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Abstract—
Manipulating an articulated object requires perceiving its

kinematic hierarchy: its parts, how each can move, and how
those motions are coupled. Previous work has explored per-
ception for kinematics, but none infers a complete kinematic
hierarchy on never-before-seen object instances, without relying
on a schema or template. We present a novel perception system
that achieves this goal. Our system infers the moving parts of
an object and the kinematic couplings that relate them. To
infer parts, it uses a point cloud instance segmentation neural
network and to infer kinematic hierarchies, it uses a graph
neural network to predict the existence, direction, and type
of edges (i.e. joints) that relate the inferred parts. We train
these networks using simulated scans of synthetic 3D models.
We evaluate our system on simulated scans of 3D objects, and
we demonstrate a proof-of-concept use of our system to drive
real-world robotic manipulation.

I. INTRODUCTION

People frequently interact with articulated objects: opening
doors, putting things away in drawers, adjusting the height
of chairs, etc. To a human, such interactions are effortless,
but the underlying process is complex: one must perceive the
kinematic hierarchy of the object (i.e. which parts can move,
how they move, and how those motions are coupled). Then,
one must plan a sequence of actions to transform the object
from its current kinematic pose into another, and finally,
manipulate the object to execute that plan. The perception
part of this process is particularly challenging, as objects
with similar function can vary considerably in both their
structure and their geometry. Cabinets, for example, can have
differing numbers of drawers in different arrangements and
many different doorknob shapes. To succeed at manipulating
such objects in the wild, an agent must infer the kinematic
hierarchies of never-before-seen object instances with these
kinds of variations.

This problem has received considerable attention in com-
puter vision and robotics literatures. Vision researchers have
made progress on detecting atomic parts of 3D objects and
predicting the presence and parameters of individual kine-
matic joints [29], [35], [34]. These approaches are trained
on large datasets and thus have the potential to generalize
to novel objects from a known category, however, they do
not infer kinematic hierarchies. Roboticists have leveraged
embodiment to solve the problem by providing the agent
with human demonstrations or allowing it to interact with its
environment [28], [13], [15]. Recent works infer kinematic
hierarchies but assume a simple template (e.g. one door
per cabinet) and thus cannot generalize to the structural
variability that exists in real world objects [1], [19], [11].

Fig. 1. We propose a system for robot perception of the kinematic
structure of never-before-seen object instances. The robot scans the object
from multiple viewpoints, building a 3D point cloud representation of it. Our
system then segments this point cloud into parts and infers the kinematic
hierarchy that couples them, allowing for the robot to plan and execute
articulated motions of the object.

In this paper, we propose a perception system that both
infers kinematic hierarchies and also generalizes to novel
object geometries and structures. Our system infers the
moving parts of an object and the kinematic couplings
between them. To infer parts, it uses a point cloud instance
segmentation neural network. To infer kinematic hierarchies,
it uses a graph neural network which learns to infer the
existence, direction, and type of edges (i.e. joints) that
relate the inferred parts. This system is trained on simulated
scans of a large set of synthetic 3D models, enabling it to
learn to generalize to new, never-before-seen object instances
which may differ geometrically and structurally from the
training data. We evaluate our system’s perception abilities
on synthetic point clouds, and find that our system reliably
detects moving parts and reconstructs kinematic hierarchies
on synthetic data. We also demonstrate a proof-of-concept
application of using the output of our perception system to
drive manipulation executed by a real-world robot platform.

In summary, our contributions are:

• The first method for inferring kinematic hierarchies
from never-before-seen instances of 3D objects, without
reliance on a schema or template.

• A novel graph neural network approach for predicting
hierarchies from part segments.
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Fig. 2. Overview of our system. Given an input 3D point cloud representation of an object, our system (a) segments the point cloud into parts using an
instance segmentation network, (b) constructs a part graph and uses a graph neural network to label its nodes and edges with kinematic properties, and (c)
constructs a kinematic hierarchy from this graph which can be used for robot manipulation.

II. RELATED WORK

A. Approaches from the Robotics Community

Kinematic model and articulated pose estimation are well-
studied problems in the robotics literature. Observation-based
approaches [28], [24], [22], [6], [33] fit motion models to
an observed sequence of part poses. Interactive approaches
leverage the embodiment of the manipulator to generate part
motion autonomously [13], [10], [2], [20], [16], [3] and
to reason about the intended effects of actions [12]. More
recently, learning-based approaches to category-level model
and pose estimation [19], [1], [11], [36] have shown promise,
but are thus-far limited to a-priori known connectivity graphs.
Several methods estimate only articulated pose given known
kinematic models and geometry [4], [7], [23].

