the option’s image for its effect: Eff(o) = Im(Z, o) ∀Z. Although the
strong subgoal condition is more restrictive, it will prove more useful practically;
how best to exploit the weak subgoal condition remains an open question.

Subgoal options are not overly restrictive, since they refer to options that drive
an agent to some set of states with high reliability, which is a common occurrence
in robotics owing to the use of closed-loop controllers. Nonetheless, it is likely an
option may not be subgoal. It is often possible, however, to partition an option’s
initiation set into a finite number of subsets, so that it possesses the strong subgoal
property when initiated from each of the individual subsets. In other words, we
partition an option’s initiation set into classes C such that Pr(s′ | s, c) ≈ Pr(s′ | c), c ∈
C (see Figure 2.4). More formally, we define a partitioned option as follows:
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Definition 1. Given an option o ∈ O, define a relation ∼o on Io so that s ∼o t ⇐⇒
Pr(s′ | s, o) = Pr(s′ | t, o) for all s, t, s′ ∈ S. Then ∼o is an equivalence relation
which partitions Io. Label each equivalence class in Io/ ∼o with a unique integer α. A
partitioned subgoal option in S is then the parameterised option o(α) = 〈[α], πo, βo〉,
where [α] is the set of states in equivalence class α.

Io

Pr(s' | o, c2) 

Pr(s' | o, c3) 

Pr(s' | o, c0) 

Pr(s' | o, c1) 

Figure 2.4: Option o is not subgoal, but we can partition the initiation set Io into 4
subsets c0, . . . , c3, such that the option is subgoal when initiated from each of these
sets. Note that each of the differently shaded regions is an equivalence class on Io.

Abstract options for factored representations

The classical representation makes several assumptions about the world. These
include the frame assumption (any aspect of the world not explicitly changed by the
agent remains the same) and the action outcomes assumption (each action affects
the world in only a small number ways) [Pasula et al. 2004]. Along similar lines, we
may assume that our options are abstract—that is, they obey the frame and action
outcomes assumptions [Konidaris et al. 2018]. For each option, we decompose the
state into two sets of variables s = [a, b], such that executing the option results in
state s′ = [a, b′], where a is the subset of variables that remains unchanged. We refer
to the variables that are modified by an option as its mask. If the options violate the
action outcomes assumption (that is, all state variables are always changed by the
options), then the resulting representation will be a planning graph or abstract MDP.
However, if these assumptions hold, then the learned representation will take the
form of a factored abstract MDP or STRIPS-like representation [Fikes and Nilsson
1971].

Example 2. Consider an agent whose state is characterised by its xy-coordinates in a
square room. The agent starts in the top-left corner of the room, and possesses options
that allow it to navigate from any corner to the adjacent corners. If all options modify
the x and y position simultaneously, then there is no opportunity for factorisation. The
resulting representation consists of a graph with four nodes, each of which is an abstract
state (see Figure 2.5a). However, if the options can modify x and y independently, then
we can factorise our representation: one factor represents the agent’s x position, and
the other the y position. The state is then the Cartesian product of these two factors
(see Figure 2.5b).
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(a) (b)

Figure 2.5: An illustration of the difference between factored and unfactored ab-
stractions. (a) The abstraction is unfactored and the abstract states are given by the
set {A,B,C,D}. (b) The abstraction is factored into x and y components and the
abstract states are given by the product {W,X} × {Y,Z}.

2.3.3 Constructing a CPD

We can now describe the framework that allows an agent to learn its own classical
representation from low-level data. This procedure is illustrated by Figure 2.6 and
summarised below, but for more detail see Konidaris et al. [2018].

Partition into
subgoal options

Skill
acquisition

Abstract (symbolic)
representation

Task 1

M
od

el

Initial
MDP

Collect data
Estimate

preconditions
and e�ects

Generate abstract
forward model

Figure 2.6: The process of learning symbolic representations [Konidaris et al. 2018].
The abstract model can take various forms, such as a factored MDP or a PPDDL
description.

Step 1: Option partitioning

As mentioned, estimating the effects of options may be difficult if they do not already
possess the subgoal property. The first step is therefore to partition the options
into approximately subgoal options based on data collected by interacting with the
environment. Let Īo and β̄o be the empirical sets of initial and terminating states
for a given option o. The agent first partitions Īo into subsets K ⊆ Īo such that
Pr(s′ | si, o) = Pr(s′ | sj , o)∀si, sj ∈ K, s′ ∈ β̄o, as per Definition 1.
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Unfortunately, finding an exact partitioning is computationally expensive. Prior
work has approximated this procedure by assuming that distinct effects are spatially
distant, and then clustering state transition samples based on effect states [Andersen
and Konidaris 2017; Konidaris et al. 2018; Ames et al. 2018]. Each cluster is assigned
to a partition, and each pair of partitions is examined to determine whether their
start states overlap significantly. If they do overlap, the partitions are merged to
account for probabilistic effects.4

Example 3. To illustrate this approximation procedure, consider the example of an
agent executing a Jump-Right skill to reach a higher ledge. The state of the environment
is the xy-location of the agent, and the domain is stochastic. As a result, occasionally
the agent jumps and fails to reach the ledge, falling to the ground. There are two cases
to consider, illustrated by Figure 2.7 below.

A

B

(a) Jumping from position A, the agent
always manages to land on the small
ledge. However, its exact position varies
slightly owing to stochasticity in the envi-
ronment.

C

D

B

(b) Jumping from position B, the agent
is sometimes able to reach the higher
ledge at location C. However, because of
stochasticity, the agent occasionally falls
to the ground at position D.

Figure 2.7: Examples of an agent jumping onto a higher ledge from various loca-
tions. The domain is stochastic, and so the effects of executing the option are also
stochastic. This stochasticity is visualised by transparency in the outcomes.

Using the procedure described above, we first cluster option data based on the
terminating states. This results in three clusters at locations B, C and D, each of which
is assigned to its own partitioned option. Our next step is to determine whether any
of these three are in fact stochastic outcomes of a single partitioned option. The initial
states for the option A→ B do not overlap with any of the other partitions, and so are
left as its own partitioned option. However, the initation set for the option B→ C does
overlap with B → D. Therefore, we merge these into a single probabilistic partitioned
option. If there are N empirical samples of the agent making the transition B→ C, and
M for the transition B→ D, then the associated probabilities are simply N/(N +M) and
M/(N +M).

4In this context, clustering is used to approximate the subgoal property. However, it has also
been used in prior work to discover effects that can be reliably predicted [Ugur et al. 2012]. The
latter approach has achieved empirical success and provides an avenue for adaptively selecting the
clustering algorithm’s hyperparameters. However, it lacks the theoretical guarantees of the subgoal
condition.
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Step 2: Learning preconditions

Having ensured that the options are approximately subgoal, the agent next learns
a precondition classifier for each of these approximately partitioned options. Recall
that the precondition corresponds to determining whether an option can be executed
at a given state, and is thus a classification problem. We can fit a probabilistic
classifier to the data; states inside each partitioned option’s initiation set are treated
as positive examples, and all others as negatives. However, it is not sufficient to
simply fit a classifier to the data, since it may be the case that the precondition
depends only on a subset of state variables. Therefore, we first employ a feature
selection procedure to determine which state variables are relevant to the option’s
precondition. We refer to these variables as the precondition mask. The framework
is agnostic to the manner in which feature selection is performed, but a simple
approach is outlined in Figure 2.8. Having determined the precondition mask, a
probabilistic classifier is fit to the relevant state variables’ data.

1: procedure FEATURESELECTION

2: Given: positive start states p, negative start states n, state dimension N ,
threshold ε.

3: . Fit a classifier over all state variables
4: allVars ← {1, . . . , N}
5: initScore ← FITANDSCORE(start ,negative, allVars)
6: mask ← ∅
7: for each variable ∈ {1 , . . . ,N } do
8: subsetScore ← FITANDSCORE(start ,negative, allVars \ {variable})
9: if initScore − subsetScore > ε then

10: . Keep the variable if it causes score to decrease when removed
11: mask ← mask ∪ {variable}
12: end if
13: end for
14: latestScore ← FITANDSCORE(start ,negative,mask)
15: for each variable ∈ allVars \Mask do
16: newScore ← FITANDSCORE(start ,negative,Mask ∪ {variable})
17: if newScore − latestScore > ε then
18: . Keep the variable if adding it improves the score
19: mask ← mask ∪ {variable}
20: latestScore ← newScore
21: end if
22: end for
23: return mask
24: end procedure

Figure 2.8: Pseudocode for a simple feature selection procedure to determine the
relevant state variables for an option’s precondition. First, a classifier is fit to all
the data and the overall score computed. Then, any state variable that reduces the
score when removed is kept as part of the precondition mask. Finally, we attempt to
add the remaining state variables back to the mask; any that improve the classifier’s
performance are kept and added to the mask.
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Step 3: Learning effects

Computing the effect of a partitioned option is a problem of density estimation.
For a given partitioned option, we consider its terminating states5 and compute
the mask—the set of state variables that have been changed by the option. Next
we fit a density estimator to the data, taking only the state variables in the mask
into account. Each of these density estimators (representing a distribution over a
subset of state variables) forms a single proposition in our classical representation
vocabulary L.

Step 4: Generating a PPDDL model

For each partitioned option o, the agent has learned a precondition classifier Îo
and effect distribution β̂o. However, to construct a PPDDL representation, both the
precondition and effects must be specified in terms of state distributions (proposi-
tions) only. Effects are modelled as such and so pose no problem, but the learned
precondition is a classifier rather than a state distribution. The agent must therefore
iterate through all possible effect distributions to compute whether the skill can
be executed there. This procedure is exponential in the number of factors—more
precisely, its time complexity is O(|O||L||F |), where |O| is the number of options, |L|
is the size of the symbolic vocabulary, and |F | is the number of factors [Konidaris et
al. 2018]. Fortunately, the number of factors is usually small in practice, and so the
above can be executed in a reasonable amount of time.

This is achieved by replacing o’s precondition classifier with every P ∈ ℘(L) such
that

∫
S Îo(s)G(s)ds > 0,G =

∏
p∈P p, where L is the vocabulary and ℘(L) denotes

the powerset of L. In other words, the agent considers every combination of effect
distributions and draws samples from their conjunction. If these samples are classi-
fied as positive by Îo, then the conjunction P is used to represent the precondition.
The preconditions and effects are now specified using distributions over state vari-
ables, where each distribution is a proposition. We have now learned a probabilistic
CPD, which is sound and suitable for planning. The procedure for constructing the
classical operators is described in Figure 2.9, while the full pseudocode for the entire
framework is given by Figure 2.10.

2.4 Related model-learning approaches

We have presented one approach to bridging the gap between low-level MDPs and
smaller, discrete representations; however, there are many other ways of doing
so. These can be broadly categorised into approaches that (a) learn models given
a set of predicates; (b) learn symbolic models from low-level sensory data; and
(c) perform state aggregation to construct smaller, property-preserving MDPs. We
briefly describe these approaches below.

5In the case of a probabilistic option, there will be multiple sets of terminating states, and we
would perform density estimation for each probabilistic outcome in turn.
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1: procedure BUILDPPDDLOPERATOR

2: Given: precondition classifier classifier , option effect effect , all symbols
vocabulary

3: operators ← ∅
4: for each candidate ∈ ℘(vocabulary) do . For all possible effect

combinations
5: samples ← SAMPLE(candidate) . Sample from the distributions
6: prob ← SCORE(classifier , samples) . Query the classifier with the data
7: if prob > 0 then
8: if prob = 1 then
9: . Construct the new operator with the existing effects

10: operator ← {candidate, effect}
11: else
12: . Add a probabilistic failure case

13: newEffect ←

{
fail,with probability (1− prob)
effect ,with probability prob

14: operator ← {candidate,newEffect}
15: end if
16: operators ← operators ∪ {operator}
17: end if
18: end for
19: return operators
20: end procedure

Figure 2.9: Pseudocode for constructing probabilistic operators. The procedure
accepts the precondition classifier and effect for a single partitioned option, along
with the entire propositional vocabulary. It then determines which combination of
propositions are evaluated as positive by the classifier. Those that match are used
as the precondition for the operator.

Top-down model acquisition

One line of work learns symbolic models given symbolic state descriptors. Here,
states represented as conjunctions of ground predicates are provided, and the chal-
lenge is to learn rules that best describe the effects of actions on these predicates.
This class of approaches is illustrated by Figure 2.11, which provides a symbolic
representation of a block-stacking domain with three blocks and a gripper.

For example, Khardon [1999] uses inductive logic programming to learn solu-
tions to problems in a particular domain, given the domain description and exam-
ple solutions. Finney et al. [2002] attempt to learn the transition dynamics of a
block-stacking domain by estimating the dynamics with respect to each block in
the environment. Unfortunately, partial observability is introduced by considering
only each block in turn and, as a result, learning performance is severely hampered.
Pasula et al. [2004] present an algorithm for learning a probabilistic model of rela-
tively simple environments by inferring parameterised rules. Since these rules are
relational, they can be reused in new task configurations. Zettlemoyer et al. [2005]
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1: procedure LEARNREPRESENTATION

2: Given: T state-option transitions D = {(si, oi, s′i) | 0 ≤ i ≤ T}, state dimen-
sion N

3:

4: . Partition options into subgoal options
5: subgoalOptions ← ∅
6: for each o ∈ O do
7: Ī ← {s | (s, o, ·) ∈ D} . Set of initial states for option o
8: β̄ ← {s′ | (·, o, s′) ∈ D} . Set of terminating states for option o
9: for all K ⊆ Ī such that Pr(s′ | si, o) = Pr(s′ | sj , o)∀si, sj ∈ I, s′ ∈ β̄ do

10: . Extract the start and end states for a partition
11: P ← {o,K, {s′ | ∀s ∈ K, (s, o, s′) ∈ D}}
12: subgoalOptions ← subgoalOptions ∪ {P}
13: end for
14: end for
15:

16: . Estimate preconditions and effects
17: estimatedOperators, vocabulary ← ∅
18: for each {·, start , end} ∈ subgoalOptions do
19: mask ← COMPUTEMASK(start , end) . List the objects that change state
20: negative ← S \ start
21: features ← FEATURESELECTION(start ,negative,N )
22: classifier ← FITCLASSIFIER(start ,negative, features)
23: estimator ← FITESTIMATOR(mask , end) . Fit over mask only
24: vocabulary ← vocabulary ∪ {estimator}
25: estimatedOperators ← estimatedOperators ∪ {{classifier , estimator}}
26: end for
27: . Build propositional PPDDL
28: operators,← ∅
29: for each precondition, effect ∈ estimatedOperators do
30: op ← BUILDPPDDLOPERATOR(precondition, effect , vocabulary)
31: operators ← Operators ∪ {op}
32: end for
33: return vocabulary , operators
34: end procedure

Figure 2.10: The full skills-to-symbols framework for autonomously constricting a
propositional PPDDL representation given a set of options. Some subroutines used
in the pseudocode below are outlined in previous sections.

and Pasula et al. [2007] extend this approach to more complex domains, allowing
an agent to learn relational rules in fully observable stochastic environments.

To handle partial observability, Amir and Chang [2008] ignore the possibility
of action failures and propose an algorithm for learning operator preconditions
and effects. Approaches by Halbritter and Geibel [2007] and Mourão et al. [2010]
estimate action effects in partially observable stochastic domains, but the repre-
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A C
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on-table(C) and
clear(C)

in-hand(B)

not (empty(HAND))

on-table(A) and
clear(A)

A C
B

on-table(C) and
not (clear(C))

empty(HAND)

on-table(A) and
clear(A)

on(B, C) and
clear(B)

Figure 2.11: Top-down approach to model learning. The agent must estimate
the classical planning operators from transition data, but the states are already
represented symbolically. Here the state of the world is represented by the predicates
such as on-table and clear, and must infer general rules from the way actions
modify these predicates.

sentations cannot be explicitly represented using PDDL, precluding the use of fast
classical planners. Mourão et al. [2012] extend these approaches by using classifiers
to determine the mask of each action from which PDDL preconditions and effects
can be extracted, while Aineto et al. [2019] present an approach for learning sym-
bolic representations given examples of plan executions that may be partially or
wholly unobservable.

More recently, deep learning approaches have been applied to symbolic represen-
tations to learn policies and abstractions that generalise to new problem definitions
[Toyer et al. 2018; Bajpai and Garg 2018; Bonet et al. 2019]. In all of these cases,
however, the symbols modelling the state space are given—the origin of these sym-
bols therefore remains an open question.

Bottom-up symbol acquisition

Unlike the previous section, certain approaches can learn symbolic representations
given low-level raw observations, as illustrated by Figure 2.12. Bonet and Geffner
[2020] learn first-order symbolic representations given a graph that encodes the
structure of the state space and transition dynamics. While their approach does not
require predefined symbols, it is unlikely that a real-world agent acting in novel
environments will have access to such a graph.

Ugur and Piater [2015a;b] learn object-centric PPDDL representations for an
object manipulation task by clustering the effects of actions based on the observed
change in state. While their system produces a PPDDL representation that can be
used for planning on a real robot, object features are specified prior to learning,
and discrete relations between object properties such as width and height are given.
Furthermore, certain predicates are manually inserted to generate a sound represen-
tation. Ahmetoglu et al. [2020] extend this approach by using deep neural networks,
allowing the agent to learn from raw object observations instead of handcrafted ob-
ject features. However, in order to generate a PPDDL representation suitable for
constructing towers of blocks, predicates that track the number of objects in a tower
must still be manually inserted.
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(0)

(10.2, 0)

(7.1, 10)

(5.7, 0)
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Figure 2.12: Bottom-up approach to model learning. Here an agent must estimate
the classical planning operators and state predicates from transition data. However,
states are not represented symbolically, and so the symbolic states, as well as the
dynamics, must both be learned. In the above block-stacking example, the state of
each block is represented by its xy-position instead of the symbolic representations
in Figure 2.11.

Jetchev et al. [2013] are able to learn relational symbols and operators directly
from geometric data. The approach is framed as an optimisation problem—the
procedure attempts to search for symbol groundings that maximise the predictive
abilities over both the transition and reward functions while penalising overly com-
plex models. However, the size of the search space is large, requiring one dimension
for every parameter of every symbol, which restricts its ability to scale to large
problems.

Mugan and Kuipers [2009; 2011] iteratively discretise a continuous state space
to construct a model suitable for planning. Options are then learned to reach these
discretised states. This can be seen as a “symbols-first” approach, where skills
are learned to achieve an initial discretisation, which is refined if necessary. This
contrasts to the “skills-first” approach described in Section 2.3, where a symbolic
representation is constructed from a set of skills. One issue with the former is that it
relies on the symbols being reachable from one another, which is not a consideration
when constructing symbols to support skills.

Asai and Fukunaga [2018] learn deterministic PDDL action operators directly
from pixels using a binarised autoencoder, where the bottleneck layer represents
the set of propositions set to true and false, but it is unclear how to extend the
approach to the stochastic setting. Asai [2019] builds on this to learn deterministic
object-centric representations. However, the representations are encoded implicitly
and cannot be transformed into a language that can be used by existing planners.
This limitation is removed by Asai and Muise [2020], who propose a deep learning
approach to extract PDDL representations from image-based transition data. How-
ever, their framework does not provide soundness guarantees, nor does it consider
stochastic dynamics.6

6Ahmetoglu et al. [2020] demonstrate that modelling probabilistic effects is critical to success
in complex tasks, and that determinising probabilistic operators leads to significant degradation in
performance.
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Finally, approaches in the task and motion planning (TAMP) setting learn operator
preconditions and effects from data [Wolfe et al. 2010; Kaelbling and Lozano-Pérez
2011]. For example, Kaelbling and Lozano-Pérez [2017] learn the continuous pa-
rameters of preconditions and effects to construct operators that can be chained
together, while Wang et al. [2020] extend this to learn probabilistic preconditions
that account for uncertainty. While TAMP approaches are used to perform high-level
planning, they also capture the low-level details required by motion planners to
achieve each of the individual subtasks in a plan. Consequently, the learned repre-
sentations are a hybrid of discrete and continuous symbols. By contrast, approaches
such as skills-to-symbols assume the agent’s options are sophisticated enough to deal
with this complexity. As such, the details for low-level motion planning need not be
modelled, and the resulting representations are fully discrete.

State representation learning

The above symbol acquisition approaches have attempted to construct representa-
tions of environments using symbolic predicates. Representation learning, on the
other hand, aims to discover compact state spaces from high-dimensional observa-
tions [Lesort et al. 2018]. A more compact representation may be formed by, for
instance, discarding irrelevant state variables [Jong and Stone 2005] or selecting
appropriate abstractions from a library [Konidaris and Barto 2009a; Wookey and
Konidaris 2015]. Alternate approaches learn a mapping to a lower-dimensional
space that preserves certain properties, such as real-world physical constraints [Jon-
schkowski and Brock 2015] or the Markov property [Allen et al. 2021b].

More recently, deep learning techniques have been applied to map the high-
dimensional observations to a feature space suitable for learning a policy [Mnih et
al. 2015], and autoencoders have been pretrained to discover a latent representation
capable of reconstructing the original input [Lange and Riedmiller 2010; Oh et al.
2015; Finn et al. 2016]. The learning agent then attempts to learn a policy or value
function in this latent space. In all of these cases, the learned representation is still
continuous, and planning remains difficult.

State aggregation

Instead of discovering a lower-dimensional representation, an alternate approach is
to aggregate collections of states into abstract states, such that certain properties of
the resulting MDP are preserved. The aim here is to construct a smaller discrete MDP,
where learning and planning are likely easier. As Gopalan et al. [2017] demonstrate,
abstract MDPs (in their case, a hand-constructed hierarchy of abstractions) can be
used to speed up planning significantly.

In general, these approaches involve treating groups of states as a single unit so
that certain properties of the resulting MDP are preserved. For example, the strictest
form of state aggregation is bisimulation [Givan et al. 2003], where only states with
the same reward and transition functions are grouped. Dean and Givan [1997]
introduce an approximation, where states are grouped so that the resulting clusters
have transition and reward functions that are ε-close to the true model. Jong and
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Stone [2005] propose an approach that groups states with the same optimal actions
together, while Boutilier et al. [2000] and Chapman and Kaelbling [1991] propose
an aggregation method that preserves the optimal action-value function.

All of these approaches construct a smaller, abstract MDP for which learning
an optimal policy is easier. However, the resulting MDP may still be relatively
large, and so constructing an optimal plan or policy using dynamic programming
or MCTS can still be relatively slow. By contrast, CPDs provide structure that can
be leveraged to develop domain-independent heuristics and apply fast goal-directed
planning algorithms such as A* search [Hart et al. 1968]. Since we are interested in
constructing agents capable of long-term planning, methods that produce a classical
representation are better suited to our purpose.

2.5 Conclusion

In this chapter, we discussed the differences between representations based on MDPs
and CPDs. Although CPDs can be leveraged for fast planning, real-world agents
do not receive symbolic observations. Therefore, methods that allow an agent
to autonomously learn symbolic CPDs from raw observations are highly desirable.
While several approaches can achieve this (see Section 2.4), they either assume
that the symbolic predicates are given, or they lack the soundness guarantees of the
skills-to-symbols framework [Konidaris et al. 2018]. However, even this approach is
not without issues. Importantly, the learned representations are distributions over
low-level state variables, and so are tied to the task in which they were learned.
They therefore cannot be reused in new tasks or environments, which may be a
fatal issue in real-world scenarios. In the next few chapters, we investigate ways of
overcoming this deficiency.



Chapter 3

Agent-Centric Representations

In the previous chapter we described a framework for learning a classical planning
representation from raw observation data. However, a major shortcoming of that
framework is the lack of generalisability. Since the learned symbols are grounded
in the current task, an agent must relearn the appropriate representation for each
new task—or even any small change to a task— that it encounters (see Figure 3.1).

(a) The distribution over positions from
where the agent is able to interact with
the door.

(b) In the new task, the learned distribu-
tion is no longer useful since the door’s
location has changed.

Figure 3.1: An illustration of the shortcomings of learning task-specific state abstrac-
tions [Konidaris et al. 2018]. (a) An agent (represented by a red circle) learns a
distribution over states (〈x, y, θ〉 tuples describing its position and orientation) in
which it can interact with a door. (b) However, this distribution cannot be reused in
a new room with a different layout.

Unfortunately this issue is inevitable, since state spaces are problem-specific by
definition. Thus, apart from certain special cases, abstractions learned in one task
cannot be transferred to another. To overcome this, we introduce a framework
for deriving a portable symbolic abstraction over an agent-centric or egocentric
observation space [Agre and Chapman 1987; Guazzelli et al. 1998; Finney et al.
2002; Konidaris et al. 2012].1 Because such observation spaces are relative to the

1Egocentric observation spaces have also been adopted by recent reinforcement learning frame-
works, such as VizDoom [Kempka et al. 2016], Minecraft [Johnson et al. 2016] and Deepmind Lab
[Beattie et al. 2016].
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agent, they provide a suitable avenue for representation transfer between tasks.

