
Unsupervised Skill Discovery with Empowerment
By

Andrew Levy

Thesis

Submitted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in the Department of Computer Science at Brown

University

PROVIDENCE, RHODE ISLAND

October 2025



© Copyright 2025 Andrew Levy



This dissertation by Andrew Levy is accepted in its present form by the Department of
Computer Science as satisfying the dissertation requirement for the degree of Doctor of

Philosophy.

Date
George Konidaris, Advisor

Recommended to the Graduate Council

Date
George Konidaris, Reader

Date
Michael Littman, Reader

Date
Peter Stone, Reader

Approved by the Graduate Council

Date
Janet A. Blume, Dean of the Graduate School

iii



This work is dedicated to my family.
To my parents, who taught me to value curiosity and hard work.

To my wife, Ali, whose love and sacrifice made this journey possible.
And to my children, Theo, Esme, and Ellis, may your lives be a joyful and unending

search for truth.



Acknowledgments

This thesis would not have been possible without the support of several key individuals.

I am deeply grateful to my advisor, George Konidaris, for granting me tremendous freedom

over many years to fully explore the niche idea of empowerment. I am also indebted to my

mother and father-in-law, Julie and Tom Garmisa. Your steadfast presence and support

have been a pillar of strength for our family, making this achievement possible.

v



Abstract of Unsupervised Skill Discovery with Empowerment, by Andrew Levy, Ph.D.,

Brown University, Date: August 27, 2025.

Unsupervised skill discovery aims to help agents learn large skillsets at low cost.

To realize this potential, an algorithm must address two challenges without human

supervision: (i) how agents can learn diverse sets of policies and (ii) how agents can

operate in learned internal states with low state uncertainty. Overcoming this second

challenge requires addressing the two sources of state uncertainty: belief state aliasing

(i.e., poor representation learning) and partial observability. Yet, existing unsupervised

skill discovery approaches have not adequately addressed either of these two challenges.

The purpose of this thesis is to demonstrate that an unsupervised skill discovery

algorithm based on Empowerment can address both challenges, enabling agents to build

larger skillsets without human supervision. We first show that computing the empowerment

of various internal states addresses the first problem of learning diverse sets of policies. We

then show that maximizing empowerment addresses the second challenge of minimizing

state uncertainty. Specifically, we show that (a) maximizing empowerment with respect

to a representation learning function (e.g., a recurrent neural network (RNN)) can reduce

state uncertainty caused by belief state aliasing, and (b) maximizing empowerment with

respect to a behavior policy can reduce state uncertainty caused by partial observability.
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CHAPTER 1

Introduction

General-purpose agents have the potential to expand human freedom. Generalist

agents that are a cheap and competent source of labor can lower the costs of services we

currently pay others to do, as well as automate some of the tasks we complete ourselves.

Both of these outcomes would enable humans to spend less time on repetitive work and

more time exploring more meaningful pursuits. But to achieve this vision, general-purpose

agents must be a cheap source of labor, which means the cost of training them to develop

large skillsets needs to be low.

The problem is that a low-cost framework for helping agents build large skillsets

has not yet been developed. The dominant frameworks for learning skills, Behavior

Cloning (BC) (Pomerleau, 1988) and Reinforcement Learning (RL) (Sutton and Barto,

1998), can help agents learn skills but are not cheap as they require extensive human

supervision. For instance, behavior cloning can require labor-intensive procedures such

as robot teleoperation (Levine et al., 2018; Mandlekar et al., 2018; Brohan et al., 2023;

Zhao et al., 2023; Finn et al., 2017) or the collection of egocentric videos that require

paying humans to wear cameras as they perform tasks (Giusti et al., 2016; Ng et al., 2020;

Zheng et al., 2025b; Grauman et al., 2021). Similarly, traditional reinforcement learning,

in which an agent learns a skill by maximizing some task-specific reward, can require that
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Figure 1.1: One problem unsupervised skill learning algorithms must resolve without
human supervision is skillset diversity. Agents need to be able to learn the large sets of
differentiated policies that can be executed from various starting representations. For
instance, an agent may start with a redundant skillset such as the one shown on the
left side of the figure where the 12 policies π0, . . . , π11 in the skillset only target two
observations. The USD algorithm should encourage the agent to learn a diverse set of
skills where each skill targets a unique observation, such as the skillset on the right side
of the figure.

a human both design a reward function and continually transmit rewards or some other

feedback (Knox and Stone, 2009; Warnell et al., 2018; Argall et al., 2008; Bajcsy et al.,

2017; Luo et al., 2025).