B. Approaches from the Computer Vision Community

Wang et al. train a model to jointly predict movable parts
and their motion parameters from an input point cloud. [29].
Yi et al. take a pair of articulated 3D shapes of the same
category but in different kinematic poses, and jointly infer
moving parts and their kinematic motion parameters [35].
Yan et al. infer movable parts by hallucinating their mo-
tions over multiple time steps [34]. These approaches train
deep neural networks which generalize to geometrically and
structurally different input objects. However, none infer the
structure of the object’s kinematic hierarchy: they treat each
articulated part as it if moves in isolation. Our approach
bears resemblance to RigNet, a system for inferring the
skeletal joint structure of articulated humanoid and creature
characters [32]. Like us, they also use a graph neural network
for predicting graph topology information.

III. APPROACH

In this section, we overview our method for kinematic
mobility perception. Fig. 2 shows a schematic of our pipeline.

A. Part Segmentation

The input to our system is an unlabeled point cloud
depicting an articulated object; a robot can obtain such input
by unprojecting and consolidating frames from an onboard
depth sensor. Our system first segments this point cloud into
parts, some of which are movable (Fig. 2a). This stage relies

upon an existing neural network architecture for point cloud
instance segmentation (i.e. segmenting a point cloud without
consistent part labels) [21].

B. Kinematic Graph Labeling

Given a part-segmented point cloud, our system next
infers the articulation properties of those parts: the type
of articulated motion they support (if any) and how the
motions of different parts are coupled. To do this, it converts
the segmented point cloud into a graph and phrases the
problem as one of graph labeling: nodes in the graph
represent parts, and edges between them represent potential
kinematic connections (e.g. joints) between parts. A graph
neural network predicts whether each node is static, rotating,
or translating, as well as whether each edge should exist (i.e.
whether two parts should be kinematically connected), the
probability of each node being the root of the tree, and the
direction of kinematic dependency (Fig. 2b).

C. Hierarchy Creation

Given the labeled graph, we construct a kinematic hi-
erarchy by converting the bidirectional graph into a n-
ary tree. Xu et al. address this problem by constructing a
pairwise matrix where each entry represents the negative
log probability of the corresponding parts possessing an
edge connection [32]. The pairwise matrix is traversed from
a predicted root node and a n-ary tree is extracted via a
Minimum Spanning Tree (MST) algorithm [25]. We adopt
this method to convert our predicted bidirectional graphs to
an n-ary tree.(Fig. 2c).

IV. PART SEGMENTATION

To segment point clouds into parts, we use a neural net-
work based on that of PartNet [21]. This architecture uses a
PointNet++ network [27] to compute per-point embeddings,
each of which is then fed to a semantic segmentation branch
(assigns semantic labels to each point) and an instance
segmentation branch (assign each point to one of N possible
instance masks; we use N = 24). As our system does
not assume parts are semantically labeled, we could remove
the semantic segmentation branch. However, PartNet showed
that semantic segmentation helps improve the quality of
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Fig. 3. Segmented point clouds, their initial overcomplete part graphs,
and their ground truth part graphs (as determined by a human labeler).

instance segmentation. Thus, we treat the semantic segmen-
tation branch as a “motion type prediction” branch (static,
rotating, translating, rotating and translating)—labels which
we do assume of our data.

We train the segmentation network on 3D objects from
the PartNet-Mobility dataset [30]. For augmentation, we use
multiple poses for each moving part of each object, as
described in more detail in Section VI. To simulate a robot’s
onboard depth sensor, we render point clouds from these
objects using a software simulator of the Kinect sensor [18].
We train the network using the Adam optimizer [14] with
learning rate 10−4. Training was run for at most 8 hours per
category.

V. KINEMATIC GRAPH ANNOTATION

Here we describe how our system takes a segmented point
cloud, converts it to a graph, and labels this graph with the
information required to construct a kinematic hierarchy.

A. Point Cloud to Graph Conversion

The kinematic hierarchy for a segmented object is a
directed tree: tree nodes correspond to parts, nodes are
labeled with a motion type (rotation and/or translation)
and edge directions indicate kinematic couplings (i.e. edge
A → B means part B moves with part A). To infer
this tree from a segmented point cloud, our system first
constructs an overcomplete, undirected, unlabeled graph over
the parts, and then prunes edges, determines edge directions,
and labels nodes using a graph neural network. Our system

constructs the initial graph by adding an undirected edge
between any two parts whose Euclidean distance is below a
small threshold. Fig. 3 shows some example segmented point
clouds and their initial graphs.