However, abstractions learned in this agent-centric space are necessarily non-
Markov (since agent space is not a Markov state space by definition) and so are
insufficient for planning. Our second contribution is thus to prove that the addition
of very particular problem-specific information (learned autonomously from the
task) to the portable abstractions results in a representation that is sufficient for
planning. This combination of portable abstractions and task-specific information
results in lifted action operators that are transferable across tasks, but which must
be grounded on a per-task basis (see Figure 3.2).

We describe our framework using a simple toy domain, and then demonstrate
successful transfer in two domains. Our results show that an agent is able to learn
abstractions that generalise across tasks, reducing the experience required to learn
a representation of a new task.

Data
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Task-speci�c
grounding

Portable symbols

Non-portable
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Figure 3.2: An overview of our approach. In the first task, the agent uses data
to acquire transferable symbolic representations. These are then combined with
problem-specific symbols, also learned from data, to form a model suitable for
planning. In the second task, this process is repeated; however, symbols from the
first task can be reused to construct a model for the current task.

3.1 Agent-centric observations for transfer

To develop an approach for multitask learning, we turn to the idea of transfer
learning [Taylor and Stone 2009], the goal of which is to create an agent capable of
leveraging knowledge gained in one task to improve its performance in a different
but related task. We are interested in a collection of tasks modelled by a family of
SMDPs.

We first consider the most basic definition of an agent, which is anything that can
perceive its environment through sensors, and act upon it with effectors [Russell and
Norvig 2009]. In practice, a human designer will usually build upon the observations
produced by the agent’s sensors to construct the Markov state space for the problem
at hand, while discarding unnecessary perceptual information. Instead we will seek
to effect transfer by using both the agent’s sensor information—which is typically
egocentric—in addition to the Markov state space.

We assume that tasks are related because they are faced by the same agent
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[Konidaris et al. 2012]. For example, consider a robot equipped with various sensors
that is required to perform a number of as yet unspecified tasks. The only aspect
that remains constant across all these tasks is the presence of the robot and, more
importantly, its sensors, which map the state space S to a portable, lossy and egocen-
tric observation space D known as agent space. We define an observation function
φ : S → D that maps states to observations and depends on the sensors available to
the agent. We assume the sensors may be noisy, but that the noise has mean 0 in
expectation, so that if s, t ∈ S, then s = t =⇒ E[φ(s)] = E[φ(t)]. To differentiate,
we refer to S as problem space [Konidaris and Barto 2007].

Augmenting an SMDP with this egocentric data produces the tupleMi = 〈Si,Oi,
Ti,Ri,D〉 for each task i, where the egocentric observation spaceD remains constant
across all tasks. We can use D to define portable options, whose option policies,
initiation sets and termination conditions are all defined egocentrically. Because D
remains constant regardless of the underlying SMDP, these options can be trans-
ferred across tasks [Konidaris and Barto 2007].

3.2 Building a portable symbolic vocabulary

As we observed in Chapter 2, symbols represent precondition and effect distributions
over low-level states, which are directly tied to the SMDP in which they were learned.
There is thus opportunity for defining a more general representation.

Consider a navigating robot learning an abstract representation of a map, where
the robot possesses a motor skill for opening a door. For any specific map, its state
can be described by its orientation and xy-coordinates. If there are N doors in the
environment, then the robot will learn N predicates, each of which is a distribution
over coordinates specific to each door; when placed in a new map, it would have to
learn everything from scratch. However, if we were to consider an egocentric state
representation, we may find that the view when standing in front of each door looks
identical (see Figure 3.3). We can therefore instead learn a single, generalisable
symbol that names a distribution in agent space. This distribution describes the
precondition of opening the multiple doors in the current map, as well as those to
be found in new, as yet unseen, maps.

We therefore propose learning a symbolic representation in agent space D. Trans-
fer can be effected in this manner provided φ is non-injective,2 because D remains
consistent both within the same SMDP and across SMDPs, even if the state space or
transition function do not.

Having augmented the SMDP with an agent space, we allow for the agent to
possess options defined over either S (problem-space options) or D (agent-space
options) [Konidaris and Barto 2007].

2We require that φ be non-injective since the ability to effect transfer relies on two distinct states
in S being identical in D. If that is not the case, we can do no better than learning propositional
symbols in S.
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(a) Illustration of symbols as distributions
over xy-coordinates, illustrated with bi-
variate Gaussian distributions.

(b) A single symbol viewed from an agent-
centric perspective.

Figure 3.3: Representations for the symbol InFrontOfDoor in different state spaces
in a navigation task with two doors. (a) When operating in xy-space, we require
two symbols, each of which is a distribution over particular coordinates. If the
doors were located at different positions, then the distributions would need to be
relearned. (b) However, an agent-centric definition requires only one symbol that
is independent of the door’s location. We must still, however, determine which
particular door it is, which requires information specific to the current task.

Definition 2. Let OX be the set of all options defined over some state space X . That
is, each option o ∈ OX has a policy πo : X → A, an initiation set Io ⊆ X and a
termination function βo : X → [0, 1].

Using the above definition, we have that O = OS ∪ OD, where OS are problem-
space options and OD are agent-space options. All options are assumed to obey the
subgoal property in their respective state spaces. Our aim is to construct a symbolic
representation suitable for planning using both types of options.

Since we wish to learn symbols in D, a mixture of problem- and agent-space
options presents a challenge. For example, given only a current distribution over
agent-space observations, we cannot determine the probability with which a problem-
space option can be executed. This follows naturally from the property that φ is
non-injective: consider two states s, t ∈ S such that s 6= t and φ(s) = φ(t) = d ∈ D.
If s ∈ Io, but t /∈ Io, then knowledge of d alone is insufficient to determine whether
we can execute o. We therefore require additional information to disambiguate such
situations.

We can accomplish this by partitioning our agent-space options based on their
effects in S (using the same procedure described in Section 2.3.3), resulting in
options that are subgoal in both D and S. This necessitates having access to both
problem- and agent-space observations. Recall that options are partitioned to en-
sure the subgoal property holds, and so each partition defines its own unique image
distribution. If we label each partitioned option, then each label refers to a unique
distribution in S and is sufficient for disambiguating our agent-space symbols. Fig-
ure 3.4 illustrates the partitioning of an agent-space subgoal option that causes the
agent to approach the door in its field of view.
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Figure 3.4: An option GoToDoor is subgoal in D but not in xy-space, since the door
it approaches depends upon the agent’s location. However, we can partition the
option into two options, GoToDoor(1) and GoToDoor(2), which possess the subgoal
property in S. In the above image, the red and blue regions represent the two
partitions, each of which is assigned an identifier.

We can combine these partition labels with the symbol in Figure 3.3b to pro-
duce the lifted symbol InFrontOfDoor(X), where InFrontOfDoor is the name for
a distribution over D, and X is simply a partition number. Note that the only time
problem-specific information is required is in determining the values of X.

We will now show that this combination of agent-space symbols with problem-
space partition numbers provides a sufficient symbolic vocabulary for planning.
For convenience, we will assume that all options are already partitioned subgoal
options. We denote ω as an agent-space option; ω(α) as an agent-space option that
has further been partitioned in problem space with partition label α; and o(α) as
a problem-space option with Io = [α] ⊆ S. We first define a function that maps
problem-space partitions to subsequent problem-space partitions:

Definition 3. A linking function L is a function that specifies the problem-space par-
tition the agent will enter, given the current problem-space partition and executed
option. That is, L(α, o, β) = Pr(β | ω, α), where ω ∈ O, α, β ∈ Λ and Λ is the set of
problem-space partitions induced by all options.

Recall from the previous chapter that the outcome of an option execution is
given by its image Im(Z, ω). If Z is an agent-space distribution and ω an agent-
space option, then this information alone is insufficient for representing the true
next state distribution, since agent space provides only a lossy view of the world.
We will therefore model the image of an option by incorporating problem-space
partition information:

Îm(Z, ω(α);β) =
Im(Z, ω) · 1[α = β]∫
S Pr(s ∈ [α])ds
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The above operator states that if the current problem-space partition matches
the partition of the option, then the transition probabilities are exactly those under
the subgoal option. Otherwise, we cannot in fact execute the option, and so the
probability is 0. Thus we consider only starting states in [α] and renormalise to
ensure that the transition remains a proper distribution.

Theorem 1. The ability to represent the preconditions and image of each option in
agent space, together with the partitioning in S, is sufficient for determining the prob-
ability of being able to execute any probabilistic plan p from starting distribution Z.

Proof. We assume, without loss of generality, that pZ is a plan consisting of a number
of agent-space options followed by a problem-space option: pZ = {ω0(α0), . . . ,
ωn−1(αn−1), o(αn)}. We denote the initial agent- and problem-space distributions
as D0 and S0 respectively. The image of an option in agent space is specified by the
operator

Zi+1 = Îm(Zi, ωi(·);αi), with Z0 = D0.

The probability of being able to execute pZ is given by

Pr(x0 ∈ Iω0 , . . . , xn−1 ∈ Iωn−1 , sn ∈ Io(αn)),

where xi ∼ Zi and sn ∼ Pr(· | s0, ω0, . . . , ωn−1). By the Markov property, we can
write this as

Pr(sn ∈ Io(αn))

n−1∏
i=0

[Pr(xi ∈ Iωi)] .

If we can estimate the starting problem-space partition α0 and linking function
L, then we can evaluate this quantity as follows:

Pr(sn ∈ Io(αn)) = Pr(sn ∈ [αn])

= Pr(s0 ∈ [α0])

n−1∏
i=0

L(αi, ωi(αi), αi+1)

=

∫
S

Pr(s ∈ [α0])S0(s)ds×
n−1∏
i=0

L(αi, ωi(αi), αi+1),

and

Pr(xi ∈ Iωi) =

i∏
j=1

L(αj−1, ωj−1, αj)×
∫
D

Pr(xi ∈ Iωi)Zi(x, ωi(αi);αi)dx.

Thus by learning the precondition and image operators in D, partitioning the
options in problem space, and learning the links between these partitions, we can
evaluate the probability of an arbitrary plan executing.
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3.3 Generating a forward model

The previous section provided the sufficient vocabulary for learning a problem-
specific model. We now show how to build a forward model by combining agent-
space distributions and partition labels, which can be viewed as a two-step process.
The agent first learns domain-independent symbols in agent space (which are not
strictly tied to the current task), and then determines their parameters and how they
link to each other, which depends on S and thus the current task.

The first phase is equivalent to learning propositions in agent space, which are
portable because agent space is shared between SMDPs. An example of this is an
agent learning that, after passing through a door, it finds itself in a room. There
can be multiple such effects (e.g. it may land in a hallway), and we learn one
rule for each. The second phase learns the specifics of the current environment—
which doors connect to which rooms, for example. This involves learning how the
parameter of a rule’s precondition relates to the parameter of its effect.

3.4 Learning portable representations

To aid in explanation, we make use of a simple continuous task where a robot
navigates the building illustrated in Figure 3.5a. The problem space is the xy-
coordinate of the robot, while additionally the robot possesses sensors that allow
it to detect nearby walls and windows. The agent space is the output of these
egocentric sensors, observations from which are illustrated by Figures 3.5(b–d).

The robot is equipped with options to move between different regions of the
building, halting when it reaches the start or end of a corridor. It possesses the
following four options: (a) Clockwise and Anticlockwise, which move the agent
in a clockwise or anticlockwise direction respectively; (b) Outward, which moves
the agent down a corridor away from the centre of the building; and (c) Inward,
which moves it towards the centre.

We could adopt the approach of Konidaris et al. [2018] to learn an abstract
representation using transition data in S. However, that procedure generates sym-
bols that are distributions over xy-coordinates, and are thus tied directly to the
particular problem configuration. If we were to simply translate the environment
along the plane, the xy-coordinates would be completely different, and our learned
representation would be useless.

Instead, the agent proceeds to learn a symbolic representation using transition
data in D produced by its sensors. After applying the skills-to-symbols framework,
the agent identifies three portable symbols, which are exactly those illustrated by
Figures 3.5(b–d). The learned operators are listed in Table 3.1, where it is clear
that naïvely considering egocentric observations alone is insufficient for planning
purposes: the agent does not possess an option with probabilistic outcomes, but the
Inward option appears to have probabilistic effects. This is due to aliasing, where
a single option can be instantiated in different states that have the same egocentric
view.
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(a)

(b) (c) (d)

Figure 3.5: (a) A continuous navigation task where an agent can navigate between
different regions in xy-space. Walls are represented by grey lines, while the two
white bars represent windows. Arrows describe the agent’s options. (b–d) Local
observations produced by the agent’s sensors, regardless of the agent’s orientation.
We name these window-junction, dead-end and wall-junction respectively. Note
that these observations are independent of the agent’s position and building config-
uration.

Option Precondition Effect

Clockwise1 wall-junction window-junction

Clockwise2 window-junction wall-junction

Anticlockwise1 wall-junction window-junction

Anticlockwise2 window-junction wall-junction

Outward1 wall-junction dead-end

Outward2 window-junction dead-end

Inward dead-end

{
window-junction w.p. 0.5

wall-junction w.p. 0.5

Table 3.1: A list of the seven learned subgoal options, specifying their preconditions
and effects in agent space only.

As mentioned, we can correct this by re-partitioning our option using problem-
space data, labelling the subsequent partitions, and then combining these labels



3.5. GENERATING A TASK-SPECIFIC MODEL 37

with our portable symbols to generate a sound representation. Figure 3.6 annotates
the domain with labels according to their problem-space partitions, but note that
the partition numbers are completely arbitrary.

#1

#2

#3 #6#4 #5

#7

#8

Figure 3.6: Each number refers to the initiation set of an option partitioned in
problem space. For readability, we merge identical partitions. For instance, #2 refers
to the initiation sets of a single problem space partition of Outward, Clockwise and
Anticlockwise.

Generating agent-space symbols results in lifted symbols such as dead-end(X),
where dead-end is the name for a distribution over D, and X is a partition number
that must be determined on a per-task basis. Note that the only time problem-
specific information is required is to determine the values of X, which grounds the
portable symbol in the current task.

3.5 Generating a task-specific model

We now summarise our approach, which can be viewed as a two-step process. The
first phase uses the procedure illustrated in Figure 2.6 in the previous chapter to
learn portable symbolic rules using agent-space transition data only. The second
phase uses problem-space transitions to partition options in S. The partition labels
are then used as parameters to ground the previously learned portable operators in
the current task. We use these labels to learn linking functions that connect precon-
dition and effect parameters. For example, when the parameter of Anticlockwise2
is #5, then its effect should take parameter #2. Figure 3.7 illustrates this grounding
process.

These linking functions are learned by simply executing options and recording
the start and end partition labels of each transition. We use a simple count-based
approach that records the fraction of transitions from one partition label to another
for each option. Let Γ(o) be the set of problem-space partition labels for option o,
and Λ =

⋃
o∈O Γ(o) the set of all partition labels over all options. Note that each
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Data

Partition into
subgoal options

Portable symbols

Non-portable
symbols

Task 1

M
od

el

Estimate
preconditions and

e�ects

Generate abstract
forward model

Partition options
based on problem-

speci�c e�ects

Learn transitions
between partition labels

under each option

Ground portable operators
using partition labels for
preconditions and e�ects

Figure 3.7: The full process of learning portable representations from data. In green
nodes, the agent learns representations using egocentric data, while blue nodes
denote where the agent learns using problem-space data from the current task only.

label λ ∈ Λ refers to a set of initiation states [λ] ⊆ S. Our approach is as follows:

1. Given a set of agent-space subgoal options, partition them further so that each
of the partitioned options possesses the subgoal property in problem-space
S. Gather data from trajectories, and record tuples 〈s, d, o, s′, d′〉 representing
initial states in both S and D, the executed option, and the subsequent states.

2. Determine the start and end partitions of the transition. The start partition is
the singleton c = {γ | γ ∈ Γ(o), s ∈ [Γ(o)]}, while the end labels are given by the
set β = {λ | λ ∈ Λ, s′ ∈ [λ]}. In practice, we keep all states belonging to each
partition and then calculate the L2 norm to the closest states in each partition.
We select those partitions whose distance is less than some threshold.

3. Denote Lo as the linking function for option owhich stores the number of times
transitions between different partition labels occur. Increment the existing
count stored by Lo(c, β), and keep count of the number of times the entry
(o, c) has been updated.

4. Normalise the linking functions Lo by dividing the frequency counts by the
number of times the entry for c was updated. We have now learned the link
between the parameters of the precondition and effect for each option.

A combination of portable operators and partition numbers reduces planning
to a search over the space Σ × N, where Σ is the set of generated symbols. Alter-
natively (and equivalently), we can generate either a factored MDP or a PPDDL
representation [Younes and Littman 2004]. To generate the latter, we first specify
predicates for the three symbols derived in the previous sections: window-junction,
dead-end and wall-junction. We can then use a fluent (a real-valued predicate)
named partition to store the current partition number. Figure 3.8 lists an example
operator, where the effects depend on partition and the values of partition are
reflected in the labelling in Figure 3.6. The full domain description is provided in
Appendix A.1.
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(:action Outward_2
:parameters()
:precondition ((wall-junction))
:effect (and (when (= (partition) 2) (and (dead-end)

(not (wall-junction) (assign (partition) 1)))
(when (= (partition) 7) (and (dead-end)
(not (wall-junction) (assign (partition) 8)))

)
)

Figure 3.8: Generated PPDDL for the Outward option initiated at a wall-junction
node. In this instance, the linking function has recorded that transitions occur
between partitions 2 and 1, as well as between 7 and 8.

3.6 Inter-task transfer

In the above example, it is not clear why one would want to learn portable symbolic
representations—we perform symbol acquisition in D and instantiate the operators
for the given task, which requires more computation than directly learning symbols
in S. We now demonstrate the advantage of doing so by learning portable mod-
els of two different domains, both of which feature continuous state spaces and
probabilistic transition dynamics.

3.6.1 Domain descriptions

In our first domain, which we term Rod-and-Block, a rod is constrained to move
along a track. The rod can be rotated into an upward or downward position, while
a number of blocks are arranged to impede the rod’s movement. Two walls are
also placed at either end of the track. One such task configuration is illustrated by
Figure 3.9.

Figure 3.9: The Rod-and-Block domain consisting of a number of blocks and a rod
that can be rotated. This particular task consists of three obstacles that prevent the
rod from moving along the track when the rod is in either the upward or downward
position. Different tasks are characterised by different block placements.

The problem space consists of the rod’s angle and its x position along the track.
Egocentric observations return the types of objects (i.e. boxes or walls) that are in
close proximity to the rod, as well as its angle. In Figure 3.9, for example, there is a
block to the left of the rod, which has an angle of π. The high-level options given to
the agent are GoLeft, GoRight, RotateUp, and RotateDown. The first two translate
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the rod along the rail until it encounters a block or wall while maintaining its
angle. The remaining options rotate the rod into an upward or downward position,
provided it does not collide with an object. These rotations can be done in both a
clockwise and anti-clockwise direction.

Our second domain is a higher-dimensional video game known as the Treasure
Game [Konidaris et al. 2015], where an agent navigates a maze in search of treasure.
This domain contains ladders and doors which impede the agent. Some doors can
be opened and closed with levers, while others require a key to unlock. Figure 3.10
illustrates one level of the game.

Figure 3.10: The layout of a single Treasure Game level.3 Note that in order to
retrieve the treasure, the agent must execute a high-level plan, which in practice
consists of hundreds of low-level actions. First, it must climb down the ladder and
pull the lever to open the door. After collecting the key, it must use it to unlock the
bottom-most door. Only then is the treasure accessible.

The problem space consists of continuous variables denoting the xy-position of
the agent, key and treasure, the angle of the levers (which determines whether a
door is open) and the state of the lock. We construct the agent space by first tiling
the screen into cells.4 We then produce a vector of length 9, the elements of which
are the type of sprites in each of the eight adjacent neighbouring cells centred on
the agent. This represents the agent’s local view of its environment. We also append
the “bag” of items carried by the agent, which could be the key or the treasure, to
its local view. The agent possesses the following high-level options:

• GoLeft and GoRight: the agent moves left or right continuously until it reaches
a point of interest, such as a ladder, a lever, a wall or a ledge.

• UpLadder and DownLadder: the agent climbs up and down a ladder. These
skills can only be executed when the agent is standing below or above a
ladder respectively.

4In both domains we defined the agent space to be a local view about the agent. This does not
imply that agent space should always be defined in this manner—the choice of agent space depends
on the domain, but is directly specified by an embodied agent’s sensors.
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• FallLeft and FallRight: the agent jumps down from a ledge to the ground
below.

• JumpLeft and JumpRight: the agent jumps up to a higher ledge from below.
Occasionally the agent will not jump far enough and will fall to the ground.

• Interact: the agent pulls a lever when standing near one, which in turn opens
or closes a door. The skill also unlocks a padlock when the agent is nearby
and holding a key.

The outcome of options are stochastic—for jumping skills, the agent will sometimes
fail to reach its target and fall to the ground, while other navigation skills have
termination conditions that vary by a few pixels.

3.6.2 Learning portable representations

For both domains we learn a symbolic representation using agent-space transitions
only, following the same procedure described in Section 2.3. We list the hyperpa-
rameters for these various steps in Tables A.1 and A.2 in the appendix. First, we
collect data from a task by executing options uniformly at random and scaling the
observations to be in the range [0, 1]. We record state transition data and which
options could be executed at each state. We then partition options following the pro-
cedure in Section 2.3.3 using the DBSCAN clustering algorithm [Ester et al. 1996],
which approximately preserves the subgoal property.

Next, the agent learns a precondition classifier for each of these approximately
partitioned options using an SVM with Platt scaling [Cortes and Vapnik 1995; Platt
1999]. We use the feature selection procedure in Figure 2.8 to determine which
state variables are relevant to each option’s precondition. We first compute the
accuracy of the SVM applied to all variables, performing a grid search to find the best
hyperparameters for the SVM using 3-fold cross validation. Then we check the effect
of removing each state variable in turn, recording those that cause the accuracy to
decrease. Finally we check whether adding each of the state variables back improves
the SVM’s accuracy, in which case they are kept too. Having determined the features,
we fit a probabilistic SVM to the relevant state variables’ data.

A kernel density estimator [Rosenblatt 1956; Parzen 1962] with Gaussian kernel
is next used to estimate the effect of each partitioned option. We learn distributions
over only the variables in the option’s mask (i.e. those variables modified by the
option). We use a grid search with 3-fold cross validation to find the best bandwidth
hyperparameter for each estimator.

For each partitioned option, we now have a classifier and set of effect distribu-
tions. We finally use the approach outlined in Figure 2.9 to generate the PPDDL rep-
resentations. Examples of learned operators are illustrated by Figures 3.11 and 3.12,
while more examples for both domains can be found in Appendices A.4 and A.5.
These operators can be reused for new tasks—we need not relearn them when we
encounter a new task, although we can always use data from a new task to improve
them. We contrast this with a non-portable operator learned by the framework of
Konidaris et al. [2018], which is illustrated by Figure 3.13.
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(a) symbol_18 (b) symbol_11 (c) symbol_12

(:action Up Clockwise_1
:parameters()
:precondition (and (symbol_18) (symbol_11))
:effect (and (symbol_12) (not (symbol_18)))

)
(d)

Figure 3.11: (a–b) The precondition for RotateUpClockwise1, which states that in
order to execute the option, the rod must be left of a wall facing down. The precon-
dition is a conjunction of these two symbols—the first (symbol_18) is a distribution
over the rod’s angle only, while the second (symbol_11) is a distribution over its
position relative to the wall. (c) The effect of the option, with the rod adjacent to
the wall in an upward position. (d) PPDDL description of the above operator, which
is used for planning.

(a) symbol_34 (b) symbol_32 (c) symbol_9 (d) symbol_15 (e) symbol_18

(:action interact_option-partition-2-70
:parameters ()
:precondition (and (notfailed) (symbol_34) (symbol_32))
:effect (and (symbol_9) (symbol_15) (symbol_18)

(not (symbol_32)) (not (symbol_34)))
)

(f)

Figure 3.12: (a–b) The precondition for an Interact option, which states that
the agent must be standing at a closed lock (symbol_34) and must possess the
key (symbol_32). (c–e) After executing the option, the agent no longer has the
key (symbol_9), the door to its right is open (symbol_15) and the lock is open
(symbol_18).
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(a) symbol_16 (b) symbol_24

(c) symbol_9

(:action down_ladder-partition-2
:parameters()
:precondition (and (symbol_16)

(symbol_24))
:effect (and (symbol_9)

(not (symbol_24)))
)

(d)

Figure 3.13: (a–b) The precondition of a non-portable operator for climbing down a
ladder. In order to execute the option, the agent must be at a particular xy-location
(symbol_16 and symbol_24 respectively). (c) The effect of the option, where only
the y-position of the agent has changed (symbol_9). (d) PPDDL description of
the above operator, which is used for planning. Note that because the operator’s
preconditions and effects depend on the agent’s xy-position, it is unlikely to be
applicable in a new task.