A potentially more practical learning framework that has emerged over the last decade

is Unsupervised Skill Discovery (USD) (Gregor et al., 2016; Eysenbach et al., 2019; Sharma

et al., 2020). This class of algorithms aims to lower the cost of skill discovery by removing

the need for expensive human supervision. Specifically, USD algorithms aim to take an

agent’s reward-free and label-free history of actions and observations and extract diverse

sets of skills from this cheap interaction data. Yet, to achieve the goal of learning large

skillsets at lower cost, unsupervised skill discovery algorithms must address the following

two problems.

The first problem is policy diversity. From various starting representations, agents

must be able to learn a large set of policies, or functions that map representations to

actions, such that each policy targets distinct observations not targeted by other policies

in the skillset. For instance, consider the agent in the simple 2D world in Figure 1.1. At

2
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Figure 1.2: Illustration of belief state aliasing and its effect on skillset size. Belief state
aliasing occurs when agents map histories that represent different underlying distributions
of states (i.e., different belief states) to the same encoding. (Left) An agent in 2D world
maps histories with different x positions but same y position to the same encoding. That
is, the agent operates in a representation where it is blind to its x position. As a result
of this aliasing, the agent’s skillset is smaller as it cannot reliably target particular x
positions. (Right) An agent maps two histories (dotted black lines) in which agent is told
the button that turns the drone on is in different locations (“left” or “right”) to the same
encoding. If the agent is in this aliased representation, it will be unsure of the location
of the “On” button. As a result of the aliasing, the agent in the drone setting cannot
reliably target (x, y) positions for the drone as shown by the dotted trajectories.

the start of training, the agent may have a redundant skillset where various policies target

similar observations. An unsupervised skill discovery algorithm must encourage the agent

to discover diverse sets of policies that target distinct observations.

The second problem USD algorithms must address is state uncertainty. Agents that

operate in representations with higher state uncertainty tend to have less diverse skillsets.

This is because greater uncertainty produces more stochastic dynamics, which broadens

the distribution of observations that each skill targets. This, in turn, may result in

redundant skills that target overlapping distributions of observations. To minimize state

uncertainty and thereby boost skillset size, agents need to overcome the two sources of

state uncertainty: belief state aliasing and partial observability.

Belief state aliasing results from poor representation learning when agents encode his-
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tories representing different underlying distributions of states (i.e., belief states (Kaelbling

et al., 1998; Littman, 2009)) to the same or similar encodings. This aliasing increases

state uncertainty because when an agent is in an aliased representation, the agent may be

in any state in the mixture of belief state distributions. Figure 1.2 (Left) shows a simple

case of belief state aliasing in the simple 2D domain described previously and its effect on

the agent’s skillset. In this example, the agent maps histories in which the agent has the

same y position but different x positions to the same representation. As a result, when

the agent is in some representation, its true state can be in one of many x positions. This

reduces the number of distinct skills an agent can execute because while the agent can

still reliably target specific y positions, it cannot reliably target particular (x, y) positions

as its starting position can be any x coordinate. For example, a skill that moves the agent

a little to the right can achieve observations that range from slightly off the west edge of

the room to the eastern edge of the room.

Belief state aliasing is more common in partially observable domains where representa-

tion learning is needed. This is because agents may need the information contained in

their full history of actions and observations, but using the full history as a representation

is often impractical. Consider the simple partially observable setting in Figure 1.2 (Right),

which consists of an agent, a drone, and two buttons. The agent can move freely around

the 2D world as well as direct a drone provided that it first presses the “On” button

before pressing the “Off” button. The location of the “On” button is randomly chosen

each episode. The setting is partially observable as the agent’s observation will only

sometimes include a boolean variable indicating which button is the “On” button. In this

setting, belief state aliasing can occur when the agent maps two or more histories with

different signals about the location of the “On” button to the same encoding. From this

aliased representation, the agent’s skillset is smaller because while the agent can still move

itself to various (x, y) locations, it cannot with certainty direct the drone to a particular

location as shown in 1.2 (Right).

4



Confused x position

Known x position → Larger skillset

Confused Button

Left Right

Known button → Larger skillset

On Off Off On

Disentangle

? ?

Figure 1.3: State uncertainty caused by belief state aliasing can be resolved through better
representation learning. In the 2D world setting, agents can gain information about the x
position of the agent by assigning different representations to histories that end in different
(x, y) positions. In the drone setting, agents can gain information about the location of
the button by assigning different representations to histories that signal different “On”
button locations. Further, the figure illustrates how reducing state uncertainty can expand
the size of an agent’s skillset. The agent in the 2D world can now target particular (x, y)
locations and the agent in the drone setting can now reliably move the drone to particular
(x, y) locations.