B. Graph Labeling Network

Given a graph constructed by the above procedure, we use
a graph neural network to label its nodes and edges with the
information required to construct a kinematic hierarchy.

Input features: Every node corresponds to one part, i.e. one
subset of points from the object point cloud. We encode these
point subsets into per-node vectors x using a PointNet [26].

Graph network: To make per-node and per-edge predic-
tions, our system must understand the context of each node
or edge within the object. To satisfy this goal, we use
a graph convolutional network to convert node features x
into context-aware features y (Fig. 4). Our network passes
all nodes through three GraphSAGE convolution layers [9],
which compute new node features based on learned aggre-
gations of neighbor node features. Each convolution layer
is followed by a pooling and unpooling layer based on
learned edge collapses [8]. In early experiments, we found
this pooling + unpooling scheme to perform better than ar-
chitectures that used only convolution. Finally, the outputs of
all convolution layers and all pooling layers are concatenated
to form a multi-scale feature vector y for each node.

Node and edge attribute prediction: The per-node features
y are fed to multi-layer perceptrons (MLPs) for predicting
node attributes. For edge attributes, the y’s for both edge
endpoints are concatenated and fed to the MLP.

C. Training

We train the graph labeling network on synthetic 3D
models from PartNet-Mobility [30]. We first pre-train the
node feature PointNet by training it as the encoder in an
autoencoder framework; this network trains for 500 epochs
using Nesterov SGD with a learning ratte of 10−3. The graph
labeling network trains for 30 epochs using Adam with a
learning rate of 10−3. Training both networks takes 1.5 - 3
hours on a machine with a NVIDIA RTX 2080 Ti, 6-core
Intel i7 CPU, and 32GB of RAM

VI. RESULTS & EVALUATION

Here we evaluate our method’s ability to infer kinematic
hierarchies via controlled experiments and a demonstration
on a real-world robot. For experiments on synthetic PartNet-
Mobility objects, we use the same train/test splits introduced
by Mo et al. [21], restricted to models with valid kinematic
trees. We augment the training and test datasets by uniformly
sampling articulated poses within each part’s ground truth
range of motion. We train on 249 storage furniture models,
22 lamp models, and 53 chair models; we test on 69, 8, and
12 models, respectively. We use 18 pose augmentations for
training and testing.
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Fig. 4. Neural network architecture for kinematic graph labeling. A PointNet [26] converts each part point cloud into an initial node feature x. These
features go through graph convolutional + pooling layers to produce features y which are passed to MLPs for predicting node and edge attributes.

TABLE I
PART SEGMENTATION ON PARTNET-MOBILITY (MAP @ 0.5 IOU)

Category Clean Noisy

Storage Furniture 0.922 0.907
Lamp 0.695 0.593
Chair 0.824 0.811

A. Part Segmentation

Table I summarizes the performance of our part segmen-
tation method on synthetic 3D objects. We use an estab-
lished instance segmentation metric [21]: we compute the
intersection over union (IoU) of each predicted part segment
with its closest ground truth part segment, classify it as a
“correct” prediction if the IoU is over 0.5, and then compute
the mean average precision of these classifications across all
parts in all test set objects. We compute this metric under
two conditions: (1) Clean point clouds sampled directly
from the surface of PartNet-Mobility 3D meshes, (2) Noisy
point clouds generated by simulated Kinect scans of PartNet-
Mobility models as described in Section IV. Fig. 5 shows
some qualitative examples. The network reliably segments
parts in clean point clouds, and this performance degrades
slightly in the noisy depth scans. The lamp category is
especially challenging due to the small number of models
present in the training data.

B. Kinematic Structure Prediction

We next evaluate our graph neural network module’s abil-
ity to infer the structure of an object’s kinematic hierarchy.
To assess this performance, we use four metrics:

• Etype: % of nodes whose motion type is mis-predicted.
• Eexist: % of edges whose existence is mis-predicted.
• Edir: % of edges whose direction is mis-predicted.
• Eroot: % of models whose root node is mis-predicted.
• Tree F1: the F1 score of the predicted kinematic

hierarchy with respect to the ground truth one. Precision
is computed via top-down traversal of the predicted
tree, counting the fraction of nodes and edges which
match their counterparts in the ground truth tree. Recall
computation uses the same procedure, with the roles of
the predicted and ground-truth trees reversed.