3.6.3 Transfer experiments

Once we have learned sufficiently accurate portable operators, they need only be
instantiated for the given task by learning the linking between partitions. This
requires far fewer samples than classification and density estimation over the state
space S, which is required to learn a task-specific representation.

To illustrate this, we construct a set of ten tasks ρ1, . . . , ρ10 for each domain. For
the Rod-and-Block domain, we randomly select the number of blocks and then ran-
domly position them along the track. Because tasks have different configurations,
constructing a symbolic representation in problem space requires relearning a model
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of each task from scratch. However, when constructing an agent-centric represen-
tation, symbols learned in one task can immediately be used in subsequent tasks.
We gather k transition samples from each task by executing options uniformly at
random, and use these samples to build both task-specific and egocentric (portable)
models.

In order to evaluate a model’s accuracy, we randomly select 100 goal states for
each task, as well as the optimal plans for reaching each from some start state. Each
plan consists of two options, and we denote a single plan by the tuple 〈s1, o1, s2, o2〉.
LetMρi

k be the model consisting of high-level preconditions and effects constructed
for task ρi using k samples. We calculate the likelihood of each optimal plan under
the model: Pr(s1 ∈ Io1 | M

ρi
k ) × Pr(s′ ∈ Io2 | M

ρi
k ), where s′ ∼ Eff(o1). We build

models using increasing numbers of samples in steps of 250, until the likelihood
averaged over all plans is greater than some acceptable threshold (we use a value
of 0.75), at which point we continue to the next task. The results are given by
Figure 3.14.

Figure 3.14: Results for the Rod-and-Block domain. Cumulative number of samples
required to learn sufficiently accurate models as a function of the number of tasks
encountered. Results are averaged over 100 random permutations of the task order.
Standard errors are specified by the shaded areas. The agent requires about 600
samples to learn a task-specific model of each Rod-and-Block configuration. Con-
versely, when the agent learns and reuses portable representations, the number of
samples required decreases to roughly 330 after only two tasks.
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We repeat this process for the Treasure Game by constructing ten different levels,5

and investigate the sample efficiency of our approach. An example of a portable
operator, as well as its problem-space partitioning, is given by Figure 3.15, while
the number of samples required to learn a good model of all 10 levels is given by
Figure 3.16.

(a) (b)

(:action DownLadder_1
:parameters()
:precondition (and (symbol_80))
:effect (and (symbol_622) (not symbol_80))

)
(c)

Figure 3.15: (a) The precondition (top) and positive effect (bottom) for the
DownLadder operator, which states that in order to execute the option, the agent
must be standing above the ladder. As a result, the agent finds itself standing on
the ground below the ladder. The black spaces refer to unchanged low-level state
variables. (b) Three problem-space partitions for the DownLadder operator. Each
of the circled partitions is assigned a unique label and combined with the portable
rule in (a) to produce a grounded operator. (c) The PPDDL representation of the
operator specified in (a).

3.6.4 Discussion

Naturally, learning problem-space symbols results in a sample complexity that scales
linearly with the number of tasks, since we must learn a model for each new task
from scratch. Conversely, by learning and reusing portable symbols, we can reduce
the number of samples we require as we encounter more tasks, leading to a sublinear
increase. The agent initially requires about 600 samples to learn a task-specific
model of each Rod-and-Block configuration, which decreases to roughly 330 after

5We made no effort to design tasks in a curriculum-like fashion. The levels are given in Ap-
pendix A.6.
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Figure 3.16: Results for the Treasure Game domain. Cumulative number of samples
required to learn sufficiently accurate models as a function of the number of tasks
encountered. Results are averaged over 100 random permutations of the task order.
Standard errors are specified by the shaded areas. The agent requires 1600 samples
for each level when learning task-specific representations. However, after learning
portable representations in four tasks, the agent requires only 900 samples to learn
a model of the next task, and about 700 after seven tasks.

only two tasks. Similarly, 1600 samples are initially needed for each level of the
Treasure Game, but only 900 after four levels, and about 700 after seven.

Intuitively one might expect the number of samples to plateau as the agent
observes more tasks. That we do not is as a result of the simple exploration policy
used here—the agent must observe all relevant partitions at least once, and selecting
actions uniformly at random is naturally suboptimal. Nonetheless, we still require
far fewer samples to learn the links between partitions than learning a full model
from scratch.

In both of our experiments, we construct a set of 10 domain configurations and
then test our approach by sampling 100 goals for each, for a total of 1000 tasks
per domain. Our model-based approach learns 10 forward models, and then uses
them to plan a sequence of actions to achieve each goal. By contrast, a model-free
approach would be required to learn all 1000 policies, since every goal defines
another unique SMDP that must be solved. Furthermore, it is unclear how to extend
these techniques to deal with tasks with different state space dimensionalities.

Our approach treats the problem as a two-step procedure: we first learn repre-
sentations using only D, and then use only S to ground the representations to our
current task. A naïve alternative would be to simply combine S and D and learn
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representations over the combined state space. However, doing so would result in
models that are not wholly transferable. For example, in the Treasure Game, the
agent would learn that to climb down a ladder, it must be standing on top of the
ladder and at some specific xy-position. In a new task, the agent would recognise
that it is standing on a ladder, but its coordinates would likely be different and so
the precondition would not apply.

We depart from most model-based approaches in that we rely on the portable
observation space D for transfer. This raises questions regarding how difficult it is
to specify D, and the sensitivity of the egocentric observation space to the resulting
representations. Fortunately, it is not too hard to provide an egocentric view of
the agent: as mentioned, for many real-world problems with embodied agents, this
amounts to the agent carrying its own sensors, while for simulated problems (such
as those presented here) one can simply centre the input observation on the agent’s
reference frame. We note, too, that there has been work on autonomously discover-
ing portable observation spaces [Snel and Whiteson 2010], but this is orthogonal to
our work.

Finally, we remark that transfer will naturally depend on, and be sensitive to,
the characteristics of D. The question of sensitivity has been extensively studied
in the context of learning a single policy [Konidaris et al. 2012, Section 4.3.4],
where results indicate that policy learning erodes gradually with the usefulness of
D. Practically, this is a concern for learning the option policies, and so we will only
state that if D is sufficient to learn the options (which we assume has already taken
place), then it is sufficient to learn the corresponding representations.

3.7 Related work

Several methods in the fields of meta-learning and lifelong learning focus on discov-
ering an internal or latent representation that generalises across a distribution of
tasks [Jonschkowski and Brock 2015; Higgins et al. 2017; Kirkpatrick et al. 2017;
Finn et al. 2017; de Bruin et al. 2018]. When presented with a new task, agents
subsequently learn a policy based on its internal representation in a model-free
manner. In contrast, our approach learns an explicit model which supports forward
planning, and is independent of the task or reward structure.

Relocatable action models [Sherstov and Stone 2005; Leffler et al. 2007] assume
states can be aggregated into “types” which determine the transition behaviour.
State-independent representations of the outcomes from different types are learned
and improve the learning rate in a single task. However, the mapping from lossy
observations to states is provided to the agent, since learning this mapping is as
difficult as learning the full MDP.

More recently, Zhang et al. [2018] propose a method for constructing portable
representations for planning, but the mapping to abstract states is provided, and
planning is restricted solely to agent space. Similarly, Srinivas et al. [2018] learn a
goal-directed latent space in which planning can occur. However, the goal must be
known upfront and be expressible in the latent space; both are therefore unsuited
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to tasks with goals defined in problem space.

Finally, certain approaches have extended or adapted the skills-to-symbols frame-
work. Ames et al. [2018] learn PPDDL operators for parameterised actions by
intelligently discretising the parameters. The resulting representation is fully propo-
sitional (even if the actions are not) and cannot be transferred across tasks. Pacheck
et al. [2019] leverage the symbol-learning framework to construct symbols formu-
lated using linear temporal logic, and then automatically learn new skills if the
resulting plan fails. However, the same dynamics are shared across tasks. Gopalan
et al. [2020] cluster effects using agent-centric observations, resulting in portable
symbols that can be transferred to new tasks. These symbols (clusters) are then
sequenced by incorporating natural language instructions, which mitigates the alias-
ing caused by partial observability. In contrast, we use the problem-specific partition
labels from the state space itself to overcome this issue.

3.8 Summary

We have introduced a framework for autonomously learning portable representa-
tions for planning. Previous work [Konidaris et al. 2018; Ames et al. 2018] has
shown how to learn a high-level representation suitable for planning, but these rep-
resentations are directly tied to the task in which they were learned. Ultimately, this
is a fatal flaw—should any of the environments change even slightly, the entire repre-
sentation would need to be relearned from scratch. Conversely, we demonstrate that
an agent is able to learn a portable representation given only data gathered from
option execution. We also show that the addition of particular problem-specific in-
formation results in a representation that is provably sufficient for learning a sound
representation for planning, which allows agents to leverage past experience in
solving new unseen tasks.



Chapter 4

Object-Centric Representations

In the previous chapter, we used agent-centric observations to construct portable
symbolic representations. One downside to this approach is that an agent will
generally only have a partial view of its environment. If there are state variables
that the agent cannot always observe, then these must be included in problem space,
which is not transferable. For example, consider a domain consisting of several
objects that must be manipulated. There is no issue if all objects are in full view of
the agent’s sensors, such as table-top manipulation tasks. In this case, the objects’
states are contained in agent space and can be transferred to new tasks. However,
if the agent cannot observe all of the objects simultaneously (for instance, if the
objects are spatially distant), then their states must be included in our problem
space definition, hampering transfer.

In this chapter, we tackle this problem by incorporating additional structure—
namely, by assuming that the world consists of objects, and that similar objects
are common amongst tasks. This assumption can substantially improve learning
efficiency, because an object-centric model can be reused wherever that same object
appears (within the same task, or across different tasks) and can also be generalised
across objects that behave similarly—object types.

We assume that an agent is able to individuate the objects in its environment
and possesses a set of skills that can be applied to them. Using these assumptions,
we propose a framework for building portable object-centric abstractions given only
the data collected by executing high-level skills. These abstractions specify both
the abstract object attributes that support high-level planning and an object-relative
lifted transition model. We then show how to integrate problem-specific information
to instantiate these representations in a new task. Our approach reduces the samples
required to learn a new task by allowing the agent to avoid relearning the dynamics
of previously seen objects.

We demonstrate our approach on a Blocks World domain, and then apply it
to a series of hard Minecraft tasks where an agent autonomously learns a PPDDL
representation of a high-dimensional task from raw pixel input. Our results show
that an agent can leverage these portable abstractions to learn a representation of
new Minecraft tasks using a diminishing number of samples, allowing it to quickly
construct plans consisting of hundreds of low-level actions.
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4.1 Learning object-centric representations

In the previous chapter, we assumed the existence of an agent equipped with sensors,
which led to the idea of agent space. Since we are now assuming the existence of
objects, a natural extension is to introduce the notion of object space. We adopt the
object-centric formulation from Ugur and Piater [2015a]: in a task with n objects,
the state is represented by the set {fa, f1, f2, . . . , fn}, where fa is a vector of the
agent’s features and fi is a vector of features particular to object i. Note that the
feature vector describing each object can itself be arbitrarily complex, such as an
image or voxel grid—in this work we use pixels. Such a representation is common in
robotics, where each object is often isolated from the environment and represented
as a point cloud or voxelised occupancy grid.

The object-space representation assumes the state space has already been fac-
tored into its constituent objects. Practically, this means that the agent is aware that
the world consists of objects, but is unaware of what the objects are, or whether
there are multiple instantiations of the same object present. It is also easy to see that
different tasks will likely have differing numbers of objects with potentially arbitrary
ordering; any learned abstract representation should be agnostic to this.

We now introduce an object-centric generalisation of a learned symbolic repre-
sentation that admits transfer in tasks when the state-space representation consists
of features centred on objects in the environment. We summarise our approach in
Figure 4.1, and describe the details below.1

Current task
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subgoal options
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Figure 4.1: Learning lifted representations from data. Blue nodes represent problem-
specific representations, while green nodes are abstractions that can be transferred
between tasks.

1Pseudocode describing our entire approach to building a typed, object-centric PPDDL representa-
tion can be found in Appendix B.1.
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4.1.1 Generating a propositional model (Steps 1–2)

We first follow the same procedure outlined in Section 2.3.3 to construct a non-
portable, propositional PPDDL representation of a single task. Since object space
is already factored into the constituent objects, each proposition in the resulting
vocabulary will refer to a distribution over a particular object’s state.

4.1.2 Generating a typed model (Steps 3–4)

At this point, there is no opportunity for transfer (both within the task and between
different tasks), because each object is treated as unique and is tied to its exact index
in the state vector. To overcome this, we propose to estimate object types using the
PPDDL preconditions and effects learned in the previous section.

Definition 4. Assume that option o has been partitioned into n subgoal options
o(1), . . . , o(n). Object i’s profile under option o is denoted by the set

Profile(i, o) =
{
{Preo(1)i , Eo(1)i }, . . . , {Preo(n)i , Eo(n)i }

}
,

where Preo(k)i is the distribution over object i’s states present in the precondition for
partition k, and Eo(k)i is object i’s effect distribution.2

Definition 5. Two objects i and j are option-equivalent if, for a given option o,
Profile(i, o) = Profile(j, o). Furthermore, two objects are equivalent if they are option-
equivalent for every o in O.

The above definition implies that objects are equivalent if one object can be
substituted for another while preserving every operator’s abstract preconditions
and effects. Such objects can be grouped into the same object type, since they are
functionally indistinguishable for the purposes of planning. In practice, however, we
can use a weaker condition to approximate object types. Since an object-centric skill
will usually modify only the object being acted upon, and because we have subgoal
options that do not depend on the initial state, we can take a similar approach to
Ugur and Piater [2015a] and group objects by effects only:

Definition 6. Assume that option o has been partitioned into n subgoal options
o(1), . . . , o(n). Object i’s effect profile under option o is denoted by the set

EffectProfile(i, o) =
{
Eo(1)i , . . . , Eo(n)i

}
,

where Eo(k)i is object i’s effect distribution. Two objects i and j are effect-equivalent if
EffectProfile(i, o) = EffectProfile(j, o) for every o in O.

The notion of effect equivalence was first proposed by Şahin et al. [2007]. Such
an approach assumes that an object’s type depends on both the intrisic properties
of the object itself, as well as the agent’s endowed behaviours [Chemero 2003].

2These precondition and effect distributions can be null where appropriate.
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However, this definition does not take into account the importance of preconditions,
nor does it consider interactions involving multiple objects. Nonetheless, the ap-
proach will prove sufficient for our purposes (see Section 4.2), and we leave a more
complete definition to future work.

The pseudocode in Figure 4.2 demonstrates how the effect profile for each object
can be computed using the propositional representation. Having done so, the agent
determines whether objects i and j are similar (using an appropriate measure of
distribution similarity) and, if so, merges them into the same object type. Proposi-
tions representing distributions over individual objects can now be replaced with
predicates that are parameterised by types (see Figure 4.3).

1: procedure COMPUTEEFFECTS

2: Given: object i , option o, PPDDL operators Operators
3: . Get only the operators that model option o
4: Operators ← {operator | operator ∈ Operators,REFERSTO(operator , o)}
5: Effects ← ∅
6: for each {·, effect} ∈ Operators do
7: . Extract the effect propositions that refer to distributions over object i
8: OperatorEffect ← {prop | prop ∈ effect ,REFERSTO(prop, i)}
9: Effects ← Effects ∪ {OperatorEffect}

10: end for
11: return Effects
12: end procedure

Figure 4.2: Pseudocode for computing the effect distributions under an option for
a given object. Note that the effect profile for each object is represented as an
unordered set of distributions.

Example 4. Consider a domain illustrated by Figure 4.4 with three objects—two iden-
tical doors and a block—and an agent with a single option to open a door. Since the
option can affect both of the doors, it would first be partitioned into two subgoal options
(one for each door). Given this, the effect profile for the first and second doors would be
the sets {open1,∅} and {∅, open2} respectively. The effect profile for the block, which
cannot be acted upon, would simply be {∅,∅}. If the two distributions open1 and
open2 are similar enough (determined using an appropriate similarity metric), then
the agent can conclude that the sets representing the two doors’ effects are equal. The
agent can then merge the two door objects into a single type and replace the open1
and open2 propositions with a single open predicate parameterised by objects of a new
type—which might be called door.
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1: procedure MERGE

2: Given: objects M, type T , PPDDL operators Operators, all propositions
Propositions

3: . Find the first object matching the type
4: archetype ← ∅
5: for each object ∈M do
6: if ISTYPE(object ,T ) then
7: archetype ← object
8: break
9: end if

10: end for
11: . Remove propositions with objects of type T that are not the archetype
12: Removed ← {prop | prop ∈ Propositions, ISTYPE(prop,T ),

¬REFERSTO(prop, archetype)}
13: . Keep operators that do not contain the removed propositions
14: Operators ← {op | ∀op ∈ Operators,Removed ∩ op = ∅}
15: return Operators, Propositions \ Removed
16: end procedure

Figure 4.3: Pseudocode for lifting propositions to typed predicates. The procedure
takes in an object type and identifies one object instance of that type. Distributions
over that object’s state are kept and treated as parameterised predicates, while
propositions and operators that refer to all other objects of that type are removed.

d2d1

b1

Figure 4.4: A domain with two doors, d1 and d2, and a block b1. The agent can
interact with the doors, but not the block.

The manner in which we group objects into types is an instance of effect equiv-
alence, where entities are divided into equivalence classes based on the effects
they undergo [Şahin et al. 2007]. Such an approach assumes that an object’s type
depends on both the intrisic properties of the object itself, as well as the agent’s
endowed behaviours [Chemero 2003]. However, this definition does not take into
account the importance of preconditions, nor does it consider interactions involving
multiple objects. Furthermore, although they are critical issues, we do not con-
sider the question of what constitutes an object or complex interactions involving
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deformable objects. Nonetheless, the approach will prove sufficient for our purposes
(see Section 4.2), and we leave a more complete definition to future work.

4.1.3 Problem-specific instantiation (Step 5)

If the task dynamics are completely described by the state of each object, as is the
case in object-oriented MDPs [Diuk et al. 2008], then our typed representation is
sufficient for planning. However, in many domains the object-centric state space is
not Markov. For example, in a task where only a particular key opens a specific door,
the state of the objects alone is insufficient to describe dynamics—the identities of
the key and door are also necessary. As in the previous chapter, we can augment the
object-centric observation space with problem-specific, allocentric information to
preserve the Markov property. To keep our notation consistent, we denote D as the
object-centric observation space, while S represents the space of problem-specific
state variables.

For a given partioned option, the agent repeats the partitioning procedure, but
this time using only problem-specific state data. This forms n partitioned options
that are subgoal in both D and S. Denote κi and λi for i ∈ {1, . . . , n} as the sets
of start and end states for each of these newly partitioned options. The agent now
grounds the operator by appending each κi and λi to the precondition and effect,
treating each κi and λi as problem-specific propositions. Finally, these propositions
must be linked with the grounded objects being acted upon. The agent therefore
adds a precondition predicate conditioned on the identity of the grounded objects
(see Figure 4.5).

Parameters:

Preconditions:

E�ects:

Type #1 
initial state

Operator
parameter #1

Operator
parameter #2

Type #2 
initial state

Object #1
identity

Object #2
identity

Problem-speci�c
initial state

Type #1
e�ect state

Type #2
e�ect state

Problem-speci�c
e�ect state Typed operator

Figure 4.5: An example of a typed operator “template” that accepts two parameters.
In order to instantiate the operator in the current task, we must determine the
identity of the objects and include them as preconditions (orange and red nodes).
We must also include any problem-specific symbols in the precondition and effect,
much as we did in Chapter 3. The green nodes represent the portable aspects of the
operator that can be transferred to new tasks.
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4.2 Experiments

We first demonstrate our framework on the classic Blocks World domain (Sec-
tion 4.2.1). While the high-level operators and predicates describing the domain
are usually given, we show how such a representation can be learned autonomously
from scratch. We then demonstrate that our method scales to significantly harder
problems by applying it to a high-dimensional Minecraft task (Section 4.2.2).3 Fi-
nally, we investigate the transferability of the learned abstractions by transferring
them to additional procedurally generated Minecraft tasks (Section 4.2.3).

4.2.1 Learning a representation of Blocks World

The Blocks World domain consists of a number of blocks which can be stacked on
top of one another by an agent (hand). The agent possesses options that allow it to
pick up a block (Pick), put a block back on the table (Put), and stack one block on
another (Stack). Blocks cannot be picked up if they are covered or if the hand is
occupied, and can only be put down or stacked if already gripped. We consider the
task consisting of three blocks A, B and C, where each block has attributes describing
whether there is nothing, another block, or a table directly above or below it. This
representation allows us to determine whether a given block is on a table, on another
block, or grasped in the hand, and similarly whether another block has been stacked
upon it. The hand is characterised by a single boolean indicating whether it is
holding a block. Thus a state is described by {fH , fA, fB, fC}, corresponding to the
hand and blocks’ features respectively. Note that the agent is initially unaware that
the blocks are identical and interchangeable.

Generating a Propositional Model (Steps 1–2) Using the approach outlined in
Section 4.1.1, the agent partitions the options using transition data collected from
the environment. This results in a total of 15 partitions of the Pick option, 3
partitions of the Put option, and 12 partitions of the Stack option, described by
Table 4.1. It then fits a classifier to each partition’s initiation states, and a density
estimator to its terminating states. Finally, the agent generates a propositional
PPDDL using these learned preconditions and effects. Figure 4.6 illustrates a learned
propositional operator, while the full PPDDL, learned entirely from data, can be
found in Appendix B.2.

Generating a Lifted Typed Model (Steps 3–4) Using the effects from the propo-
sitional representation, the agent determines that objects A, B and C all possess
the same effect profiles for all options and so can be grouped into a single type,
while the hand belongs to its own type. The agent next lifts its representation by
replacing the learned propositions with predicates parameterised by the above types.
For example, after generating the model, there are three propositions: AOnTable,

3The hyperparameters for the entire procedure are listed in Appendix B.4.
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Option # partitions Description of start
states

Description of end
states

PickOffTable(X) 3 X is on the table,
X is clear, and the
hand is empty.

X is grasped in the
hand.

PickOffSingleBlock(X, Y) 6 X is on block Y
which is on the ta-
ble, X is clear, and
the hand is empty.

X is grasped in
the hand and Y is
clear and on the
table.

PickOffDoubleBlock(X, Y) 6 X is on block Y
which is on another
block, X is clear,
and the hand is
empty.

X is grasped in
the hand and Y is
clear and on an-
other block.

StackOnSingleBlock(X, Y) 6 X is in the hand,
and Y is clear and
on the table.

X is on block Y
which is on the ta-
ble, and the hand
is empty.

StackOnDoubleBlock(X, Y) 6 X is in the hand,
and Y is clear and
on another block.

X is on block Y
which is on an-
other block, and
the hand is empty.

Put(X) 3 X is grasped in the
hand.

X is on the table
and the hand is
empty.

Table 4.1: Descriptions of the different option partitions. The description of start
and end states includes only the relevant information.

BOnTable, and COnTable.4 Since these are distributions over objects determined to
be the same type, the agent replaces them all with a single predicate OnTable(X),
which accepts block objects. As a result, the agent reduces the number of operators
from 30 to 6, resulting in a more compact representation with a smaller branching
factor. Figure 4.7 illustrates how the propositional operator in Figure 4.6 has been
lifted to describe picking any block X off any block Y.

4For readability, we have given each symbol a semantically meaningful name. However, they are
generated by the agent autonomously and so in practice would have generic names such as symbol0
and symbol1.
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(a) symbol_10 (b) symbol_15 (c) symbol_6

(d) symbol_3 (e) symbol_4 (f) symbol_1

(:action Pick-partition-10
:parameters()
:precondition (and (symbol_10) (symbol_15) (symbol_6))
:effect (and (symbol_3) (symbol_4) (symbol_1)

(not symbol_6) (not symbol_10) (not symbol_15))
)

(g) Propositional PPDDL operator for one of the Pick option partitions.

Figure 4.6: The learned propositional operator for a Pick action describing picking
B off C. To execute the action, the hand must be empty (symbol_10), C must be
on the table and covered by a block (symbol_15), and B must be on top of a block
and uncovered (symbol_6). After execution, B is in the hand (symbol_3), C is on
the table and clear (symbol_4), and the hand is full (symbol_1). We visualise each
propositional symbol by sampling from it, and randomly sampling the remaining
independent state variables (since each symbol is a distribution over a subset of
state variables). The transparency is due to the averaging over the independent
state variables. Note that we must learn one operator for every pair of blocks.

4.2.2 Learning a representation of a Minecraft task

In the above example, objects were represented using pre-specified features and
were sufficient to describe the environment dynamics. However, our approach is
capable of scaling beyond this simple case and learning these features from pixels.
We now demonstrate this in a Minecraft task [Johnson et al. 2016] consisting of five
rooms with various items positioned throughout. Rooms are connected with either
regular doors which can be opened by direct interaction, or puzzle doors which
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(a) symbol_4 (b) symbol_5 (c) symbol_2

(d) symbol_0 (e) symbol_3 (f) symbol_1

(:action Pick-partition-10
:parameters (?w - type0 ?x - type1 ?y - type1)
:precondition (and (symbol_4 ?w) (symbol_5 ?x) (symbol_2 ?y))
:effect (and (symbol_0 ?y) (symbol_3 ?x) (symbol_1 ?w)

(not (symbol_2 ?y)) (not (symbol_4 ?w)) (not (symbol_5 ?x)))
)

(g) PPDDL operator for a Pick action.

Figure 4.7: The learned lifted operator for a Pick action describing picking a block
off another. In order to pick up block Y, it must be on block X which itself is on the
table, and the hand must be empty. As a result, the hand is not empty, Y is now in
the hand, and X is on the table and clear. type0 refers to the “hand” type, while
type1 refers to the “block” type.

require the agent to pull a lever to open. The world is described by the state of each
of the objects (given directly by each object’s appearance as a 600×800 RGB image),
the agent’s view and current inventory. Figure 4.8 illustrates the state of each object
in the world at the beginning of one of the tasks.

The agent is provided with the following high-level skills:

(i) WalkToItem: the agent will approach an item if it is in the same room.

(ii) AttackBlock: the agent will break a block, provided it is near the block and
holding the pickaxe.

(iii) PickupItem: the agent will collect the item if it is standing in front of it.

(iv) WalkToNorthDoor: the agent will approach the northern door in the current
room.

(v) WalkToSouthDoor: the agent will approach the southern door in the current
room.

(vi) WalkThroughDoor: the agent will walk through an open door to the next room.

(vii) CraftItem: the agent will create a new clock from ingredients in its inventory,
provided it is near the crafting table.
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Figure 4.8: The state of each object in the world at the start of the task. From left
to right the images represent the agent’s point of view, the four doors, the pickaxe,
the chest, and the redstone and gold blocks. The inventory is not shown here.

(viii) OpenChest: the agent will open the chest, provided it is standing in front of it
and possesses the clock.

(ix) ToggleDoor: the agent will open or close the door directly in front of it.

Execution is stochastic—opening doors occasionally fails, and the navigation skills
are noisy in their execution.

To solve the task, an agent must first collect the pickaxe, use it to break the
gold and redstone blocks and collect the resulting items. It must then navigate to
the crafting table, where it uses the collected items to first craft gold ingots and
subsequently a clock. Finally, it must navigate to the chest and open it to complete
the task. This requires a long-horizon, hierarchical plan—the shortest plan that
solves the task consists of 29 options consisting of hundreds of low-level continuous
actions.

Generating a propositional model (Steps 1–2)

To simplify learning, we first apply a series of preprocessing steps to reduce the
dimensionality of the state space. Images are first downscaled to 160 × 120 and
then converted to greyscale. Following the methodology of prior work [Konidaris
et al. 2018], we apply principal component analysis [Pearson 1901] to a batch of
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images collected from the different tasks and keep the top 40 principal components.5

Consequently, each object is represented as a vector of length 40, while the inventory
is simply a one-hot encoded vector of length 5.

We collect data by executing options uniformly at random. We record state
transition data and the options that could be executed at each state. Options are
partitioned using the DBSCAN clustering algorithm [Ester et al. 1996] to cluster the
terminating states of each into separate effects. For each pair of partitioned options,
we check whether there is significant overlap in their initiating states (again using
DBSCAN). If the initiating states overlap significantly, the partitions are merged to
account for probabilistic effects.

For each of these approximately partitioned options, the agent learns a precon-
dition classifier using an SVM [Cortes and Vapnik 1995] with Platt scaling [Platt
1999]. We use states from the partitioned option as positive examples, and all other
states as negative ones. A simple feature selection procedure then determines which
objects are relevant to the option’s precondition. We first compute the accuracy of
the SVM applied to the objects in the option’s mask, performing a grid search to find
the best hyperparameters for the SVM using 3-fold cross validation. Then, for every
other object in the environment, we compute the SVM’s accuracy when that object’s
features are added to the SVM. Any object that increases the SVM accuracy is kept.
Pseudocode for this procedure is outlined in Figure 4.9.

Having determined the relevant objects, we fit a probabilistic SVM to these ob-
jects’ data. Note that we learn a single SVM for a given precondition. Thus if the
precondition includes two objects, then the SVM will learn a classifier over both
objects’ features jointly.

A kernel density estimator (KDE) [Rosenblatt 1956] with Gaussian kernel is used
to estimate the effect of each partitioned option. We learn distributions over only the
objects affected by the option, learning one KDE for each object. Again, a grid search
with 3-fold cross validation is used to find the best bandwidth hyperparameter for
each estimator. We fit a single KDE to each object separately, since the state space
has already been factored into these objects. Each of these KDEs is an abstract
symbol in our propositional PPDDL representation, which is then used to construct
the propositional PPDDL representation as previously.

Generating a typed model (Steps 3–4)

Using the effects from the propositional representation, the agent next groups ob-
jects into types based on their effect profiles. This is made easier because certain
objects do not undergo effects under certain options. For example, the chest cannot
be toggled while a door can, and thus it is immediately clear that they are not of
the same type. To determine the type of each object, we first assume that they all

5Empirical experimentation found that 40 components were sufficient to distinguish between open
and closed doors.



4.2. EXPERIMENTS 61

1: procedure FEATURESELECTION

2: Given: affected objects Mask , positive start states p, negative start states n,
set of objectsM

3: . Fit a classifier over only objects in the mask
4: classifier ← FITCLASSIFIER(start ,negative,Mask)
5: initScore ← classifier .score
6: Keep ← ∅
7: for each object ∈M \Mask do
8: classifier ← FITCLASSIFIER(start ,negative,Mask ∪ {object})
9: if classifier .score > initScore then

10: . Keep the object if it improves the score
11: Keep ← Keep ∪ {object}
12: end if
13: end for
14: return Mask ∪Keep
15: end procedure

Figure 4.9: Pseudocode for a simple feature selection procedure. To determine
which objects should form part of the precondition, we fit a classifier to objects in
the option’s mask. We then iterate through the remaining objects, adding them to
the classifier to determine if they improve the score. Those that result in improved
accuracy are kept.

belong to their own type. For each object, we compute its effect profile by extracting
the effect propositions that occur under each option (see Figure 4.2).

For every pair of objects, we then determine whether the effect profiles are simi-
lar by checking whether the KL-divergence is less than a certain threshold. Having
determined the types, we replace all similar propositions with a predicate parame-
terised by an object of that type.

Problem-specific instantiation (Step 5)

The agent now has a representation whose operators can be transferred between
tasks. However, unlike Blocks World, a complication arises because the object-
centric state space is not Markov. For example, a state where all the doors are closed
and the agent is in front of the first door is indistinguishable from a state where the
agent is in front of the second door. As described in Section 4.1.3, the agent must
ground the representations in the current task by incorporating additional problem-
specific state variables to preserve the Markov property. These state variables are
fixed across the family of MDPs; in this case, they are the agent’s xyz-location.

For each partitioned option, the agent again uses DBSCAN to cluster end states S
to form partitioned subgoal options in both D and S. Each of these clusters in S is a
problem-specific proposition, which can be added to the learned operators to ground
the problem. To ground the operators, we add the start and end clusters (problem-
specific propositions) to the precondition and effects of the PPDDL operator. We
also record the exact object that appears in the parameter list of each operator, and
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add a precondition predicate (fluent) to ensure that only those particular objects can
be modified. Without this final step, the agent would, for example, believe it can
open any door while standing in front of a door at a particular location.

Figure 4.10 illustrates a learned operator for opening a particular door, where
the problem-specific symbol has been tied to the door being opened in this manner.
More learned operators are illustrated in Appendix B.5. The generated PPDDL
description is provided as input to the MINI-GPT planner [Bonet and Geffner 2005]
which uses a variant of real-time dynamic programming [Bonet and Geffner 2003]
to compute an optimal plan. This plan is illustrated by Figure 4.11.

(a) symbol_37 (b) symbol_9 (c) psymbol_24

(d) symbol_64 (e) symbol_65

(:action Toggle-Door-partition-1a
:parameters (?w - type0 ?x - type1)
:precondition (and (notfailed) (symbol_37 ?w) (symbol_9 ?x)

(= (id ?x) 1) (psymbol_24))
:effect (and (symbol_64 ?x) (symbol_65 ?w) (not (symbol_9 ?x))

(not (symbol_37 ?w)))
)

(f) A learned typed PPDDL operator for one partition of the Toggle-Door option.
The predicates underlined in red must be relearned for each new task, while the
rest of the operator can be transferred.

Figure 4.10: Our approach learns that, in order to open a particular door, the agent
must be standing in front of a closed door (symbol_37) at a particular location
(psymbol_24), and the door must be closed (symbol_9). The effect of the skill is
that the agent finds itself in front of an open door (symbol_64) and that the door is
open (symbol_65). type0 and type1 refer to the “agent” and “door” classes, while
id is a fluent specifying the identity of the grounded door object, and is linked to
the problem-specific symbol underlined in red.
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21 WalkSouth door

23 WalkTo crafting-table

24 Craft gold-ingot

29 Open chest

Figure 4.11: Path traced by the agent executing different options while solving the
first task.
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4.2.3 Inter-task Transfer in Minecraft

We next investigate transferring operators between five procedurally generated tasks,
where each task differs in the location of the objects and doors—the agent cannot
thus simply use a plan found in one task to solve another. For a given task, the
agent transfers all operators learned from previous tasks, and continues to collect
samples using uniform random exploration until it produces a model which predicts
that the optimal plan can be executed. Figure 4.12 shows the number of operators
transferred between tasks, while Figure 4.13 and the number of samples required
to learn a model of a new task.
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Figure 4.12: Orange bars represent the number of operators that must be learned
to produce a sufficiently accurate model to solve the task. Blue bars represent the
number of operators transferred between tasks. As the number of tasks increases,
the number of new operators that must be learned decreases. By contrast, the
number of operators required to learn when no transfer occurs is constant. We
report the mean and standard deviation averaged over 80 runs with random task
orderings.

The lower bound on sample complexity depends on the exploration strategy,
since we must discover all problem-specific symbols to complete the model. Fig-
ure 4.13 shows that the number of samples required to learn a model decreases
over time towards this lower bound. Inter-task transfer could be further improved
by leveraging the agent’s existing knowledge to perform non-uniform exploration,
but we leave this to future work.
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Figure 4.13: Number of samples required to learn sufficiently accurate models as a
function of the number of tasks encountered. The red line represents the number
of samples required to learn all the operators and the instantiation, while the green
line accounts for the instantiation phase only. This line is the lower bound on
the sample complexity, and refers to the number of options that must be executed
to discover the necessary problem-specific propositions. We report the mean and
standard deviation averaged over 80 runs with random task orderings.

4.3 Discussion of failure cases

Although our approach is able to learn a model of a complex Minecraft task, it relies
on several phases involving clustering, classification and density estimation. Owing
to the complexity of each of these steps, it is unsurprising to note that we observe
various learning errors throughout. These errors could be caused by a variety of
factors, such as insufficient data or suboptimal hyperparameters. We highlight some
of the most common ones below to serve as a guide for where future improvements
to the underlying estimation procedures can be made.
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4.3.1 Partitioning errors

Since the weak subgoal property is intractable to compute precisely, we rely on
an approximation that uses the DBSCAN clustering algorithm. DBSCAN requires
a single hyperparameter that determines radius of a neighbourhood with respect
to some point. However, this hyperparameter is extremely sensitive and depends
on the exact task. In Figures 4.14 and 4.15, we illustrate an example of imperfect
partitioning which results in redundant partitioned options.

(a) Set of start states for the first parti-
tion of the Attack option, with the agent
standing in front of a gold block.

(b) Set of end states for the first parti-
tion of the Attack option, with the agent
standing in front of a smashed block.

(c) Set of start states for the second parti-
tion of the Attack option, with the agent
standing in front of a gold block.

(d) Set of end states for the second parti-
tion of the Attack option, with the agent
standing in front of a smashed block.

Figure 4.14: In the above example, the partitioning procedure has generated two
partitioned options for breaking the gold block, where there should only be one.
They are functionally equivalent, but because of the strange shadows on the left
of the image (caused by rendering bugs in the Malmo platform), the clustering
algorithm has produced one extra partition. As a result, an additional unnecessary
operator and predicate would be created. This issue is due to the approximation
of the subgoal property, and could be overcome with a more robust clustering ap-
proach.
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(a) Set of start states for the first parti-
tion of the ToggleDoor option, where the
agent is standing in front of an open door.

(b) Set of end states for the first parti-
tion of the ToggleDoor option, where the
agent is standing in front of a closed door.

(c) Set of start states for the second parti-
tion of the ToggleDoor option.

(d) Set of end states for the second parti-
tion of the ToggleDoor option.

Figure 4.15: In this example, the partitioning has clustered noisy samples into
an additional partition of the ToggleDoor option. While the top row shows the
case where the state of the door changes from open to closed, the bottom row is
a relatively useless noisy operator. We will subsequently learn a precondition and
effect for this partition, but it likely will not be used by the planner. This error is
due to noisy data and could be corrected by modifying the clustering algorithm’s
hyperparameters to ignore clusters whose sizes are below a certain threshold.

4.3.2 Precondition errors

When estimating the preconditions, we find that applying a grid-search to the hy-
perparameters of an SVM results in a fairly robust classifier. However, determining
which objects should belong to an operator’s precondition is more challenging. In
Figure 4.16, we illustrate two failure cases: the first case excludes a necessary object,
while the second includes an unnecessary one.
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(a) The precondition for attacking the
gold block. The top image represents the
agent’s view (in front of the block) while
the bottom image is the state of the block
(unbroken).

(b) The precondition for walking to a
closed door. The top image represents the
agent’s view (in a room) while the bottom
image is the state of the door (closed) and
the state of the inventory.

Figure 4.16: In the left example, the classifier predicts that the gold block can be
broken when the agent is in front of it. However, this is not quite correct, since the
agent must also have the pickaxe to break the block. In this case, this issue occurs
because the data only included states where the agent reached the gold block with
the pickaxe. The agent therefore did not observe states where it was in front of the
block without the pickaxe, and thus concludes that the pickaxe is irrelevant to the
precondition. In the right example, the classifier overfits to the data and predicts
that the agent can only walk to the door when it has the pickaxe. This issue can
be overcome with more data, provided the data includes samples where the agent
finds itself in front of the block without the pickaxe.

4.3.3 PPDDL construction errors

The quality of the PPDDL operators depends on how accurately the precondition
classifiers and effect estimators are learned. An error can result in imperfect PPDDL
operators, as seen in Figure 4.17.
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(a) symbol_56 (b) symbol_29 (c) psymbol_1

(d) symbol_57 (e) symbol_11

(:action Craft-partition-1-240a
:parameters (?w - type0 ?x - type9)
:precondition (and (notfailed) (symbol_56 ?w) (symbol_29 ?x)

(psymbol_1))
:effect (probabilistic 0.21 (not (notfailed))

0.79 (and (symbol_57 ?x) (symbol_11 ?w)
(not (symbol_29 ?x))
(not (symbol_56 ?w))))

)
(f) Typed PPDDL operator for a partition of the Craft option.

Figure 4.17: Abstract operator that models the agent crafting a gold ingot. In or-
der to do so, the agent must be standing in front of the crafting table (symbol_56)
at a particular location (psymbol_1), and must have the gold block in its inven-
tory (symbol_29). As a result, the agent finds itself in front of the crafting table
(symbol_11), and now has a gold ingot in its inventory (symbol_57). This option is
deterministic; however, due to estimation errors, the PPDDL operator predicts that
it will only succeed with probability 0.79. This issue is caused by the precondition
classifier’s failure to generalise to samples drawn from the predicates. Solutions
include deploying more sophisticated models such as neural networks, or creating a
more robust classfier using methods such as data augmentation [Wong et al. 2016].

4.3.4 Type Inference Error

Finally, we observe that occasionally the procedure will not discover the correct
types. In Table 4.2, instead of discovering a single type for all four doors, our
approach predicts that one door is different from the others. This occurs because
the predicate describing the door’s effect is considered to be dissimilar to those of
the other doors, despite being semantically identical.
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Type Name Object(s)

0 Agent 0

1 Pickaxe 1

2 Door1 2, 3, 4

3 Door2 5

4 Redstone Block 6

5 Gold Block 7

6 Chest 8

7 Inventory 9

Table 4.2: A grouping of objects into types. Note that one of the doors is allocated
its own type. This issue is due to the measure used to determine whether two effects
are similar. In future, we may be able to incorporate additional knowledge, such
as the options available before and after interacting with an object, to improve the
type inference step.

4.4 Related work

Existing approaches have long assumed that the world consists of objects, and that
similar objects are shared across tasks. The classical planning literature, for example,
represents problems in terms of the objects that constitute a domain, and operators
that can affect their states [McDermott et al. 1998]. Another approach is that of
object-oriented MDPs, which exploit the presence of objects by providing the agent
with an object-oriented representation. This results in compact representations
that are transferable between tasks sharing the same object classes and dynamics
[Guestrin et al. 2003; Diuk et al. 2008; Marom and Rosman 2018]. Here the state
space consists of a set of object classes C, where each class C ∈ C has its own set of
attributes Att(C) = {C.α1, . . . C.αn}. A particular task consists of a grounded set of
objects, where each object belongs to one of the classes in C. The state of a single
object is the value assignment to all of its attributes, and the state of the task is the
union of all object states.

In general, the state space is provided to the agent, which must then learn the
transition dynamics of the environment. These dynamics are represented in terms of
the effects an agent’s action has on the different objects, with additive, subtractive,
and setting effects commonly considered [Diuk et al. 2008]. Marom and Rosman
[2018] extend this model-learning approach to learn dynamics with respect to each
object in turn, resulting in a lifted representation that improves the transfer.

In the above settings, however, the question arises as to the most appropriate
way of building an object-oriented representation of a problem, especially one ex-
perienced by the agent at the pixel level. This includes deciding which attributes
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should be chosen to characterise a particular type, as well as which objects should
belong to each class or type.

There has been work autonomously learning parameterised, transferable repre-
sentations of skills from raw data. Ugur and Piater [2015a] learn object-centric
PPDDL representations for robotic object manipulation tasks. As in our work, they
estimate object types by clustering objects based on how actions affect their states,
but the object features are specified prior to learning, and discrete relations be-
tween object properties such as width and height are given. Moreover, additional
predicates are manually inserted to generate a sound representation. Asai [2019]
learns object-centric abstractions directly from pixels, but it is unclear how to extend
the approach to the stochastic setting. Furthermore, the representations cannot be
transformed into a language that can be used by existing task-level planners. By
contrast, we show how to learn an object-centric PPDDL representation along with
the object types, and the abstract high-level dynamics model directly from raw data.

4.5 Conclusion

We have shown a method for learning high-level, object-centric representations that
are sound and useful for planning. In particular, we have demonstrated how to
learn the type system, predicates and high-level operators all from pixel data. Our
representation generalises across objects and can be transferred to new tasks.

Our definition of types considered the effects of objects in isolation. This is a
similar setting to object-oriented MDPs [Diuk et al. 2008], where the dynamics are
described by pairwise object interactions (and one of those objects is the agent).
While this proved sufficient for the cases considered here, the definition would be
inadequate in certain situations involving multi-object interactions. For example,
consider two objects x and y that undergo the same effects in isolation, but which
can also interact with a third object z. If the effect of an option on z is dependent
on whether it was executed in conjunction with x or y, then x and y would need
to be considered as different, but related, types. We leave the task of developing a
theoretically sound definition of types, as well as the important question of what
constitutes an object, to future work.

Although we have injected structure by assuming the existence of objects, this
reflects the nature of many environments: fields such as computer vision assume
that the world consists of objects, and there is evidence to suggest that infants
do the same [Spelke 1990]. This assumption allows us to convert complex, high-
dimensional environments to abstract representations that serve as input to task-
level planners. Our approach provides an avenue for solving sparse-reward, long-
term planning problems, such as the MineRL competition [Guss et al. 2019], which
are currently beyond the reach of state-of-the-art approaches.



Chapter 5

Portable Hierarchies

Previous chapters demonstrated how to learn an abstract representation using agent-
and object-centric observations. These approaches can be thought of as constructing
a two-level hierarchy—the bottom level being the original MDP and the top level
the symbolic classical planning domain (CPD).

It has long been understood that hierarchies of abstractions can be used to sim-
plify decision making and accelerate planning [Sacerdoti 1974]. One such example
is the hierarchical task network (HTN) framework, where planning is performed
using a hierarchy of tasks and subtasks [Tate 1977; Ghallab et al. 2004]. Decom-
posing tasks into subtasks requires a large amount of domain-specific knowledge,
but as a result, these planners can solve problems consisting of thousands of objects
and action operators, and have seen wide deployment in the real world [Wilkins
and desJardines 2001]. Given the espoused advantages of hierarchical planning,
the next logical step is to wonder whether there is any advantage to learning a
multi-level abstraction hierarchy within our framework.

In this chapter, we propose a method for constructing a hierarchy of increasingly
abstract representations. As with our previous approaches, these representations can
be reused in new tasks that share similar structure. We first describe our approach
in Section 5.1 by manually constructing an agent-centric hierarchy in a gridworld
domain. We then demonstrate how it can be learned autonomously by interleaving
action and state abstraction (Section 5.2). In Section 5.3 we apply our method
to the high-dimensional continuous video game from Chapter 3, where our results
demonstrate that the learned multi-level hierarchy improves planning, while its
portability improves the agent’s planning efficiency when faced with a new task.

5.1 Constructing a portable hierarchy

Recall from previous chapters that the agent begins in a continuous, low-level MDP.
After acquiring skills, it constructs an abstract representation of the task used for
planning. Konidaris [2016] proposes an approach that simply extends this by ac-
quiring new skills in this abstract domain, and then learning a new abstraction
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using these higher-order skills. This interleaving of skill and symbol acquisition—a
skill-symbol loop—is illustrated by Figure 5.1.
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Figure 5.1: Illustration of the skill-symbol loop [Konidaris 2016]. Starting with a
continuous MDP, an agent acquires a set of skills and then constructs a symbolic
representation as described previously (see Chapter 2). Given this new abstract
domain, we can simply acquire new skills and then repeat the procedure to learn
an increasingly abstract representation. This can be iterated to construct an entire
hierarchy of state and action abstractions. However, this must be done for each task
independently.

While this hierarchy can be used to plan at various levels of abstraction, there is
once again no opportunity for transfer—given a new task, an agent must construct
a new hierarchy from scratch. We now outline our approach to constructing such a
hierarchy, parts of which can be transferred to new tasks that share similar structure.

5.1.1 Abstract state semantics

In previous chapters, the predicates in our learned symbolic vocabulary represent
distributions over low-level states in the original MDP. The obvious question, then,
is: what do higher-order predicates represent? We represent an n-level hierarchy as a
collection of increasingly abstract domain representations

{M0,M̃1, . . . ,M̃n−1},

whereM0 is the original low-level MDP, and each M̃i>0 is a PPDDL domain descrip-
tion.

In the agent-space formulation of Chapter 3, the low-level MDP is represented
byM0 = 〈S0,D0,A0, T0,R0〉.1 S0 and D0 represent the problem-specific and agent-
centric state variables, while the transition dynamics and reward function are de-
noted by T0 and R0. After applying our portable symbol-learning method, the
resulting CPD is given by M̃1 = 〈S̃1, D̃1, Ã1, γ̃1〉. Here Ã1 is the set of action op-
erators, S̃1 and D̃1 are problem-specific and agent-centric predicates representing
distributions over ground states, and γ̃1 is the transition function, modelled by the
learned PPDDL operators.

1Although we adopt the agent-centric representation in this chapter, it readily extends to the
object-centric approach in Chapter 4.
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By treating Ã1 as low-level actions in M̃1, we can acquire new, higher-level op-
tions and then repeat the process to construct increasingly abstract representations
[Konidaris 2016]. Importantly, because every abstract state space is constructed
from a set of discrete option effects, we have that every M̃i at level i > 0 is neces-
sarily discrete, even ifM0 itself is continuous. As such, every abstract state at level
i > 1 is a categorical distribution over states at level i− 1.