Table II summarizes the performance of our network on
Clean and Noisy synthetic data. As expected, the GNN eval-

uated on clean data with ground truth instance segmentation
preforms well on all classes. Even in the case where Edir is
relatively high for the lamp and chair class the negative log
probability pairwise matrix complemented with MST is able
to construct trees with a negligible amount of error. On noisy
data, performance again degrades slightly. Fig. 6 shows some
qualitative examples.

TABLE II
KINEMATIC STRUCTURE ERROR FOR DIFFERENT DATA TYPES

Category Data Type Etype ⇓ Eexist ⇓ Edir ⇓ Eroot ⇓ Tree F1 ⇑

Storage Furniture Clean 1.16 1.2 2.22 0 99.73
Noisy 0.39 2.03 29.04 0 99.02

Lamp Clean 0.47 4.63 31.11 0.23 98.24
Noisy 0 0.98 17.24 0.92 97.82

Chair Clean 0.08 0.1 39.64 0 99.77
Noisy 0.24 0.99 41.73 0 98.67

C. Robot Demo

Finally, we demonstrate that the model enables a Kinova
Movo robot to manipulate novel object instances. A stor-
age furniture object was densely scanned using the robot’s
Kinect sensor by driving the robot around the object. Point-
clouds were merged using RTAB-Map [17], which performed
SLAM using the robot’s odometry, base laser scans, and vi-
sual data. The object was manually segmented from the scene
and assigned a frame of reference. Our model successfully
performed part segmentation and kinematic hierarchy infer-
ence; predictions are visualized in Figure 1. Motion model
predictions, i.e. the axes of rotation, were generated using
the motion type predictions from the estimated kinematic
tree and a heuristic: the axes of rotation were determined
from the intersection of part bounding boxes and oriented in
the world vertical direction.

Using the predicted tree and motion models, the agent is
able to plan and execute interactions with the object. We
fixed a grasp on the relevant object part, and ran a simple
controller which moves the end-effector along the predicted
direction of motion toward a goal configuration. Fig. 7 shows
frames from a video of the robot scanning the cabinet and
closing one of its doors.
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Fig. 5. Examples of part segmentation for both Clean and Noisy point clouds.
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Fig. 6. Examples of predicted kinematic hierarchies for both Clean and Noisy point clouds. All examples shown use ground truth part segmentations.

VII. FUTURE WORK

Training our neural networks requires collections of part-
segmented, kinematically-annotated 3D models. Such data is
not widely available, as it requires nontrivial human anno-
tation effort. Recent computer vision research has demon-
strated the possibility of segmenting 3D models with limited
or even no human supervision [5], [37]. The development of
similar techniques for identifying articulated motion within
3D shapes would allow our methods to be applied to any
object type for which unsegmented 3D models are avail-
able [31].

Our approach treats segmentation and graph labeling as
separate sub-problems, but one can argue that they are

coupled: parts determines what motions are possible, and
whether a motion is possible determines whether a proposed
part is a good one. Accordingly, the Shape2Motion system
found benefits in jointly segmenting and predict motion
parameters for parts [29]. It is possible that jointly segment-
ing and predicting kinematic hierarchy could confer similar
benefits.

We focused on inferring the structure of an object’s
kinematic hierarchy. Our system could be combined with one
that focuses on kinematic motion parameter prediction [29],
[34], [35] to produce a complete mobility perception system.



Scanning

Interacting

Fig. 7. Frames from a video demonstrating a robot scanning and then
interacting with an articulated object.

VIII. CONCLUSION

We presented a perception system that infers kinematic
hierarchies for never-before-seen object instances. Our sys-
tem infers the moving parts of an object and the kinematic
couplings between them. To infer parts, it uses a point cloud
segmentation neural network To infer kinematic couplings,
it uses a graph neural network to predict the existence,
direction, and type of edges (i.e. joints) that relate the
inferred parts. We train these networks using simulated scans
of synthetic 3D models. In experiments, our system inferred
accurate kinematic hierarchies for simulated scans of 3D
objects and scans of real-world objects gathered by a mobile
robot.

ACKNOWLEDGEMENTS

This research was supported by NSF CAREER Award
1844960 to Konidaris, and by the ONR under the
PERISCOPE MURI Contract N00014-17-1-2699. Disclo-
sure: George Konidaris is the Chief Roboticist of Realtime
Robotics, a robotics company that produces a specialized
motion planning processor.

REFERENCES

[1] Ben Abbatematteo, Stefanie Tellex, and George Konidaris. Learning
to generalize kinematic models to novel objects. In Proceedings of
the Third Conference on Robot Learning, 2019.

[2] Patrick R Barragän, Leslie Pack Kaelbling, and Tomás Lozano-
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