Definition 7. An abstract state space at level i > 0 is the tuple 〈S̃i, D̃i〉, where each
s ∈ S̃i and d ∈ D̃i is a distribution over states in S̃i−1 and D̃i−1 respectively.

Given an abstract state at level i, we can compute the distribution over ground
agent-space and problem-space states it represents, G, by recursively computing the
distribution over states at level i− 1, i− 2, . . . 0. This computation is illustrated by
Figure 5.2 and will prove useful when determining the probability that an agent has
reached the goal, given its current abstract state.

Figure 5.2: A three-level hierarchy where state S̃(2)
0 is a categorical distribution over

states S̃(1)
0 and S̃(1)

1 at level 1, which in turn are distributions over low-level states
in the original MDP M0. Let G(s), s ∈ M̃1 be the distribution over states in the
original MDP. We can then calculate the low-level states that S̃(2)

0 represents as
0.6× G(S̃

(1)
0 ) + 0.4× G(S̃

(1)
0 ).

The above formulation means that, as we construct more levels in the hierarchy,
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the resulting representations become increasingly compact and faster to plan with.
This may also complicate planning, however, since it is unclear how best to leverage
the hierarchy [Konidaris 2016; Gopalan et al. 2017]. For example, consider an
agent required to reach a ground state in the original MDP. Then, as is evident
in Figure 5.2, planning at a high level introduces uncertainty as to whether the
plan produced does in fact satisfy the goal. Conversely, planning at too low a level
negates the advantages of the hierarchy to begin with.

Finally, note that since each Di in our abstract hierarchy is agent-centric, it
provides an avenue for transfer between tasks that share similar local observations.
By contrast, because each Si is constructed from problem-specific state variables, it
must be relearned from scratch for every new task encountered. Similarly, when
operators consist of both portable and non-portable predicates, much of the operator
can still be transferred; only the problem-specific predicates must be relearned in
the new task.

5.1.2 Constructing a hierarchy

We illustrate our approach by hand-constructing a portable hierarchy on a simple
domain, and then show how it can be used to plan at various levels of abstraction.
We consider an extension of the Four Rooms domain [Sutton et al. 1999] where
an agent must navigate a building with four floors. Each floor consists of four
rooms separated by doorways, and each room contains a single staircase that leads
to higher and lower levels (see Figure 5.3). The agent space consists of a local
agent-centric view (such as RGB observations from an egocentric camera), while
the problem space is the agent’s xyz-coordinates. The agent possesses 6 actions:
four that allow it to move in any cardinal direction, and two for climbing up and
down staircases. The final two actions are only executable when the agent is near a
staircase—executing them leaves the agent in the centre of the room directly above
or below its initial location. At every timestep, the agent receives a reward of −1.

Level 1 We assume that the agent possesses the following seven options:

(i) WalkToDoorway (x2): the agent will walk from a room to each of the two
doorways in a clockwise and anticlockwise direction.

(ii) WalkToRoom (x2): the agent will walk from a doorway to each of the two
adjacent rooms in a clockwise and anticlockwise direction.

(iii) WalkToStaircase: the agent will walk from the centre of a room to the room’s
staircase.

(iv) ClimbStaircase: the agent will climb a staircase and find itself in the centre
of the room directly above.

(v) DescendStaircase: the agent will descend a staircase and find itself in the
centre of the room directly below.

After constructing a PPDDL representation using the approach in Chapter 3,
our first abstract representation consists of the following five portable symbols:
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Figure 5.3: Illustration of the extended Four Rooms domain. Each floor consists of
four rooms with doorways connecting adjacent rooms. Additionally, each room has
a staircase that leads to higher or lower levels, visualised as a box in the corner of
each room.

(i) InRoom, where the agent is in the centre of the room; (ii) AtGroundStairs,
where the agent is at a staircase on the ground floor; (iii) AtTopStairs, where
the agent is at a staircase on the top floor; (iv) AtStairs, where the agent is at a
staircase on either of the middle floors; and (v) InDoorway, where the agent is in
a doorway. There are also 48 problem-space propositions referring to distributions
over various locations in the domain (12 for each floor). Figure 5.4 illustrates this
abstract representation.

Level 2 Next, the agent acquires an option to navigate between adjacent rooms
directly. For illustrative purposes, this is a stochastic option: with probability 0.7, the
agent finds itself in the centre of the room, and with probability 0.3 at the staircase
inside the room. The agent also acquires two additional options to climb up and
down a level, even if it is not initially near a staircase. Once again, these options
terminate in the centre of the room with probability 0.7, and at the room’s staircase
with probability 0.3.

As a result, the new representation consists of three agent-space predicates:

(i) InBottomRoom, a categorical distribution over the symbols AtGroundStairs
and InRoom;

(ii) InMiddleRoom, a distribution over InRoom and AtStairs; and

(iii) InUpperRoom, a distribution over InRoom and AtTopStairs.

There are 16 problem-space propositions, corresponding to the location of each of
the rooms on each of the four floors. Figure 5.5 illustrates the abstract representation
at this level.
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Figure 5.4: The abstract representation at level 1 of the hierarchy. Each node rep-
resents a state made up of a single agent- and problem-specific predicate. Colours
indicate different agent-centric predicates, while a node’s position indicates its
problem-specific proposition. The InRoom symbol is represented by orange nodes,
AtGroundStairs purple, AtTopStairs red, AtStairs blue, and InDoorway green.
Edges represent options that connect neighbouring nodes.

Figure 5.5: The abstract representation at level 2 of the hierarchy. Each node rep-
resents a state, with its colour denoting the agent-centric predicate and its position
indicating the problem-specific proposition. The InBottomRoom symbol is repre-
sented by grey nodes, InMiddleRoom pink nodes, and InUpperRoom brown nodes.
Edges represent options that connect neighbouring nodes.
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Level 3 Finally, the agent acquires a single option that allows it to climb up or
down floors, regardless of its current location. As a result, we have the same
portable predicates as level 2, along with four problem-space propositions, where
each proposition represents a unique floor. Figure 5.6 illustrates this final abstract
representation.

Figure 5.6: The abstract representation at level 3 of the hierarchy. Each node rep-
resents a state, with its colour denoting the agent-centric predicate and its position
indicating the problem-specific proposition. The InBottomRoom symbol is repre-
sented by the green node, InMiddleRoom yellow, and InUpperRoom purple. Edges
represent options that connect neighbouring nodes.

5.1.3 Planning with a hand-constructed hierarchy

Having constructed this 3-level hierarchy, we now examine how it can be used to
plan at a variety of levels. Intuitively, using higher-order levels results in faster
planning, but there may be greater uncertainty as to whether the plan is in fact a
solution to the current problem. We consider a plan query to be the tuple 〈B,G〉,
representing the low-level set of starting and goal states respectively. Note that
these conditions may be satisfied by more than one abstract state or predicate. We
investigate four possible queries, and then show the implications of planning at each
of the levels in the hierarchy.

Query 1 This query requires the agent to compute a plan that starts in a particular
doorway on the bottom floor, and terminates in the equivalent doorway on the
top floor. Planning at level 1 is straightforward, since the agent can simply use its
options to traverse all floors to reach the top and then navigate to the doorway.
However, planning at levels 2 and 3 is not possible, since the predicates used at
these levels do not refer to ground states where the agent is in the doorway. For
example, the low-level states that InBottomRoom refers to are disjoint from the states
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referred to by InDoorway: support(G(InBottomRoom)) ∩ InDoorway = ∅, where
support(G(S̃)) = {s ∈ S | fG(S̃)(s) > 0} and fG(S̃) is the probability density function

defined by G(S̃).

Query 2 This query requires the agent to compute a plan that starts at a particular
staircase on the bottom floor, and terminates at the equivalent staircase on the top
floor. Once more, planning at level 1 is straightforward, since the agent can simply
use its options to traverse all floors to reach the top and then navigate to the correct
staircase. Planning at level 2 is also possible, but introduces uncertainty. Recall that
InUpperRoom is a categorical distribution over lower-level abstractions. Therefore,
while the agent need only execute four level 2 options to reach InUpperRoom, the
probability that the agent has attained the goal is only 0.3. There is thus a tradeoff
between planning at a higher level—the solution length is shorter, but we cannot
guarantee the success of the plan. We can also use level 3 where planning is trivial,
but this introduces even more uncertainty—the probability that the agent is in the
correct room is only 0.25, and so the overall probability of reaching the goal is 0.075.

Query 3 This query requires the agent to compute a plan that starts in a particular
room on the bottom floor, and terminates somewhere in the equivalent room on
the top floor. Planning at level 1 is the same as before, but now the use of level
2 abstractions introduces no uncertainty, because reaching InUpperRoom is a valid
solution. Planning at level 3 still introduces uncertainty, although not as much as
previously, since the probability that the agent is in the correct room is 0.25.

Query 4 The final query requires the agent to reach the top floor, starting on the
bottom floor. Now no uncertainty is introduced when planning at any of the three
levels of the hierarchy— planning at levels 1 and 2 is the same as before, while
planning at level 3 is also certain, since the goal condition is independent of the
exact room location.

The above suggests that there are advantages to planning using all levels of
the hierarchy. Although higher levels introduce more uncertainty, they are also
more efficient to plan with. A naïve approach is to first identify the highest level
at which planning should take place. As we observed in Query 1, planning at a
particular level is only feasible if there are abstract states that match the start and
goal conditions. Having constructed a plan to reach the goal at this level, the agent
can then use the level directly below to refine the solution. This can be repeated
until the probability of a plan’s success exceeds some threshold. In general, though,
how best to leverage the hierarchy and tradeoffs associated with its various levels
remains an open question that we leave to future work.

5.2 Learning a portable hierarchy

In the above example as well as in prior work [Konidaris 2016], the higher-order
options were manually constructed to produce a useful and minimal hierarchy. In
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this section, we propose a method for autonomously constructing the entire hier-
archy given only the initial set of options. Before outlining our approach, we first
discuss some basic concepts used in the hierarchical planning literature.

5.2.1 Hierarchical planning

Throughout this thesis, we have concerned ourselves with classical planning, the
aim of which is to construct goal-achieving plans. An alternate approach is known
as Hierarchical Task Network (HTN) planning [Ghallab et al. 2004], which inherits
many of the same concepts as classical planning such as symbolic predicates and
action operators. However, rather than achieving a goal, the aim of HTN planners
is to decide how best to perform a set of tasks. For simplicity, we consider a subset
of HTN planning known as Simple Task Network (STN) planning.

In addition to the state predicates and action operators, STN domains consist of a
set of tasks ti(p1, . . . , pn), where ti is the name of the ith task, and p1, . . . , pn are the
task parameters. An example of a task might be travel(a, x ,y) which represents
agent a travelling between two locations x and y. The purpose of the planner is
to determine how best to complete the given task. To achieve this, STN planners
are provided with several methods, which specify different ways for decomposing a
given task into a set of subtasks. Formally, a method m is defined by the tuple

m = 〈name(m), task(m), pre(m),network(m)〉,

where (i) name(m) is the method’s name; (ii) task(m) is the non-primitive task
that the method achieves; (iii) pre(m) is the precondition of the method; and
(iv) network(m) is a task network or graph that defines a sequence of subtasks
and their ordering.

The task network specifies the subtasks that, when executed in the appropriate
order, achieve the method’s task. While the network specifies a partial ordering on
tasks, we may also have a totally ordered network. In this case, the task network is
simply a sequence of subtasks that must be executed one after the other.

To continue our example, assume travel has two methods to achieve the task:
travel-by-foot and travel-by-taxi. When travelling by foot, the agent need
only walk between the two locations. To travel by taxi, however, the agent must
first hail a taxi, ride it to the destination, and then pay the driver. Both of these
methods will allow the agent to travel between x and y, provided the agent is at
location x. However, an additional precondition for travel-by-foot is that x and
y are close enough. Figures 5.7 and 5.8 illustrate these two methods based on the
above requirements.

The travel task is known as a non-primitive task, which can be achieved in two
different ways. Given a non-primitive task, a planner must use the various methods
to decide how best to decompose the task into subtasks. However, tasks can also
be primitive—in this case, no decomposition need occur. In the above example,
let us assume that the agent possesses an action operator for walking between
two locations: walk. The task network of travel-by-foot contains a single task,
whose name matches this action operator. The task walk is therefore primitive, and
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method: travel-by-foot(a,x,y)
task: travel
precondition: at(a,x) and distance(x,y) < 10
task network: walk(a,x,y)

Figure 5.7: A method for travelling between two locations by foot, applicable only
if the distance between the two is less than ten kilometres. The method only has
one subtask—walking between locations.

method: travel-by-taxi(a,x,y)
task: travel
precondition: at(a,x)
task network: hail-taxi(a,x) → ride-taxi(a,x,y) → pay(a,y)

Figure 5.8: A method for travelling between two locations by taxi, consisting of a
sequence of three totally ordered subtasks.

the agent can simply execute the appropriate operator provided the state matches
the operator’s precondition. The overall aim of a planner, then, is to recursively
decompose a task to determine the sequence of primitive tasks (operators) that
must be executed.

5.2.2 Learning higher-order options with subgoal discovery

We now describe our approach to construct an abstraction hierarchy automatically
using the extended Four Rooms domain from Section 5.1.2, and then apply it to
a significantly harder pixel-based video game. We implement the extended Four
Rooms domain using the gym minigrid framework [Chevalier-Boisvert et al. 2018],
with the layout illustrated by Figure 5.9. The egocentric observation is a 3 × 3
window about the agent, while the problem space is given by its location in the grid.

We assume we are provided with a set of options. In this case these options are
exactly those specified at the first level in Section 5.1.2. Our first step is to construct
an abstract representation using the approach in Chapter 3, which produces a fac-
tored PPDDL representation. Next we must decide how best to discover higher-order
skills in this new representation.

Recall that classical planning decouples the domain definition from the task spec-
ification. This poses a challenge, since the agent must learn skills in the absence of
any particular goal, with the hope that these skills will prove useful in solving future
unseen tasks. This is analogous to learning skills in reward-free MDPs [Houthooft et
al. 2016; Eysenbach et al. 2019], but is made easier here because our representation
is discrete. Fortunately, prior approaches have used graph-based representations to
discover skills in the absence of any reward or goal [Şimşek et al. 2005; Machado et
al. 2017], such as adding edges (options) to minimise the cover time of a transition
graph [Jinnai et al. 2019]. Therefore, we take a naïve approach and unfactorise our
representation to create a transition graph, illustrated by Figure 5.10.

We next attempt to identify “important” nodes in the graph, and then construct
options to reach these subgoal nodes. There are a number of metrics that can be
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Figure 5.9: The extended Four Rooms domain from Section 5.1.2. The red boxes
symbolise stairs that can only be climbed, green boxes are those that can only be
descended, and blue boxes are stairs that can either be climbed or descended. The
red triangle indicates the agent’s position and orientation, and the highlighted cells
its current observation. For visualisation purposes, we display the layout on a 2D
plane: each floor is labelled with an integer, with white arrows indicating which
floor can be accessed by climbing or descending stairs. For example, an agent can
transition between floors 2 and 3, but not between floors 0 and 3.

Figure 5.10: A transition graph representing M̃1 overlaid on the original domain.
The graph is constructed by unfactorising the PPDDL representation. Each node
is therefore a conjunction of agent-centric and problem-specific predicates. The
location of the nodes corresponds to the xy-position represented by the problem-
specific predicates, and each edge in the graph corresponds to a PPDDL operator.

used to measure a node’s influence and importance in a graph. For example, Şimşek
et al. [2005] identifies “bottleneck” nodes using the betweenness centrality measure,
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which computes the shortest paths between all pairs of nodes and then determines
the proportion of paths that pass through a given node. While our approach is ag-
nostic to the metric, we find that the VOTERANK metric [Kitsak et al. 2010; Zhang et
al. 2016], which measures the “influence” of nodes within connected components,
discovers more useful subgoals in practice. One intuitive reason for this is that
VOTERANK accounts for a node’s connectivity within a local neighbourhood, and
so identifies spatially distant nodes. Figure 5.11 demonstrates the difference be-
tween the two metrics in a small example, while Figure 5.12 indicates the identified
subgoals in our transition graph.

Figure 5.11: Difference between centrality metrics on an example graph. Nodes
with the largest betweenness centrality measure are highlighted in green, while the
pink nodes indicate those most important according to VOTERANK. One potential
issue of betweenness centrality is that it identifies bottleneck states, and so if there
are separate “hubs” in the graph, the measure is biased towards nodes that connect
these hubs. In this simple example, it is not particularly useful to learn options to
reach all green nodes, since they are adjacent to one another. By contrast, VOTERANK

identifies nodes within each hub, resulting in options that reach more diverse regions
of the graph.

We next construct options to reach relevant nodes using a shortest path algorithm,
such as Djikstra’s algorithm [Dijkstra 1959]. Edges along these paths constitute our
higher-order options. The predicates representing the identified subgoal nodes
constitute the new state space 〈S̃2, D̃2〉 for CPD M̃2, while the options comprise
the action operators Ã2. Our proposed approach to skill acquisition is provided by
Figure 5.13. Our option discovery method first identifies relevant subgoal nodes to
reach (lines 4–6), and then uses a shortest path algorithm to reach each subgoal
from all other nodes (lines 12–14). Each higher-order option is associated with a
single subgoal node, and all paths to that node constitute the option’s policy. We also
restrict the maximum length of higher-order options (line 15), since longer options
are less likely to transfer. Note that since all the options contain only a single node
in their termination set, they are subgoal options by construction.

Having learned representation M̃2, we can now simply repeat the process. We
first acquire the symbolic representation at the next level using our newly-discovered
options. Note that even though we learned these options in an unfactored setting, we
use them only to collect data from which we build predicates, and so the resulting
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Figure 5.12: Red nodes indicate those identified as influential by VOTERANK.

1: procedure SUBGOALOPTIONDISCOVERY

2: Given: transition graph graph, importance metric I, max_goals, max_length
3: . Find the most important nodes in the graph
4: scores ← {I(n) | n ∈ graph.nodes} . Compute importance of each node
5: subgoals ← SORT(graph.nodes, scores) . Sort from most to least important
6: subgoals ← LIMIT(subgoals,max_goals) . Use only the top few nodes
7: . Compute options to reach each node
8: options ← ∅
9: for each target ∈ subgoals do

10: Io ← ∅;πo ← ∅
11: for each source ∈ graph.nodes do
12: . Compute the shortest path from source to target
13: path ← SHORTESTPATH(graph, source, target)
14: if 1 < LENGTH(path) ≤ max_length then
15: Io ← Io ∪ {source}
16: πo ← πo ∪ {path}
17: end if
18: end for
19: βo : target → 1
20: o ← 〈Io, πo, βo〉
21: options ← options ∪ {o}
22: end for
23: return options
24: end procedure

Figure 5.13: Pseudocode for computing options from a learned classical planning
domain. The approach accepts a graph representing the transition dynamics, identi-
fies relevant nodes to reach, and then uses any shortest path algorithm to compute
options to reach those nodes.
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representation is still factorised. We can then construct the unfactorised graph,
identify subgoal nodes, and learn new options to reach them. Since we halt when
the number of nodes in the graph is less than 2, the process iterates a further two
times, as illustrated by Figure 5.14. Pseudocode for our approach to constructing a
multi-level hierarchy from a low-level MDP is given by Figure 5.15.

(a) Graph representing M̃2 (b) Identified subgoals in M̃2

(c) Graph representing M̃3 (d) Identified subgoals in M̃3

Figure 5.14: The procedure iteratively constructs a hierarchy by converting the
PPDDL representation into a graph, identifying nodes, and then learning new higher-
order options until the size of the graph drops below some threshold. Red nodes
indicate subgoal states which are used to construct skills at the next level in the
hierarchy.

5.2.3 Higher-order options as STN methods

In the previous section, we took a simple approach to option discovery by identifying
subgoal nodes and then using path planning to construct options. Recall that the
edges in the graph representing M̃1 are PPDDL operators, and thus the higher-
order options consist of a sequence of PPDDL operators. In the STN formalism,
these would be considered a totally ordered primitive subtask network. We can
therefore treat the attainment of predicates in each target node as an STN task, and
the different paths to that node as methods for that task. Figure 5.16 provides an
example of this on a simple graph.

Finally, we note that since each higher-order skill consists of a chain of actions at
the level below it, the semantics of actions will vary by level. For example, actions
Ã1 at level 1 are individual PPDDL operators, consisting of sequences of low-level
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1: procedure SKILLSYMBOLLOOP

2: Given: low-level MDP M0, initial options O, abstraction algorithm A, im-
portance metric I, graph size reduction N , maximum option length L

3: hierarchy ← {M0}
4: i ← 0
5: env ←M0

6: graph ← ∅
7: total_skills ← ∅
8: while graph = ∅ or |graph.nodes| > 2 do
9: . Acquire skills for the current domain

10: skills ←

{
O if graph = ∅,
OPTIONDISCOVERY(graph,I, |graph.nodes|N , L) otherwise.

11: total_skills ← total_skills ∪ {skills}
12: . Learn a symbolic representation
13: Mi+1 ← A(env , skills)
14: . Compute transition graph by unfactorising states
15: graph ← CONSTRUCTGRAPH(Mi+1)
16: hierarchy ← {Mi+1}
17: env ←Mi+1

18: i ← i + 1
19: end while
20: return hierarchy , total_skills
21: end procedure

Figure 5.15: Our approach to learning a hierarchy of abstractions given an initial
MDP and set of options. When discovering new options, we use the VOTERANK

measure to identify the most influential nodes and restrict the subsequent options
to be no longer than a given length.

actions, while Ã2 are sequences of PPDDL operators. Table 5.1 categorises the
actions at the various levels.

Level Action semantics

0 Primitive actions in the original MDP

1 PPDDL operators

2 STN methods with totally ordered primitive task networks

3+ STN methods with totally ordered non-primitive task networks

Table 5.1: Categorising the actions at each level of the hierarchy.
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(a) A small graph with target node (pink) and source nodes (green). Edges represent PPDDL
operators.

(:method method-1
:task (reach-s4)
:precondition (s3)
:ordered-tasks (a8, a6, a7)

)

(:method method-2
:task (reach-s4)
:precondition (s5)
:ordered-tasks (a6, a7)

)

(:method method-3
:task (reach-s4)
:precondition (s6)
:ordered-tasks (a7)

)

(:method method-4
:task (reach-s4)
:precondition (s7)
:ordered-tasks (a5, a7)

)
(b) STN methods that reach the target node.

Figure 5.16: (a) In the above example, we identify S̃4 as a target subgoal node. We
can therefore view this as the STN task (:task reach-s4). To achieve this task,
we can compute the optimal paths from different source nodes. (b) Each of these
four paths can be considered a method for the task of reaching S̃4, consisting of a
sequence of ordered primitive tasks (PPDDL operators).
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5.2.4 Planning with a learned hierarchy

One artefact of our approach is that the state space at level i > 1 is a subset of the
states at level i − 1. This is due to our skill acquisition method—since skills are
constructed to reach individual subgoal nodes, the effects of the actions at M̃i are
simply these very nodes which represent the states at M̃i−1. Since we have that
D̃i ⊆ D̃i−1 and S̃i ⊆ S̃i−1, the question of how best to plan with a hierarchy is moot,
because the states at higher levels are not more abstract than the ones below. Rather,
they are point distributions over lower-level states.2

Therefore to plan with these abstractions in practice, we simply combine the
PPDDL representation of M̃1 with all action operators at each of the above levels.
In other words, our operators become more abstract, but our predicates remain the
same. This leads to a planning domain consisting of a set of predicates, PPDDL
operators, and STN tasks and methods, which can be formalised using a hierarchical
planning domain definition langauge such as HPDDL or HDDL [Alford et al. 2016;
Höller et al. 2019].

Unfortunately, there are two issues that prevent us from applying off-the-shelf
HTN planners to the resulting representation. One problem is that no existing HTN
planners support probabilistic effects. However, an even greater problem is the
mismatch between the objectives of HTN planning and the manner in which new
problem instances are presented to the agent. To be more precise: a given problem
is defined by its goal, but the HTN planner requires a task as input. Since we have
autonomously learned all operators and tasks, the agent cannot determine which task
should be completed in the first place. Furthermore, the ultimate effect of the task
(which is unknown) should align with the goal, but there is no guarantee that such
a task has been learned.

To overcome this, we simply “flatten” the STN methods into PPDDL operators
[Alford et al. 2009], which can be done in a straightforward recursive manner since
the subtask network is totally ordered. We then use MINI-GPT [Bonet and Geffner
2005] to construct a plan to reach the centre of the bottom right room on the third
floor starting at the top-left room on floor 0. Figures 5.17 and 5.18 illustrate the
solutions found when using a single level and all levels of the hierarchy respectively.

As mentioned, one particularly powerful aspect of learning a symbolic model
is that it can be used to solve any number of subsequent tasks, characterised by
start and goal states. To measure the usefulness of the hierarchy from a planning
perspective, we plot the distribution of shortest paths between all pairs of start and
end states. Figure 5.19 illustrates the advantage of using a multi-level hierarchy,
where the lengths of the optimal plans are skewed to be shorter than those of a single-
level hierarchy, thereby reducing the planning horizon and improving efficiency.

2We can achieve true state abstraction by identifying groups of nodes instead of individual subgoal
nodes. Our simple approach here is sufficient for the task, and so we leave alternate approaches to
future work.
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Walk to staircase Climb staircase
Walk to doorway Walk to centre of room

Start

0

1 2

3
Goal

(a) Trajectory of the discovered plan. The legend specifies the meaning of the coloured
paths, which represent different options in the full trajectory.

[’walktostaircase-6758’, ’climbup-56e4’, ’walktostaircase-46d0’,
’climbup-5b44’, ’walktostaircase-7c2b’, ’climbup-30a5’,
’walktodoorway1-c56b’, ’walktoroom2-981a’, ’walktodoorway2-f003’,
’walktoroom2-1f1’]

(b) Output of the MINI-GPT planner.

Figure 5.17: The trajectory of the solution found by the planner when using only
the states and actions at the first level of the abstraction hierarchy. The plan consists
of ten PPDDL operators, specified by (b).
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m-walktoroom-level-1-de2b

m-walktoroom-level-1-c957
m-walktostaircase-level-1-78db

Start

Goal

0

1 2

3

(a) Trajectory of the discovered plan. The legend specifies the meaning of the coloured
paths, which represent different high-level operators in the full trajectory.

[’m-walktoroom-level-1-de2b’, ’m-walktostaircase-level-1-78db’,
’m-walktoroom-level-1-c957’]

(b) Output of the MINI-GPT planner, which produces a high-level plan consisting of three
higher-order operators to navigate from the start to goal state.

(:method m-walktoroom-Level-1-de2b
:parameters ()
:task (WalkToStairCase-WalkToRoom-WalkToStairCase-WalkToRoom-Level-1)
:precondition (and (notfailed) (symbol_0) (psymbol_1))
:ordered-tasks (and (WalkToDoorway1-87d4) (WalkToRoom2-ef1a)

(WalkToDoorway2-889b) (WalkToRoom2-25eb))
)
(c) An HTN method for the first task in the plan. This method executes when the agent is
in the centre of a room (symbol_0) and in the top-left room on floor 0 (psymbol_1). The
method subsequently executes four lower-level tasks specified by ordered-tasks.
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(:method m-walktostaircase-level-1-78db
:parameters ()
:task (WalkToStairCase-ClimbUp-WalkToStairCase-Level-1)
:precondition (and (psymbol_28) (notfailed) (symbol_0))
:ordered-tasks (and (WalkToStairCase-ef79) (ClimbUp-46f9)

(WalkToStairCase-b87e))
)

(d) An HTN method for the second task in the plan. This method executes when the agent is
in the centre of a room (symbol_0) and in the bottom-right room on floor 0 (psymbol_28).
The method subsequently executes three lower-level tasks specified by ordered-tasks.

(:method m-walktoroom-level-1-c957
:parameters ()
:task (ClimbUp-WalkToStairCase-ClimbUp-Level-1)
:precondition (and (symbol_2) (psymbol_36) (notfailed))
:ordered-tasks (and (ClimbUp-4b94) (WalkToStairCase-652b)

(ClimbUp-a14))
)

(e) An HTN method for the final task in the plan. This method executes when the agent is at
a staircase (symbol_2) and in the bottom-right room on floor 1 (psymbol_36). The method
subsequently executes three lower-level tasks specified by ordered-tasks to reach the final
goal.

Figure 5.18: The trajectory of the solution found by the planner when using states
and actions at all levels of the abstraction hierarchy. (b) The plan consisting of three
methods (converted to PPDDL operators). (c–e) The definition of each of the three
learned methods used in the plan, specified using the Hierarchical Domain Definition
Language (HDDL) [Höller et al. 2019]. Task-specific predicates are highlighted in
red.
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Figure 5.19: Distribution of optimal plan lengths for all pairs of start and goal states.
The blue histogram illustrates plan lengths for a single-level hierarchy, while the
orange histogram is a result of planning with all layers in the hierarchy.
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5.3 Experiments in the Treasure Game

The above results were generated in a relatively simple environment where there
was no opportunity for transfer. In this section, we apply our approach to the
Treasure Game environment first described in Chapter 3. While the options remain
the same, we modify the environment to make it significantly harder—in particular,
our agent space is described by a 144 × 144 pixel window about the agent and a
48×144 window around the inventory. As in Chapter 4, we preprocess these images
using PCA [Pearson 1901] to reduce the dimensionality to 25 and 5 respectively.
Figure 5.20 illustrates a single level in this modified environment together with the
observations before and after preprocessing.

(a)

(b) (c)

Figure 5.20: An example of the Treasure Game environment using pixel observations
as the agent space. (a) A single level indicating the position of the agent at the
bottom of a ladder. (b) The agent space representation, specified as a local window
centred on the agent. (c) A PCA reconstruction of the agent’s observation.

5.3.1 Single-task experiments

We begin by applying our approach to each of the levels individually. For each task
we use uniform random exploration to collect data over 30 episodes, and then con-
struct abstraction hierarchies using the skill-symbol loop outlined in Figure 5.15 and
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the abstraction algorithm from Chapter 3.3 Figure 5.21 illustrates the interleaving
of transition graph construction and subgoal identification for one of the tasks.

As mentioned, the resulting higher-order options can be viewed as STN methods.
We formalise these STN tasks and methods using HDDL [Höller et al. 2019] and visu-
alise the decomposition of several learned tasks. Figure 5.22 illustrates a single STN
task for reaching a particular location along with two of its method decompositions,
while Figure 5.23 shows an STN task constructed at level 3 in the hierarchy.

Finally, we compute the distribution of the length of all pairs of shortest paths
for each of the tasks when using abstractions from varying levels of the hierarchy.
Results for the first two tasks are given by Figure 5.24 and indicate that incorporating
information at increasingly abstract levels of the hierarchy reduces the size of the
graphs.4 Consequently, the maximum planning horizon is shortened, which greatly
simplifies the planning problem.

5.3.2 Transfer with hierarchies

The previous section demonstrates the advantage of learning a hierarchy for a single
task. However, we have yet to quantify the effect of a portable hierarchy. To achieve
this, we construct ten different levels of the Treasure Game, the layouts of which are
listed in Appendix C.1. We then investigate transfer by presenting the agent with
each of the ten tasks in sequence. Given task i, the agent must construct a model of
the task by combining representations learned in the current task with those learned
in previous tasks i− 1, i− 2, . . . , 0. Unlike Chapter 3, portable representations here
consist of not just PPDDL operators, but also STN methods at various levels in the
hierarchy.

To measure the correctness of a learned model, we randomly sample 100 start
and goal states for each task, and compute the optimal plan between them. These
serve as a set of test problems with which we can evaluate a learned model—we
query the learned model with each test problem, and record whether the resulting
plan coincides with the ground-truth plan.

We use the non-portable skills-to-symbols approach [Konidaris et al. 2018] as a
baseline to measure the effect of transfer. Since each task varies in difficulty, we
compare the relative performance of the two approaches. For the baseline approach,
we collect up to 50 episodes’ worth of data for each task, and determine the number
of episodes needed to build a model that maximises the test score. When evaluating
transfer, we determine how many episodes are required to outperform the baseline
for the current task; once this threshold is reached, the agent proceeds on to the
next task. For both approaches, we use uniform random exploration and randomise
the order of tasks over 100 trials.

3The hyperparameters for the procedure are listed in Appendix C.2.
4Histograms for all tasks are provided in Appendix C.3.
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(a) Graph representing M̃1 (b) Identified subgoals in M̃1

(c) Graph representing M̃2 (d) Identified subgoals in M̃2

(e) Graph representing M̃3 (f) Identified subgoals in M̃3

(g) Graph representing M̃4 (h) Identified subgoals in M̃4

Figure 5.21: Our iterative procedure for automatically constructing a hierarchy in a
single level of the Treasure Game.
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(a) Task decomposed into four primitive subtasks.

(:method m-Level-2-0-30d9
:parameters ()
:task (up_ladder-Level-2-b881)
:precondition (and (notfailed) (psymbol_0) (symbol_3))
:ordered-tasks (and (up_ladder_option-25ea) (go_right_option-e2a3)

(jump_right_option-5580) (jump_right_option-fd48))
)

(b) HDDL representation of the method in (a).
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(c) Task decomposed into four primitive subtasks.

(:method m-Level-2-0-1a76
:parameters ()
:task (up_ladder-Level-2-b881)
:precondition (and (notfailed) (symbol_1) (psymbol_2) (symbol_3))
:ordered-tasks (and (go_right_option-40f5) (down_right_option-9b97)

(jump_right_option-1933) (jump_right_option-fd48))
)

(d) HDDL representation of the method in (c).

Figure 5.22: A representation of a single task for reaching a location between a ledge
and flag, along with two of its methods. The dashed arrow indicates the order in
which subtasks must be executed. The red symbol is a problem-specific predicate—a
distribution over problem-space state variables such as the agent’s xy-position—that
must be relearned for a new task.



5.3. EXPERIMENTS IN THE TREASURE GAME 98

(a) Task decomposed into two non-primitive subtasks. Each of these subtasks is further
decomposed into a set of primitive subtasks.
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(:method m-Level-3-a949
:parameters ()
:task (down_left-Level-3-a447)
:precondition (and (symbol_24) (symbol_1) (notfailed) (psymbol_13))
:ordered-tasks (and (down_right-Level-2-1c97) (down_left-Level-2-d5c3))

)

(b) HDDL representation of the method at level 3 of the hierarchy.

(:method m-down_right-Level-2-65b3
:parameters ()
:task (down_right-Level-2-1c97)
:precondition (and (psymbol_13) (notfailed) (symbol_1) (symbol_24))
:ordered-tasks (and (down_ladder_option-362c) (go_left_option-18ab)

(down_left_option-5453) (jump_left_option-84a7))
)

(c) HDDL representation of a method that decomposes the first subtask of (b).

(:method m-down_left-Level-2-ed21
:parameters ()
:task (down_left-Level-2-d5c3)
:precondition (and (notfailed) (psymbol_38) (symbol_30))
:ordered-tasks (and (down_left_option-6e4b) (go_left_option-c084)

(down_ladder_option-460d7))
)

(d) HDDL representation of a method that decomposes the second subtask of (b).

Figure 5.23: A representation of a single task at level 3 of the hierarchy, consisting of
two non-primitive subtasks. The dashed arrow indicates the order in which subtasks
must be executed, while red symbols are problem-specific predicates that must be
relearned for a new task.
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(a) Distribution of optimal plan lengths in the first task when using hierarchies of varying
heights.
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(b) Distribution of optimal plan lengths in the second task when using hierarchies of varying
heights.

Figure 5.24: Distribution of optimal plan lengths for all pairs of start and goal states.
For visualisation purposes, we omit the histograms at levels 3 and 4 of the hierarchy,
since they are very similar to the histogram at level 5.
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We first investigate the effect of transfer on an agent’s sample efficiency. Since
an agent can reuse previous predicates, the model of any single task will poten-
tially consist of predicates learned in the current task, as well as those learned in
previous tasks. We record the proportion of predicates in a task’s model that were
transferred from previous tasks, with the results given by Figure 5.25. We then
measure the number of samples required to learn a model of a new task, with the
results illustrated by Figure 5.26. Although the results exhibit high variance (due
to the exploration strategy, the differences in tasks, and the randomised task order),
sample efficiency is clearly improved when an agent is able to reuse past knowledge.
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Figure 5.25: The proportion of new predicates learned in the current task compared
with previously learned ones. The agent is able to reuse an increasing number
of predicates as it observes more and more tasks. Results are averaged over 100
random task orderings, with the variance indicated by black error bars.

Unfortunately, when considering sample efficiency alone, we observe no advan-
tage to transferring more than one level of the hierarchy. We attribute this result
to a number of factors, the most important of which is the use of uniform random
exploration. In order for a PPDDL operator or STN method to transfer, the agent
must instantiate it with problem-specific predicates. Using undirected exploration
means that the probability of an agent executing all actions along a method’s trajec-
tory (and therefore instantiating it) is inversely proportional to the length of its task
network. Furthermore, higher-order skills are less likely to transfer by definition—
these skills are composed of a long chain of actions at the lowest level, which must
all be executable in precisely the same order for the skill to transfer. While the
tasks share some structure, they have not been specifically designed as a curriculum,
and so long chains of actions in one task are unlikely to be applicable in another.
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Figure 5.26: Number of episodes required to learn a model of a given task. The
amount of data required to learn a task model decreases as the agent observes an
increasing number of tasks. Results are averaged over 100 random task orderings,
with the variance indicated by shaded bars.

Figure 5.27 indicates that the majority of transfer is due to the representations at
the first level of the hierarchy.

Despite this, there are still advantages to transferring all levels of the hierarchy.
Although we do not observe improvements in sample efficiency in aggregate, recall
that the hierarchy is constructed using the PPDDL representation M̃1 itself. As
a result, building a multi-level hierarchy uses the same number of environment
samples as the first level alone. We can therefore expect that transferring a hierarchy
will never worsen sample efficiency. However, one stated advantage of a hierarchical
representation is its effect on planning. To quantify this, we compute the diameter
of the resulting graph—the maximum shortest path length between every pair of
nodes—when restricting transfer to varying levels of the hierarchy. The results
given by Figure 5.28 indicate that transferring all layers of the hierarchy does confer
advantages by reducing the size of the planning horizon. Interestingly, our results
support the findings of Riemer et al. [2018], who learn a hierarchy of increasingly
abstract options, but find that there are diminishing returns as the options become
more abstract.



5.3. EXPERIMENTS IN THE TREASURE GAME 103

1 2 3 4 5 6 7 8 9
Number of tasks seen

10 4

10 3

10 2

10 1

100

Pr
op

or
tio

n 
of

 e
dg

es
 tr

an
sf

er
re

d
Level 1
Level 2
Level 3
Level 4

Figure 5.27: PPDDL operators (blue) make up a significant portion of the transferred
edges. Note that the y-axis is plotted on a log scale. Results are averaged over 100
random task orderings, with the variance indicated by black error bars.
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Figure 5.28: Results are averaged over 100 random task orderings, with the variance
indicated by black error bars.
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5.4 Related Work

There are several approaches to building a multi-level hierarchy using state and
action abstraction. As mentioned, Konidaris [2016] constructs a hierarchy of in-
creasingly abstract representations using a skill-symbol loop. However, only deter-
ministic tasks are accounted for, and the skills at each level of the hierarchy are
handcrafted. Riemer et al. [2018] learn a hierarchy of increasingly abstract actions
in an end-to-end manner using a neural network. Much like our approach, actions
at level i consist of a sequence of actions at i− 1. However, the state space remains
the same as in the original MDP.

Hengst [2002] decomposes an MDP into sub-MDPs by ordering state variables
based on how often they change. Variables are grouped into MDPs at various levels
depending on how often they change—those that change frequently serve as lower-
level MDPs—and transition dynamics between these decompositions are learned.
Barry et al. [2011] aggregate MDP states into clusters while attempting to minimise
both the number of transitions between abstract states under an optimal policy, and
the variance in state values within each cluster. This results in a two-level hierarchy,
consisting of a high-level policy for transitioning between abstract states, and a low-
level one for acting within any cluster. In both of these cases, the algorithms only
succeed if transitions between the high-level abstractions occur with probability 1,
which is not the case in stochastic environments.

Other approaches model the causal relationships between state variables of fac-
tored MDPs [Boutilier et al. 1995], and then learn options to modify these variables
[Jonsson and Barto 2006; Vigorito and Barto 2010]. The original MDP is decom-
posed into option-specific tasks which are significantly easier to solve: since only a
subset of state variables are causally related to the one modified by the option, the
remaining variables can be ignored. In all of the above, the hierarchy cannot be
reused when an agent encounters a new domain.

An alternate approach is MAXQ framework [Dietterich 2000; Mehta et al. 2008],
which decomposes an MDP into a hierarchy of subtasks with associated subgoals.
However, there is no model to capture transitions between higher-order abstractions
in the hierarchy, and so planning cannot be done at an abstract level. The Abstract
MDP framework [Gopalan et al. 2017] allows for transitions to occur at varying lev-
els of abstraction, and demonstrates that using a hierarchy can significantly improve
planning. However, the hierarchy itself is hand-designed.

Recent work has focused on feudal RL [Dayan and Hinton 1993], where high-
level layers in the hierarchy provide information to layers below them. For example,
Nachum et al. [2018; 2019] construct a two-level hierarchy, where the top layer
proposes goals for the lower level to attain. Levy et al. [2019] extend this approach
to learn a multi-level hierarchy using hindsight experience replay [Andrychowicz
et al. 2017]. Hejna et al. [2020] adopt a similar two-level approach, but divide the
state space into agent- and problem-space state variables. The top layer proposes
goals in problem space, and the lower layer learns how to achieve them. This allows
for transfer between agents—since the top layer can be reused, only the lower layer
must be relearned. Christen et al. [2021] assume that the problem space consists
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of a top-down map, and train a neural network to predict the value function given
the map and goal location [Nardelli et al. 2018]. The top layer is therefore able
to generalise over new maps, resulting in improved transfer in new configurations.
All of these approaches are model-free, and do not produce explicit representations
that can be used by planners.

Saxe et al. [2017] use the linearly-solvable MDP (LMDP) framework [Todorov
2007] to construct a hierarchy of LMDPs, where higher layers share reward infor-
mation with lower layers, allowing for planning at various levels. However, LMDPs
require a predefined “passive dynamics” model, which is quadratic in the number
of states. It is therefore unclear how to extend this approach beyond the tabular
setting.

Finally, our approach results in the construction of STN tasks and methods. Other
approaches to learning how best to decompose HTN tasks into methods exist [Zhuo
et al. 2009; Hogg et al. 2010]; however, in these cases the symbolic vocabulary is
already given.

5.5 Conclusion

We have outlined a method for autonomously constructing a hierarchy of abstrac-
tions given an initial set of options. These hierarchies can be learned from contin-
uous, high-dimensional environments, and are constructed in the absence of any
particular goal information. They are thus suitable for planning in any future task
an agent may encounter. The hierarchies can also be transferred to new tasks where,
although sample efficiency is not significantly improved, planning is made more
efficient.

Although we have shown that a portable hierarchy can be learned and trans-
ferred to new tasks, our approach raises many new questions about exploration,
how best to discover higher-order options, and how best to plan with them. For
example, our resulting representations can be viewed as STN tasks and methods.
Unfortunately, owing to shortcomings of HTN planners, we cannot directly lever-
age this formulation. We discuss potential solutions to these problems and other
avenues for research in the next chapter.



Chapter 6

Conclusion

Our aim in this thesis was to develop techniques for autonomously learning reusable
symbolic representations. To this end, we proposed three approaches: first, we
showed how to learn an agent-centric representation that can be used for symbolic
planning. These representations can be transferred to new tasks, reducing the num-
ber of times an agent is required to interact with the world. We then extended
this approach to learn transferable object-centric representations, allowing us to
construct parameterised symbolic representations that have long been staples in
classical planning. Finally, we showed how to construct a portable hierarchy of ab-
stractions that can be used to plan at different levels. Altogether, our results indicate
that the learned abstractions can be reused in new tasks, reducing the number of
times an agent is required to interact with its environment. This improvement in
sample efficiency will be critical to scaling symbol acquisition approaches to real
world tasks in the future.

6.1 Future work

There are, of course, several ways that these approaches can be directly improved.
One particular avenue is to use feedback from the various system components to
improve the symbol acquisition process. For example, in our implementations, pred-
icates learned in one task were “frozen” and transferred to subsequent tasks. How-
ever, these predicates may capture the idiosyncrasies of the task in which they were
learned. We may therefore be able to use data from a new task to refine these sym-
bols and maximise their generalisability. Another potential source of feedback is the
planner itself. For example, if the planner outputs a solution that is not executable
in the real domain, it suggests that the agent may have learned an “invalid” symbol.
This could occur because the agent only uses a finite amount of data to construct the
symbols, and so may have overgeneralised its experience. Such information could
be used to identify symbols that should be refined (e.g. by collecting more data) or
discarded. These feedback loops would result in a more robust system overall.

In our experiments, we adopted the underlying machine learning algorithms first
used by Konidaris et al. [2018]—partitioning was accomplished with the DBSCAN
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algorithm, and the preconditions and effects were learned using support vector
machines and kernel density estimators respectively. Furthermore, we used principal
component analysis to reduce the dimensionality of state spaces. These techniques
were advantageous for two reasons: they allowed us to be consistent with prior work,
and they are extremely sample efficient. An alternative approach is to use neural
networks, and train classifiers and density estimators in an end-to-end manner with
stochastic gradient descent [Rumelhart et al. 1986]. While neural networks are
likely more robust and capable of better generalisation, they require magnitudes
more data to train. Additionally, it is not immediately clear how to incorporate
factors, nor how best to perform partitioning and effect estimation for image-based
input. A promising direction for future work is therefore to investigate whether
approaches such as mixture density networks [Bishop 1994] and deep clustering
techniques [Caron et al. 2018] are suited to the task, and quantify the tradeoffs
thereof.

One goal of this work is to learn representations that can be used by existing
planners, leveraging decades of work in the planning community. To this end, our
agent learned representations described using PPDDL. This was necessary because
the low-level MDP was stochastic, and so probabilistic effects must be accounted
for. Unfortunately, recent versions of PDDL only support deterministic planning
[Gerevini et al. 2009], which restricts the set of planners available to us. Modifying
our approach to produce an alternate planning language, such as the more recent
Relational Dynamic Influence Diagram Language (RDDL) [Sanner 2010], would
make our methods applicable to a wider variety of off-the-shelf planners.

Our approach is similarly restricted when it comes to hierarchical planning—in
Chapter 5 we observe an objective mismatch between HTN and classical planners.
Since MDPs are goal-oriented, we were required to convert our STN methods to
classical representations. However, it is possible to combine the two approaches.
For example, Shivashankar et al. [2013] propose a goal-oriented HTN formalism,
while Gerevini et al. [2008] run classical and HTN planners in parallel, deciding
which one to use based on the current context. Applying similar approaches to our
work will likely improve planning efficiency even further.

Finally, recall that our overall aim is to develop agents capable of operating
beyond the restrictions imposed by MDPs. While we show how to learn representa-
tions in an agent- and object-centric manner, the agent is still required to include
additional variables in the state descriptor. This allows the agent to disambiguate
similar-looking states, but necessitates a human designer’s input. Future work
should therefore focus on removing this requirement by allowing the agent to in-
fer this additional information from observations. For example, navigation-based
agents could perform simultaneous localisation and mapping [Leonard and Durrant-
Whyte 1991], and use the output to disambiguate similar egocentric observations.
Additionally, we assumed in Chapter 4 that the agent was able to individuate objects
and had knowledge of which particular object it was interacting with. Removing
these assumptions (for example, by applying techniques that can extract objects
from scenes [Yuan et al. 2021]) will serve as another step towards truly autonomous
agents.
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6.2 Discussion

Beyond the immediate extensions above, our work suggests broader avenues for
future research. There are, for example, several implications for skill acquisition.
Our work suggests that acquiring skills is critical, since they are used to subsequently
generate symbolic representations and object types. In order to construct precondi-
tions and effects, however, we require that the skills have the subgoal property, but
the clustering method used to achieve this is fragile and error-prone. However, this
issue could be obviated by simply learning subgoal options initially. This suggests
that option discovery methods that “funnel” an agent towards a set of termination
states are highly desirable. Additionally, since we wish to chain sequences of skills,
options should be learned such that the termination set of one overlaps with the
initation set of another, as in approaches such as skill chaining [Konidaris and Barto
2009b; Bagaria and Konidaris 2019]. While options have generally been learned
with the aim of improving policy learning in a model-free context [Sutton et al.
1999; Bacon et al. 2017], focusing instead on their implications for constructing
useful and compact abstract representations may provide new insights into tackling
the skill acquisition problem.

Since we are ultimately interested in agents that can solve multiple tasks, learn-
ing portable options is also an important goal. This suggests that future work focus
on learning factored skills, whose initiation sets, policies and termination conditions
are defined over as few state variables as possible. Reducing the dependence on the
number of state variables will help prevent options from overfitting to the task in
which they were learned, and maximise their probability of being useful in other
tasks. Estimating the effects of such options would also be made easier, since we
need not estimate a distribution over the entire state space. Learned options that
explicitly modify only a small number of state variables have been the subject of
recent work [Allen et al. 2021a], and progress in this direction will likely result in
more useful and portable symbolic representations.

The ability to autonomously generate symbolic tasks and domains also suggests a
further direction on the planning front. The generated domains often consist of tens
or hundreds of duplicate predicates, extraneous operators and noisy symbols. Future
work may therefore consider the construction of planners specifically designed to
operate in such cases, instead of the clean hand-designed domains currently in
use. For example, Helmert [2006] uses a causality graph to ignore irrelevant lifted
predicates, while Kumar et al. [2020] use knowledge of the start and goal states
to remove both predicates and real-valued symbols from the domain. Work in this
direction could be used in conjunction with our framework to tackle extremely large
environments.
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Finally, the most salient question raised is how best to perform exploration within
this framework. While Andersen and Konidaris [2017] propose a method for explo-
ration that minimises a model’s uncertainty within a single task, extensions to the
multitask case present a number of challenges. In particular, how can we leverage
operators from previous tasks to improve learning a model in a new task? Further-
more, as observed in Chapter 5, these operators may exist at different levels of the
hierarchy. Addressing this problem adequately is a key challenge in the short term,
and will likely lead to a significant increase in an agent’s sample efficiency.

6.3 Concluding remarks

Reinforcement learning has made great strides in recent years, and has been used
to solve a number of grand challenges [Silver et al. 2017; 2018]. Although these
are important milestones, the sample (in)efficiency of these approaches means they
are unlikely to be applicable in the real world. More importantly, though, these
approaches make an unacknowledged yet ultimately fatal assumption—namely, that
MDPs are real.

This thesis reflects the belief that artificial intelligent agents must, ultimately, be
capable of operating in the real world. Since real agents can only observe the world
through their sensors, they must necessarily be able to learn sufficiently accurate
and compact representations of any task they may be required to solve. The agent
may decide to encode a task as an MDP or a PPDDL domain, or any other number
of representations, but whatever the case, they must be autonomously constructed
given only what is available to the agent—its sensory observations. To achieve
this, we require algorithms capable of successfully learning when operating in noisy
observation spaces that are typical of the hardware sensors an agent might possess,
as opposed to the clean Markovian state spaces currently in use.

Furthermore, a hallmark of human intelligence is our ability to tackle a massively
diverse array of tasks. Importantly, though, we do not achieve (nor strive for)
optimality—no one individual is simultaneously the best golfer, the best pianist and
the best chess player. Rather, we define intelligence as being able to perform all
of these tasks, and more, with a modicum of success. This suggests that the focus
of future work should revolve around agents that can achieve competence across a
large number of tasks directly from sensor data.

To see why we should aim for multitask competency, consider the game of chess.
For many decades, defeating the world champion in chess was seen as the desirable
goal in artificial intelligence research. However, because the aim was to outperform
all humans, approaches were designed with this narrow task in mind, and therefore
used specialised data structures and compressed representations that simplified the
problem dramatically. Consequently, having designed a super-human chess agent,
we discovered that we had learned less about how to design an intelligent agent,
and more about how best to build a chess-playing program!

In our view, a grander challenge would be to develop a physical agent capable of
playing a reasonable game of chess on a real chess board, given only its observations
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and innate action space. Such an agent would need to learn a representation that
encodes the position of the pieces and the general rules, while being agnostic to
the surrounding conditions, such as lighting, size of the pieces, colour of the board,
and so on. Furthermore, the same agent should then be able to apply the same
techniques to play checkers, backgammon and Go, with the ultimate aim of being
able to competently solve as many tasks as possible.

Taken as a whole, the methods presented in this work allow us to develop agents
that are able to acquire high-level concepts that are abstracted away from low-level
observations from which they were learned. Although there is still much to be done,
we believe that this thesis represents a step towards the ultimate goal of constructing
generally intelligent artificial agents.



References

[Agre and Chapman 1987] P. Agre and D. Chapman. Pengi: An implementation of
a theory of activity. In Proceedings of the Sixth National Conference on Artificial
Intelligence, volume 87, pages 286–272, 1987.

[Ahmetoglu et al. 2020] A. Ahmetoglu, M. Seker, A. Sayin, S. Bugur, J. Piater, E. Oz-
top, and E. Ugur. DeepSym: Deep symbol generation and rule learning
from unsupervised continuous robot interaction for planning. arXiv preprint
arXiv:2012.02532, 2020.

[Aineto et al. 2019] D. Aineto, S. Celorrio, and E. Onaindia. Learning action mod-
els with minimal observability. Artificial Intelligence, 275:104–137, 2019.

[Alford et al. 2009] R. Alford, U. Kuter, and D. Nau. Translating HTNs to PDDL: A
small amount of domain knowledge can go a long way. In Proceedings of the
21st International Joint Conference on Artificial Intelligence, pages 1629–1634,
2009.

[Alford et al. 2016] R. Alford, H. Behnke, D. Höller, P. Bercher, S. Biundo, and
D. Aha. Bound to plan: Exploiting classical heuristics via automatic trans-
lations of tail-recursive HTN problems. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 26, 2016.

[Allen et al. 2021a] C. Allen, M. Katz, T. Klinger, G. Konidaris, M. Riemer, and
G. Tesauro. Efficient black-box planning using macro-actions with focused
effects. In Proceedings of the 30th International Joint Conference on Artificial
Intelligence, pages 4024–4031, 2021.

[Allen et al. 2021b] C. Allen, N. Parikh, O. Gottesman, and G. Konidaris. Learning
Markov state abstractions for deep reinforcement learning. In Advances in
Neural Information Processing Systems, 2021.

[Ames et al. 2018] B. Ames, A. Thackston, and G. Konidaris. Learning symbolic
representations for planning with parameterized skills. In Proceedings of
the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2018.

[Amir and Chang 2008] E. Amir and A. Chang. Learning partially observable deter-
ministic action models. Journal of Artificial Intelligence Research, 33:349–402,
2008.



REFERENCES 112

[Andersen and Konidaris 2017] G. Andersen and G. Konidaris. Active exploration
for learning symbolic representations. In Advances in Neural Information
Processing Systems, pages 5016–5026, 2017.

[Andrychowicz et al. 2017] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba. Hind-
sight experience replay. In Advances in Neural Information Processing Systems,
2017.

[Asai and Fukunaga 2018] M. Asai and A. Fukunaga. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[Asai and Muise 2020] M. Asai and C. Muise. Learning neural-symbolic descriptive
planning models via cube-space priors: The voyage home (to STRIPS). In
Proceedings of the 29th International Joint Conference on Artificial Intelligence,
2020.

[Asai 2019] M. Asai. Unsupervised grounding of plannable first-order logic rep-
resentation from images. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 29, pages 583–591, 2019.

[Bacon et al. 2017] P. Bacon, J. Harb, and D. Precup. The option-critic architecture.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[Badia et al. 2020] A. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi,
Z. Guo, and C. Blundell. Agent57: Outperforming the Atari human benchmark.
In Proceedings of the International Conference on Machine Learning, pages 507–
517. PMLR, 2020.

[Bagaria and Konidaris 2019] A. Bagaria and G. Konidaris. Option discovery using
deep skill chaining. In International Conference on Learning Representations,
2019.

[Bajpai and Garg 2018] A. Bajpai and S. Garg. Transfer of deep reactive policies for
MDP planning. In Advances in Neural Information Processing Systems, pages
10988–10998, 2018.

[Barry et al. 2011] J. Barry, L. Kaelbling, and T. Lozano-Pérez. DetH*: Approximate
hierarchical solution of large Markov decision processes. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence, 2011.

[Barto and Mahadevan 2003] A. Barto and S. Mahadevan. Recent advances in hi-
erarchical reinforcement learning. Discrete Event Dynamic Systems, 13(4):341–
379, 2003.

[Beattie et al. 2016] C. Beattie, J. Leibo, D. Teplyashin, T. Ward, M. Wainwright,
H. Küttler, A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al. DeepMind lab.
arXiv preprint arXiv:1612.03801, 2016.

[Bellman 1957] R. Bellman. Dynamic Programming. Princeton University Press,
1957.



REFERENCES 113

[Bertsekas and Tsitsiklis 1991] D. Bertsekas and J. Tsitsiklis. An analysis of stochas-
tic shortest path problems. Mathematics of Operations Research, 16(3):580–
595, 1991.

[Bishop 1994] C. Bishop. Mixture density networks. Technical report, Aston Univer-
sity, 1994.

[Bonet and Geffner 1999] B. Bonet and H. Geffner. Planning as heuristic search:
New results. In European Conference on Planning, pages 360–372. Springer,
1999.

[Bonet and Geffner 2003] B. Bonet and H. Geffner. Labeled RTDP: Improving
the convergence of real-time dynamic programming. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 3,
pages 12–21, 2003.

[Bonet and Geffner 2005] B. Bonet and H. Geffner. mGPT: A probabilistic planner
based on heuristic search. Journal of Artificial Intelligence Research, 24:933–
944, 2005.

[Bonet and Geffner 2020] B. Bonet and H. Geffner. Learning first-order symbolic
representations for planning from the structure of the state space. In European
Conference on Artificial Intelligence, 2020.

[Bonet et al. 2019] B. Bonet, G. Frances, and H. Geffner. Learning features and
abstract actions for computing generalized plans. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 2703–2710, 2019.

[Botvinick and Weinstein 2014] M. Botvinick and A. Weinstein. Model-based hi-
erarchical reinforcement learning and human action control. Philosophical
Transactions of the Royal Society B: Biological Sciences, 369(1655):20130480,
2014.

[Boutilier et al. 1995] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting
structure in policy construction. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, volume 14, pages 1104–1113, 1995.

[Boutilier et al. 2000] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic
dynamic programming with factored representations. Artificial Intelligence,
121(1):49–107, 2000.

[Caron et al. 2018] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep cluster-
ing for unsupervised learning of visual features. In Proceedings of the European
Conference on Computer Vision, pages 132–149, 2018.

[Chapman and Kaelbling 1991] D. Chapman and L. Kaelbling. Input generalization
in delayed reinforcement learning: An algorithm and performance compar-
isons. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence, volume 91, pages 726–731, 1991.

[Chemero 2003] A. Chemero. An outline of a theory of affordances. Ecological
Psychology, 15(2):181–195, 2003.



REFERENCES 114

[Chevalier-Boisvert et al. 2018] M. Chevalier-Boisvert, L. Willems, and S. Pal. Min-
imalistic Gridworld Environment for OpenAI Gym. https://github.com/
maximecb/gym-minigrid, 2018.

[Christen et al. 2021] S. Christen, L. Jendele, E. Aksan, and O. Hilliges. Learning
functionally decomposed hierarchies for continuous control tasks with path
planning. IEEE Robotics and Automation Letters, 6(2):3623–3630, 2021.

[Cortes and Vapnik 1995] C. Cortes and V. Vapnik. Support-vector networks. Ma-
chine Learning, 20(3):273–297, 1995.

[Coulom 2006] R. Coulom. Efficient selectivity and backup operators in Monte-
Carlo tree search. In International Conference on Computers and Games, pages
72–83. Springer, 2006.

[Dayan and Hinton 1993] P. Dayan and G. Hinton. Feudal reinforcement learning.
Advances in Neural Information Processing Systems, 1993.

[de Bruin et al. 2018] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška. Integrating
state representation learning into deep reinforcement learning. IEEE Robotics
and Automation Letters, 3(3):1394–1401, 2018.

[Dean and Givan 1997] T. Dean and R. Givan. Model minimization in Markov de-
cision processes. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 106–111, 1997.

[Dietterich 2000] T. Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artificial Intelligence Research,
13(1):227–303, 2000.

[Dijkstra 1959] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[Diuk et al. 2008] C. Diuk, A. Cohen, and M. Littman. An object-oriented represen-
tation for efficient reinforcement learning. In Proceedings of the International
Conference on Machine Learning, pages 240–247, 2008.

[Dubey et al. 2018] R. Dubey, P. Agrawal, D. Pathak, T. Griffiths, and A. Efros.
Investigating human priors for playing video games. In Proceedings of the
International Conference on Machine Learning, 2018.

[Ester et al. 1996] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In 2nd
International Conference on Knowledge Discovery and Data Mining, volume 96,
pages 226–231, 1996.

[Eysenbach et al. 2019] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity
is all you need: Learning skills without a reward function. In International
Conference on Learning Representations, 2019.

[Fikes and Nilsson 1971] R. Fikes and N. Nilsson. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial Intelligence,
2(3-4):189–208, 1971.

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid


REFERENCES 115

[Finn et al. 2016] C. Finn, X. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel.
Deep spatial autoencoders for visuomotor learning. In Proceedings of the 2016
IEEE International Conference on Robotics and Automation, pages 512–519,
2016.

[Finn et al. 2017] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In Proceedings of the International
Conference on Machine Learning, pages 1126–1135, 2017.

[Finney et al. 2002] S. Finney, N. Gardiol, L. Kaelbling, and T. Oates. The thing
that we tried didn’t work very well: Deictic representation in reinforcement
learning. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence, pages 154–161, 2002.

[Gerevini et al. 2008] A. Gerevini, U. Kuter, D. Nau, A. Saetti, and N. Waisbrot.
Combining domain-independent planning and HTN planning: The Duet plan-
ner. In European Conference on Artificial Intelligence, pages 573–577, 2008.

[Gerevini et al. 2009] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos.
Deterministic planning in the fifth international planning competition: PDDL3
and experimental evaluation of the planners. Artificial Intelligence, 173(5-
6):619–668, 2009.

[Ghallab et al. 2004] M. Ghallab, D. Nau, and P. Traverso. Automated Planning:
theory and practice. Elsevier, 2004.

[Givan et al. 2003] R. Givan, T. Dean, and M. Greig. Equivalence notions and
model minimization in Markov decision processes. Artificial Intelligence,
147(1):163–223, 2003.

[Gopalan et al. 2017] N. Gopalan, M. Littman, J. MacGlashan, S. Squire, S. Tellex,
J. Winder, M. desJardines, and L. Wong. Planning with abstract Markov
decision processes. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 27, 2017.

[Gopalan et al. 2020] N. Gopalan, E. Rosen, G. Konidaris, and S. Tellex. Simultane-
ously learning transferable symbols and language groundings from perceptual
data for instruction following. Robotics: Science and Systems XVI, 2020.

[Guazzelli et al. 1998] A. Guazzelli, M. Bota, F. Corbacho, and M. Arbib. Affor-
dances, motivations, and the world graph theory. Adaptive Behavior, 6(3-
4):435–471, 1998.

[Guestrin et al. 2003] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Gener-
alizing plans to new environments in relational MDPs. In Proceedings of the
18th International Joint Conference on Artificial Intelligence, pages 1003–1010,
2003.

[Guss et al. 2019] W. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani,
S. Mohanty, D. Liebana, R. Salakhutdinov, N. Topin, et al. The MineRL
competition on sample efficient reinforcement learning using human priors.
arXiv preprint arXiv:1904.10079, 2019.



REFERENCES 116

[Hafner et al. 2019] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson. Learning latent dynamics for planning from pixels. In Proceedings
of the International Conference on Machine Learning, pages 2555–2565, 2019.

[Hafner et al. 2021] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering
Atari with discrete world models. In International Conference on Learning
Representations, 2021.

[Halbritter and Geibel 2007] F. Halbritter and P. Geibel. Learning models of re-
lational MDPs using graph kernels. In Mexican International Conference on
Artificial Intelligence, pages 409–419. Springer, 2007.

[Hart et al. 1968] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[Hejna et al. 2020] D. Hejna, L. Pinto, and P. Abbeel. Hierarchically decoupled imi-
tation for morphological transfer. In Proceedings of the International Conference
on Machine Learning, pages 4159–4171. PMLR, 2020.

[Helmert 2006] M. Helmert. The fast downward planning system. Journal of
Artificial Intelligence Research, 26:191–246, 2006.

[Hengst 2002] B. Hengst. Discovering hierarchy in reinforcement learning with
HEXQ. In Proceedings of the International Conference on Machine Learning,
volume 19, pages 243–250, 2002.

[Higgins et al. 2017] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel,
M. Botvinick, C. Blundell, and A. Lerchner. DARLA: Improving zero-shot trans-
fer in reinforcement learning. In Proceedings of the International Conference
on Machine Learning, pages 1480–1490, 2017.

[Hogg et al. 2010] C. Hogg, U. Kuter, and H. Munoz-Avila. Learning methods to
generate good plans: Integrating HTN learning and reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 24, 2010.

[Höller et al. 2019] D. Höller, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier,
and R. Alford. HDDL—A language to describe hierarchical planning problems.
In International Workshop on HTN Planning (ICAPS), 2019.

[Houthooft et al. 2016] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck,
and P. Abbeel. VIME: Variational information maximizing exploration. In
Advances in Neural Information Processing Systems, pages 1117–1125, 2016.

[Howard 1960] R. Howard. Dynamic programming and Markov processes. MIT
Press, 1960.

[James et al. 2020] S. James, B. Rosman, and G. Konidaris. Learning to plan with
portable symbols. In Proceedings of the International Conference on Machine
Learning, pages 4682–4691. PMLR, 2020.



REFERENCES 117

[Jetchev et al. 2013] N. Jetchev, T. Lang, and M. Toussaint. Learning grounded
relational symbols from continuous data for abstract reasoning. In Proceedings
of the 2013 ICRA Workshop on Autonomous Learning, 2013.

[Jinnai et al. 2019] Y. Jinnai, J. Park, D. Abel, and G. Konidaris. Discovering options
for exploration by minimizing cover time. In Proceedings of the International
Conference on Machine Learning, pages 3130–3139. PMLR, 2019.

[Johnson et al. 2016] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The
Malmo platform for artificial intelligence experimentation. In Proceedings of
the 25th International Joint Conference on Artificial Intelligence, pages 4246–
4247, 2016.

[Jong and Stone 2005] N. Jong and P. Stone. State abstraction discovery from irrel-
evant state variables. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence, volume 8, pages 752–757, 2005.

[Jonschkowski and Brock 2015] R. Jonschkowski and O. Brock. Learning state rep-
resentations with robotic priors. Autonomous Robots, 39(3):407–428, 2015.

[Jonsson and Barto 2006] A. Jonsson and A. Barto. Causal graph based decompo-
sition of factored MDPs. Journal of Machine Learning Research, 7(11), 2006.

[Kaelbling and Lozano-Pérez 2011] L. Kaelbling and T. Lozano-Pérez. Hierarchi-
cal task and motion planning in the now. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, pages 1470–1477, 2011.

[Kaelbling and Lozano-Pérez 2017] L. Kaelbling and T. Lozano-Pérez. Learning
composable models of parameterized skills. In Proceedings of the 2017 IEEE
International Conference on Robotics and Automation, pages 886–893, 2017.

[Kempka et al. 2016] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
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[Şahin et al. 2007] E. Şahin, M. Cakmak, M. Doğar, E. Uğur, and G. Üçoluk. To
afford or not to afford: A new formalization of affordances toward affordance-
based robot control. Adaptive Behavior, 15(4):447–472, 2007.

[Sanner 2010] S. Sanner. Relational Dynamic Influence Diagram Language (RDDL):
Language Description. Technical report, 2010.

[Saxe et al. 2017] A. Saxe, A. Earle, and B. Rosman. Hierarchy through composi-
tion with multitask LMDPs. In Proceedings of the International Conference on
Machine Learning, pages 3017–3026. PMLR, 2017.

[Schrittwieser et al. 2020] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan,
L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al. Mas-
tering Atari, Go, chess and shogi by planning with a learned model. Nature,
588(7839):604–609, 2020.

[Sherstov and Stone 2005] A. Sherstov and R. Stone. Improving action selection
in MDPs via knowledge transfer. In Proceedings of the Twentieth National
Conference on Artificial Intelligence, volume 5, pages 1024–1029, 2005.



REFERENCES 122

[Shivashankar et al. 2013] V. Shivashankar, R. Alford, U. Kuter, and D. Nau. The
GoDeL planning system: A more perfect union of domain-independent and
hierarchical planning. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, 2013.

[Silver et al. 2016] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
et al. Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

[Silver et al. 2017] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the
game of Go without human knowledge. Nature, 550(7676):354, 2017.

[Silver et al. 2018] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science, 362(6419):1140–1144, 2018.
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Appendix A

Agent-Centric Representations

A.1 PPDDL description for the navigation task

The following is the full PDDL description for the toy navigation domain presented
in Section 3.4.
; Automatically generated ToyDomainV0 domain PPDDL file.
(define (domain ToyDomain)

(:requirements :strips :probabilistic-effects :conditional-effects :rewards :fluents)
(:predicates

(notfailed)
(wall-junction)
(window-junction)
(dead-end)

)

(:functions (partition))

;Action Inward-partition-0
(:action Inward_0
:parameters()
:precondition (and (dead-end) (notfailed))
:effect (and (when (= (partition) 6) (and (wall-junction)

(not (dead-end)
(decrease (reward) 1.00)
(assign (partition) 5))))

(when (= (partition) 3) (and (wall-junction)
(not (dead-end)

(decrease (reward) 1.00)
(assign (partition) 4))))

(when (= (partition) 1) (and (window-junction)
(not (dead-end)

(decrease (reward) 1.00)
(assign (partition) 2))))

(when (= (partition) 8) (and (window-junction)
(not (dead-end)

(decrease (reward) 1.00)
(assign (partition) 7))))

)
)

;Action Outward-partition-0
(:action Outward_1
:parameters()
:precondition (and (wall-junction) (notfailed))
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:effect (and (when (= (partition) 2) (and (dead-end)
(not (wall-junction)

(decrease (reward) 1.00)
(assign (partition) 1))))

(when (= (partition) 5) (and (dead-end)
(not (wall-junction)

(decrease (reward) 1.00)
(assign (partition) 6))))

(when (= (partition) 4) (and (dead-end)
(not (wall-junction)

(decrease (reward) 1.00)
(assign (partition) 3))))

(when (= (partition) 7) (and (dead-end)
(not (wall-junction)

(decrease (reward) 1.00)
(assign (partition) 8))))

)
)

;Action Outward-partition-0
(:action Outward_2
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 2) (and (dead-end)

(not (window-junction)
(decrease (reward) 1.00)
(assign (partition) 1))))

(when (= (partition) 5) (and (dead-end)
(not (window-junction)

(decrease (reward) 1.00)
(assign (partition) 6))))

(when (= (partition) 4) (and (dead-end)
(not (window-junction)

(decrease (reward) 1.00)
(assign (partition) 3))))

(when (= (partition) 7) (and (dead-end)
(not (window-junction)

(decrease (reward) 1.00)
(assign (partition) 8))))

)
)

;Action Clockwise-partition-0
(:action Clockwise_3
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 4) (and (window-junction)

(not (wall-junction)
(decrease (reward) 1.00)
(assign (partition) 2))))

(when (= (partition) 5) (and (window-junction)
(not (wall-junction)

(decrease (reward) 1.00)
(assign (partition) 7))))

)
)

;Action Clockwise-partition-1
(:action Clockwise_4
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 7) (and (wall-junction)

(not (window-junction)
(decrease (reward) 1.00)
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(assign (partition) 4))))
(when (= (partition) 2) (and (wall-junction)

(not (window-junction)
(decrease (reward) 1.00)
(assign (partition) 5))))

)
)

;Action Anticlockwise-partition-0
(:action Anticlockwise_5
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 7) (and (wall-junction)

(not (window-junction)
(decrease (reward) 1.00)
(assign (partition) 5))))

(when (= (partition) 2) (and (wall-junction)
(not (window-junction)

(decrease (reward) 1.00)
(assign (partition) 4))))

)
)

;Action Anticlockwise-partition-1
(:action Anticlockwise_6
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 4) (and (window-junction)

(not (wall-junction)
(decrease (reward) 1.00)
(assign (partition) 7))))

(when (= (partition) 5) (and (window-junction)
(not (wall-junction)

(decrease (reward) 1.00)
(assign (partition) 2))))

)
)

)
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A.2 Hyperparameters for the Rod-and-Block domain

Algorithm Hyperparameter Value(s)

DBSCAN neighbourhood ε 0.03

Feature selection
(see Figure 2.8) threshold ε 0.02

SVM
C grid search over [1, 16)

γ grid search over [5, 20)

KDE bandwidth grid search over [0.001, 0.1)

Linking
(see Section 3.5) neighbourhood ε 0.03

Table A.1: Hyperparameters used for constructing a PPDDL representation of the
Rod-and-Block domain.
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A.3 Hyperparameters for the Treasure Game domain

Algorithm Hyperparameter Value(s)

DBSCAN neighbourhood ε 0.05

Feature selection
(see Figure 2.8) threshold ε 0.02

SVM
C grid search over [2, 16)

γ grid search over [0.01, 4)

KDE bandwidth grid search over [0.001, 0.1)

Linking
(see Section 3.5) neighbourhood ε 0.05

Table A.2: Hyperparameters used for constructing a PPDDL representation of the
Treasure Game domain.
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A.4 Learned operators for the Rod-and-Block task

(a)
Precondition
of GoLeft1

(b) Negative
effect of
GoLeft1

(c) Positive
effect of
GoLeft1

(d)
Precondition
of GoLeft2

(e) Negative
effect of
GoLeft2

(f) Positive
effect of
GoLeft2

(g)
Precondition
of GoLeft3

(h) Negative
effect of
GoLeft3

(i) Positive
effect of
GoLeft3

(j)
Precondition
of GoRight1

(k) Negative
effect of
GoRight1

(l) Positive
effect of
GoRight1

(m)
Precondition
of RotateUp
Clockwise1

(n) Negative
effect of
RotateUp

Clockwise1

(o) Positive
effect of
RotateUp

Clockwise1

Figure A.1: A subset of symbolic rules learned for a Rod-and-Block task.
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A.5 Learned operators for the Treasure Game task

(a)
Precondition
of UpLadder

(b) Negative
effect of
UpLadder

(c) Positive
effect of
UpLadder

(d)
Precondition
of GoLeft1

(e) Negative
effect of
GoLeft1

(f) Positive
effect of
GoLeft1

(g)
Precondition
of DownLeft1

(h) Negative
effect of

DownLeft1

(i) Positive
effect of

DownLeft1

(j)
Precondition
of Interact1

(k) Negative
effect of

Interact1

(l) Positive
effect of

Interact1

(m)
Precondition
of Interact3

(n) Negative
effect of

Interact3

(o) Positive
effect of

Interact3

Figure A.2: A subset of symbolic rules learned in Level 1



A.6. TREASURE GAME LEVEL LAYOUTS 132

A.6 Treasure Game level layouts

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

(e) Level 5 (f) Level 6
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(g) Level 7 (h) Level 8

(i) Level 9 (j) Level 10



Appendix B

Object-Centric Representations

B.1 Pseudocode

Below we present pseudocode describing our approach to building a typed, object-
centric PPDDL representation for an arbitrary domain.

1: procedure LEARNREPRESENTATION

2: Given: T state-option transitions Dataset = {(di, si, oi, d′i, s′i) | 0 ≤ i ≤ T},
set of objectsM

3: . Partition options into subgoal options
4: SubgoalOptions ← ∅
5: for each o ∈ O do
6: I ← {d | (d, ·, o, ·, ·) ∈ Dataset} . Set of initial states for option o
7: β ← {d′ | (·, ·, o, d′, ·) ∈ Dataset} . Set of terminating states for option o
8: for all K ⊆ I such that Pr(d′ | di, o) = Pr(d′ | dj , o)∀di, dj ∈ I, d′ ∈ β do
9: P ← {o,K, {d′ | ∀d ∈ K, (d, ·, o, d′, ·) ∈ Dataset}} . Start and end

states for a partition
10: SubgoalOptions ← SubgoalOptions ∪ {P}
11: end for
12: end for
13: . Estimate preconditions and effects
14: Preconditions,Effects ← ∅
15: for each {·, start , end} ∈ SubgoalOptions do
16: mask ← COMPUTEMASK(start , end) . List the objects that change state
17: negative ← S \ start
18: features ← FEATURESELECTION(mask , start ,negative)
19: classifier ← FITCLASSIFIER(start ,negative, features)
20: Preconditions ← Preconditions ∪ {classifier}
21: estimator ← FITESTIMATOR(mask , end) . Fit over only objects that

change
22: Effects ← Effects ∪ {estimator}
23: end for
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24: . Build propositional PPDDL
25: Operators,Propositions ← ∅
26: for each precondition, effect ∈ (Preconditions × Effects) do
27: op, symbols ← BUILDPPDDLOPERATOR(precondition, effect ,Effects)
28: Operators ← Operators ∪ {op}
29: Propositions ← Propositions ∪ symbols
30: end for
31: . Infer object types
32: EffProfile ← ∅
33: for each object m do
34: for each o ∈ O do
35: EffProfile(m, o)← COMPUTEEFFECTS(m, o,Operators)
36: end for
37: end for
38: Types ← {K | EffProfile(mi, o) ≈ EffProfile(mj , o)∀o ∈ O,mi,mj ∈ K,K ⊆
M}

39: . Generate typed PPDDL
40: TypedOperators,Predicates ← ∅
41: for each type ∈ Types do
42: . Replace propositions and operators over objects of same type with lifted

versions
43: ops, predicates ← MERGE(M, type,Operators,Propositions)
44: TypedOperators ← TypedOperators ∪ ops
45: Predicates ← Predicates ∪ predicates
46: end for
47: . Instantiate typed PPDDL in new task
48: for each {o, start , end} ∈ SubgoalOptions do
49: . Get problem-specific start states
50: IS ← {s | ∀d ∈ start , d′ ∈ end , (d, s, o, d′, ·) ∈ Dataset}
51: . Get problem-specific end states
52: βS ← {s′ | ∀d ∈ start , d′ ∈ end , s ∈ IS , (d, s, o, d′, s′) ∈ Dataset}
53: . For each partition label
54: for all κ ⊆ IS such that Pr(s′ | si, o) = Pr(s′ | sj , o)∀si, sj ∈ IS , s′ ∈ βS

do
55: . Get end label
56: λ← {s′ | s ∈ start , d′ ∈ end , s ∈ κ, (d, s, o, d′, s′) ∈ Dataset}
57: Predicates ← Predicates ∪ {κ} ∪ {λ} . Add problem-specific symbols
58: mask ← COMPUTEMASK(start , end) . Computes the affected objects
59: . Link problem-specific symbols in precondition and effect to the af-

fected objects
60: TypedOperators ← GROUND(TypedOperators, κ, λ,mask)
61: end for
62: end for
63: return TypedOperators,Predicates
64: end procedure
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B.2 Propositional PDDL description for the Blocks World
task

Below is the automatically generated propositional PDDL description of the Blocks
World domain with 3 blocks. In practice, the agent generates this description with
arbitrary names for the propositions, but for readability purposes we have manually
renamed them to match their semantics.

(define (domain BlocksWorld)
(:requirements :strips)
(:predicates (notfailed)

(AInHand)
(HandFull)
(COnBlock)
(BInHand)
(COnTable)
(AOnTable)
(BOnBlock)
(AOnBlock)
(BOnTable)
(CInHand)
(HandEmpty)
(BOnTable_BCovered)
(COnBlock_CCovered)
(AOnBlock_ACovered)
(BOnBlock_BCovered)
(COnTable_CCovered)
(AOnTable_ACovered)

)

(:action Pick_0
:parameters()
:precondition (and (HandEmpty) (AOnTable) (notfailed))
:effect (and (AInHand) (HandFull) (not AOnTable) (not HandEmpty) (not AOnTable)

(not HandEmpty))
)

(:action Pick_1
:parameters()
:precondition (and (HandEmpty) (AOnBlock) (COnBlock_CCovered) (notfailed))
:effect (and (COnBlock) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)

(not COnBlock_CCovered) (not AOnBlock) (not HandEmpty)
(not COnBlock_CCovered))

)

(:action Pick_2
:parameters()
:precondition (and (HandEmpty) (COnTable_CCovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (COnTable) (HandFull) (not BOnBlock) (not HandEmpty)

(not COnTable_CCovered) (not BOnBlock) (not HandEmpty)
(not COnTable_CCovered))

)

(:action Pick_3
:parameters()
:precondition (and (HandEmpty) (AOnTable_ACovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (AOnTable) (HandFull) (not BOnBlock) (not HandEmpty)

(not AOnTable_ACovered) (not BOnBlock) (not HandEmpty)
(not AOnTable_ACovered))

)

(:action Pick_4
:parameters()
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:precondition (and (HandEmpty) (AOnBlock) (BOnBlock_BCovered) (notfailed))
:effect (and (BOnBlock) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)

(not BOnBlock_BCovered) (not AOnBlock) (not HandEmpty)
(not BOnBlock_BCovered))

)

(:action Pick_5
:parameters()
:precondition (and (HandEmpty) (AOnBlock_ACovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (AOnBlock) (HandFull) (not BOnBlock) (not HandEmpty)

(not AOnBlock_ACovered) (not BOnBlock) (not HandEmpty)
(not AOnBlock_ACovered))

)

(:action Pick_6
:parameters()
:precondition (and (HandEmpty) (AOnBlock) (BOnTable_BCovered) (notfailed))
:effect (and (BOnTable) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)

(not BOnTable_BCovered) (not AOnBlock) (not HandEmpty)
(not BOnTable_BCovered))

)

(:action Pick_7
:parameters()
:precondition (and (HandEmpty) (BOnTable) (notfailed))
:effect (and (BInHand) (HandFull) (not BOnTable) (not HandEmpty) (not BOnTable)

(not HandEmpty))
)

(:action Pick_8
:parameters()
:precondition (and (HandEmpty) (COnTable) (notfailed))
:effect (and (CInHand) (HandFull) (not COnTable) (not HandEmpty) (not COnTable)

(not HandEmpty))
)

(:action Pick_9
:parameters()
:precondition (and (HandEmpty) (AOnTable_ACovered) (COnBlock) (notfailed))
:effect (and (CInHand) (AOnTable) (HandFull) (not COnBlock) (not HandEmpty)

(not AOnTable_ACovered) (not COnBlock) (not HandEmpty)
(not AOnTable_ACovered))

)

(:action Pick_10
:parameters()
:precondition (and (HandEmpty) (AOnBlock) (COnTable_CCovered) (notfailed))
:effect (and (COnTable) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)

(not COnTable_CCovered) (not AOnBlock) (not HandEmpty)
(not COnTable_CCovered))

)

(:action Pick_11
:parameters()
:precondition (and (HandEmpty) (AOnBlock_ACovered) (COnBlock) (notfailed))
:effect (and (CInHand) (AOnBlock) (HandFull) (not COnBlock) (not HandEmpty)

(not AOnBlock_ACovered) (not COnBlock) (not HandEmpty)
(not AOnBlock_ACovered))

)

(:action Pick_12
:parameters()
:precondition (and (HandEmpty) (COnBlock) (BOnTable_BCovered) (notfailed))
:effect (and (BOnTable) (CInHand) (HandFull) (not COnBlock) (not HandEmpty)

(not BOnTable_BCovered) (not COnBlock) (not HandEmpty)
(not BOnTable_BCovered))

)
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(:action Pick_13
:parameters()
:precondition (and (HandEmpty) (COnBlock_CCovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (COnBlock) (HandFull) (not BOnBlock) (not HandEmpty)

(not COnBlock_CCovered) (not BOnBlock) (not HandEmpty)
(not COnBlock_CCovered))

)

(:action Pick_14
:parameters()
:precondition (and (HandEmpty) (COnBlock) (BOnBlock_BCovered) (notfailed))
:effect (and (BOnBlock) (CInHand) (HandFull) (not COnBlock) (not HandEmpty)

(not BOnBlock_BCovered) (not COnBlock) (not HandEmpty)
(not BOnBlock_BCovered))

)

(:action Put_15
:parameters()
:precondition (and (HandFull) (AInHand) (notfailed))
:effect (and (AOnTable) (HandEmpty) (not AInHand) (not HandFull) (not AInHand)

(not HandFull))
)

(:action Put_16
:parameters()
:precondition (and (HandFull) (BInHand) (notfailed))
:effect (and (BOnTable) (HandEmpty) (not HandFull) (not BInHand) (not HandFull)

(not BInHand))
)

(:action Put_17
:parameters()
:precondition (and (HandFull) (CInHand) (notfailed))
:effect (and (COnTable) (HandEmpty) (not HandFull) (not CInHand) (not HandFull)

(not CInHand))
)

(:action Stack_18
:parameters()
:precondition (and (HandFull) (CInHand) (BOnTable) (notfailed))
:effect (and (BOnTable_BCovered) (COnBlock) (HandEmpty) (not HandFull)

(not BOnTable) (not CInHand) (not HandFull) (not BOnTable)
(not CInHand))

)

(:action Stack_19
:parameters()
:precondition (and (HandFull) (COnBlock) (BInHand) (notfailed))
:effect (and (BOnBlock) (COnBlock_CCovered) (HandEmpty) (not HandFull)

(not COnBlock) (not BInHand) (not HandFull) (not COnBlock)
(not BInHand))

)

(:action Stack_20
:parameters()
:precondition (and (HandFull) (AOnBlock) (BInHand) (notfailed))
:effect (and (BOnBlock) (AOnBlock_ACovered) (HandEmpty) (not HandFull)

(not BInHand) (not AOnBlock) (not HandFull) (not BInHand)
(not AOnBlock))

)

(:action Stack_21
:parameters()
:precondition (and (HandFull) (AInHand) (BOnTable) (notfailed))
:effect (and (BOnTable_BCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not BOnTable) (not AInHand) (not HandFull)
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(not BOnTable))
)

(:action Stack_22
:parameters()
:precondition (and (HandFull) (CInHand) (BOnBlock) (notfailed))
:effect (and (BOnBlock_BCovered) (COnBlock) (HandEmpty) (not HandFull)

(not BOnBlock) (not CInHand) (not HandFull) (not BOnBlock)
(not CInHand))

)

(:action Stack_23
:parameters()
:precondition (and (HandFull) (COnTable) (BInHand) (notfailed))
:effect (and (BOnBlock) (COnTable_CCovered) (HandEmpty) (not HandFull)

(not BInHand) (not COnTable) (not HandFull) (not BInHand)
(not COnTable))

)

(:action Stack_24
:parameters()
:precondition (and (HandFull) (AInHand) (COnBlock) (notfailed))
:effect (and (COnBlock_CCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not COnBlock) (not AInHand) (not HandFull)
(not COnBlock))

)

(:action Stack_25
:parameters()
:precondition (and (HandFull) (AOnTable) (CInHand) (notfailed))
:effect (and (COnBlock) (AOnTable_ACovered) (HandEmpty) (not HandFull)

(not AOnTable) (not CInHand) (not HandFull) (not AOnTable)
(not CInHand))

)

(:action Stack_26
:parameters()
:precondition (and (HandFull) (AInHand) (COnTable) (notfailed))
:effect (and (COnTable_CCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not COnTable) (not AInHand) (not HandFull)
(not COnTable))

)

(:action Stack_27
:parameters()
:precondition (and (HandFull) (AOnBlock) (CInHand) (notfailed))
:effect (and (COnBlock) (AOnBlock_ACovered) (HandEmpty) (not HandFull)

(not AOnBlock) (not CInHand) (not HandFull) (not AOnBlock)
(not CInHand))

)

(:action Stack_28
:parameters()
:precondition (and (HandFull) (AOnTable) (BInHand) (notfailed))
:effect (and (BOnBlock) (AOnTable_ACovered) (HandEmpty) (not HandFull)

(not BInHand) (not AOnTable) (not HandFull) (not BInHand)
(not AOnTable))

)

(:action Stack_29
:parameters()
:precondition (and (HandFull) (AInHand) (BOnBlock) (notfailed))
:effect (and (BOnBlock_BCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not BOnBlock) (not AInHand) (not HandFull)
(not BOnBlock))

)
)
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B.3 Lifted PDDL description for the Blocks World task

In contrast, the lifted representation learned below is far more compact. Here,
operators are parameterised by objects, which allows for better generalisation across
instances with varying numbers of blocks.

Below we provide the learned representation for the domain. Again, we manually
rename the predicates and types to help with readability.

(define (domain BlocksWorld)
(:requirements :strips :typing)
(:types hand block)
(:predicates

(BlockInHand ?w - block)
(HandFull ?w - hand)
(BlockOnBlock ?w - block)
(BlockOnTable ?w - block)
(HandEmpty ?w - hand)
(BlockOnTable_BlockCovered ?w - block)
(BlockOnBlock_BlockCovered ?w - block)
(notfailed)

)
(:action Pick-partition-0
:parameters (?w - hand ?x - block)
:precondition (and (notfailed) (HandEmpty ?w) (BlockOnTable ?x))
:effect (and (BlockInHand ?x) (HandFull ?w) (not (BlockOnTable ?x))

(not (HandEmpty ?w)))
)

(:action Pick-partition-1
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandEmpty ?w) (BlockOnBlock ?x)

(BlockOnBlock_BlockCovered ?y))
:effect (and (BlockOnBlock ?y) (BlockInHand ?x) (HandFull ?w)

(not (BlockOnBlock ?x)) (not (HandEmpty ?w))
(not (BlockOnBlock_BlockCovered ?y)))

)

(:action Pick-partition-10
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandEmpty ?w) (BlockOnTable_BlockCovered ?x)

(BlockOnBlock ?y))
:effect (and (BlockInHand ?y) (BlockOnTable ?x) (HandFull ?w)

(not (BlockOnBlock ?y)) (not (HandEmpty ?w))
(not (BlockOnTable_BlockCovered ?x)))

)

(:action Put-partition-0
:parameters (?w - hand ?x - block)
:precondition (and (notfailed) (HandFull ?w) (BlockInHand ?x))
:effect (and (BlockOnTable ?x) (HandEmpty ?w) (not (BlockInHand ?x))

(not (HandFull ?w)))
)

(:action Stack-partition-0
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandFull ?w) (BlockInHand ?x) (BlockOnTable ?y))
:effect (and (BlockOnTable_BlockCovered ?y) (BlockOnBlock ?x) (HandEmpty ?w)

(not (HandFull ?w)) (not (BlockOnTable ?y))
(not (BlockInHand ?x)))
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)

(:action Stack-partition-1
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandFull ?w) (BlockOnBlock ?x) (BlockInHand ?y))
:effect (and (BlockOnBlock ?y) (BlockOnBlock_BlockCovered ?x) (HandEmpty ?w)

(not (HandFull ?w)) (not (BlockOnBlock ?x))
(not (BlockInHand ?y)))

)

)

A task might then be specified as follows:

(define (problem stack)
(:domain BlocksWorld)

(:objects hand - Hand
A B C - Block

)
(:init (BlockOnTable A)

(BlockOnTable B)
(BlockOnTable C)
(HandEmpty hand)
(notfailed)

)
(:goal (and (BlockOnBlock A)

(BlockOnBlock_BlockCovered C)
(BlockOnTable_BlockCovered B)))

)
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B.4 Hyperparameters for the Minecraft domain

Algorithm Hyperparameter Value(s)

DBSCAN neighbourhood ε 0.98

SVM
C grid search over logspace [0.01, 0.5)

γ grid search over logspace [0.01, 1)

KDE bandwidth grid search over [0.001, 0.1)

Distribution
similarity KL threshold 10000

Problem-specific
linking neighbourhood ε 0.5

Table B.1: Hyperparameters used for constructing a PPDDL representation of the
Treasure Game domain.
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B.5 Visualising operators for Minecraft

Here we illustrate some learned operators for the Minecraft task. To see all pred-
icates and operators, please see the following URL: https://sites.google.com/
view/mine-pddl.

(a) symbol_13 (b) symbol_4 (c) symbol_55

(d) psymbol_8 (e) symbol_58 (f) symbol_59

(:action Open-Chest-partition-0
:parameters (?w - type0 ?x - type6

?y - type9)
:precondition (and (notfailed) (symbol_13 ?w) (symbol_4 ?x)

(symbol_55 ?y) (psymbol_8))
:effect (and (symbol_58 ?x) (symbol_59 ?w) (not (symbol_4 ?x))

(not (symbol_13 ?w)))
)
(g) A learned typed PDDL operator for the Open-Chest skill. The predicate under-
lined in red indicates a problem-specific symbol that must be relearned for each
new task, while the rest of the operator can be safely transferred.

Figure B.1: Our approach learns that, in order to open a chest, the agent must be
standing in front of a chest (symbol_13), the chest must be closed (symbol_4), the
inventory must contain a clock (symbol_55) and the agent must be standing at a
certain location (psymbol_8). The result is that the agent finds itself in front of
an open chest (symbol_58) and the chest is open (symbol_59). type0 refers to the
“agent” type, type6 the “chest” type and type9 the “inventory” type.

https://sites.google.com/view/mine-pddl
https://sites.google.com/view/mine-pddl
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(a) symbol_46 (b) psymbol_0

(c) symbol_11 (d) psymbol_1

(:action Walk-to-partition-0-2a
:parameters (?w - type0)
:precondition (and (notfailed) (symbol_46 ?w)

(psymbol_0))
:effect (and (symbol_11 ?w) (psymbol_1)

(not (symbol_46 ?w)) (not (psymbol_0)))
)

(e) Typed PDDL operator for a partition of the Walk-To option. The predicate
underlined in red indicates a problem-specific symbol that must be relearned for
each new task, while the rest of the operator can be safely transferred.

Figure B.2: Abstract operator that models the agent walking to the crafting table. In
order to do so, the agent must be standing in the middle of a room (symbol_46) at
a particular location (psymbol_0). As a result, the agent finds itself in front of the
crafting table (symbol_1) at a particular location (psymbol_1).
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(a) symbol_38 (b) symbol_64 (c) psymbol_24

(d) symbol_50 (e) psymbol_12

(:action Through-Door-partition-3-207a
:parameters (?w - type0 ?x - type1)
:precondition (and (notfailed) (symbol_38 ?w) (symbol_64 ?x)

(= (id ?x) 1) (psymbol_24))
:effect (and (symbol_50 ?w) (not (symbol_38 ?w))

(psymbol_12) (not (psymbol_24)))
)

(f) Typed PDDL operator for a partition of the Through-Door option. The predicate
underlined in red indicates a problem-specific symbol that must be relearned for
each new task, while the rest of the operator can be safely transferred.

Figure B.3: Abstract operator that models the agent walking through a door. In
order to do so, the agent must be standing in front of an open door (symbol_38)
at a particular location (psymbol_24), and the door must be open (symbol_64). As
a result, the agent finds itself in the middle of a room (symbol_50) at a particular
location (psymbol_12).
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(a) symbol_15 (b) symbol_2 (c) psymbol_17

(d) symbol_19 (e) symbol_20

(:action Attack-partition-0-76a
:parameters (?w - type0 ?x - type7)
:precondition (and (notfailed) (symbol_15 ?w) (symbol_2 ?x)

(psymbol_17))
:effect (and (symbol_19 ?x) (symbol_20 ?w) (not (symbol_2 ?x))

(not (symbol_15 ?w)))
)
(f) Typed PDDL operator for a partition of the Attack option. The predicate under-
lined in red indicates a problem-specific symbol that must be relearned for each
new task, while the rest of the operator can be safely transferred.

Figure B.4: Abstract operator that models the agent attacking an object. In order to
do so, the agent must be standing in front of a gold block (symbol_15) at a particular
location (psymbol_17), and the gold block must be whole (symbol_2). As a result,
the agent finds itself in front of a disintegrated block (symbol_20), and the gold
block is disintegrated (symbol_19).
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Portable Hierarchies

C.1 Treasure Game level layouts

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4
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(e) Level 5 (f) Level 6

(g) Level 7 (h) Level 8

(i) Level 9 (j) Level 10
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C.2 Hyperparameters for the Treasure Game domain

Algorithm Hyperparameter Value(s)

DBSCAN neighbourhood ε 4

Feature selection threshold ε 0.02

SVM
C grid search over [0.01, 0.5)

γ grid search over [0.01, 1)

KDE bandwidth grid search over [0.001, 0.1)

Problem-specific
linking neighbourhood ε 0.1

Higher-order
skill acquisition

(see Figure 5.15)

maximum option length L 4

graph size reduction N 3

importance metric I VOTERANK

Table C.1: Hyperparameters used for constructing a hierarchical representation of
the Treasure Game domain.
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C.3 Distribution over shortest path lengths
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(a) Distribution of optimal plan lengths in Level 1 when using hierarchies of varying heights.
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(b) Distribution of optimal plan lengths in Level 2 when using hierarchies of varying heights.
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(c) Distribution of optimal plan lengths in Level 3 when using hierarchies of varying heights.
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(d) Distribution of optimal plan lengths in Level 4 when using hierarchies of varying heights.
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(e) Distribution of optimal plan lengths in Level 5 when using hierarchies of varying heights.
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(f) Distribution of optimal plan lengths in Level 6 when using hierarchies of varying heights.
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(g) Distribution of optimal plan lengths in Level 7 when using hierarchies of varying heights.
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(h) Distribution of optimal plan lengths in Level 8 when using hierarchies of varying heights.
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(i) Distribution of optimal plan lengths in Level 9 when using hierarchies of varying heights.
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(j) Distribution of optimal plan lengths in Level 10 when using hierarchies of varying heights.
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