The uncertainty arising from belief state aliasing can be resolved through better

representation learning. Specifically, agents can assign different representations to histories

(i.e., disentangle histories) that correspond to different belief states. Figure 1.3 illustrates

how representation learning can be used to resolve the belief state aliasing in the settings

discussed so far. In the 2D world setting, histories that end in different (x, y) positions

for the agent can be assigned different representations. Similarly, in the drone setting,

histories that provide different signals of the location of the “On” button can be assigned

different representations. In both settings, resolving the uncertainty caused by belief state

aliasing can significantly expand the agent’s skillset as the agent in the 2D world can now

target different x positions and the agent in the drone setting can direct the drone to

5



Look around → Larger skillset

?

On Off

No look around → Smaller skillset

? ? ?

? ?

Figure 1.4: When uncertainty is caused by partial observability, agents can gain informa-
tion and thereby increase their skillsets by executing information-seeking actions in the
environment. In this illustration, the left side of the figure shows an agent that is at first
unsure which button is the “On” button. The agent then executes the information-seeking
action of looking around and sees the other agent on the Left button, which means the
Left button is the “On” button. This can put the agent in a representation where there
is no uncertainty about the underlying state, resulting in a larger skillset. On the other
hand, the right side of the figure shows an agent choosing not to look around. As a result,
the agent will continue to be uncertain about the underlying state and thus have a smaller
skillset.

particular (x, y) positions with high reliability.

The second cause of state uncertainty is partial observability. Even if the agent has

learned sufficient statistic representations that provide as much information about the

underlying state as the agent’s full history (e.g., a belief state) and thereby resolve belief

state aliasing, the agent may still be uncertain about certain features of the state. For

instance, consider the drone setting where the agent has not received any signal about

the “On” button location. Given this history, the agent would still be uncertain about

the location of the “On” button even if the agent had learned to generate sufficient

statistic representations. To reduce uncertainty caused by partial observation, agents

6



can execute information-seeking actions, which are actions that elicit observations from

the environment that provide clues about the underlying state of the environment. For

instance, consider the modified drone setting in Figure 1.4 where agents now have an

extra action that enables the agent to “look around”. In addition, sometimes when the

agent looks around, it sees another agent and this agent is always on the “On” button. In

this setting, if the agent has not been given the signal of the “On” button location, the

agent can potentially gain information about the underlying state and thereby expand its

skillset by looking around. On the other hand, if the agent does not look around, it will

remain uncertain about the “On” button and its skillset will be more limited.

Despite the impact both policy diversity and state uncertainty can have on the size of

an agent’s skillset, existing unsupervised skill discovery algorithms have not adequately

addressed either of these two challenges. Regarding the first challenge of policy diversity,

existing approaches have reported metrics related to skillset size that are often orders of

magnitude smaller than the maximum possible skillset in the environment (Florensa et al.,

2017; Eysenbach et al., 2019; Achiam et al., 2018; Sharma et al., 2020; Choi et al., 2021;

Strouse et al., 2022; Park et al., 2024b; Zheng et al., 2025a; Hu et al., 2024). Regarding

the second challenge of state uncertainty, no unsupervised skill discovery algorithm prior

to this thesis has attempted to perform representation learning in partially observable

settings, making it unclear whether existing work provides a mechanism for addressing

belief state aliasing in these settings. In addition, prior work has not provided a mechanism

for encouraging information-seeking actions and thus existing work does not address state

uncertainty arising from partial observability.

This thesis aims to develop a more complete unsupervised skill discovery algorithm

that addresses both challenges in unsupervised skill discovery so that agents can build

large skillsets. The foundation of our approach is an objective function, defined shortly,

that measures the number of distinct skills associated with a particular tuple. The first

component of the tuple is some representation from which skills will be executed. The

7



second component is a skillset, or a distribution of policies, that are executed from the

starting representation. The third component of the tuple is a set of representation

learning parameters such as an RNN. The final component is a world model that provides

the distribution of observations at the next time step given the prior history of actions and

observations through the current time step. The objective at the center of our approach

measures the number of distinct skills in the tuple’s skillset when the skillset is executed

from the tuple’s starting representation. In practice, skillset size is measured by sampling

a large batch of policies from the skillset and concurrently executing the batch of skills

from the starting representation using the agent’s world model. Larger skillsets are those

where skills tend to terminate in more distinct observations.

To address the two key challenges in unsupervised skill discovery, this thesis develops

a simple approach. To address the first challenge of learning diverse skillsets from some

starting representation, we simply maximize the objective with respect to the set of

policies. This encourages more differentiated skillsets where each skill specializes in

targeting specific observations. To address the part of the second challenge related to

state uncertainty arising from belief state aliasing, we maximize the objective with respect

to the parameters of the RNN or other representation learning function. If there is belief

state aliasing depressing the size of an agent’s skillset, this should encourage the RNN

to disentangle those histories representing different belief states. Then to address the

problem of state uncertainty arising from partial observability, we treat this objective as

a reward and train a behavior policy to maximize this reward. If there are features of the

state that the agent is uncertain about and are depressing the size of an agent’s skillset,

this objective should encourage policies that elicit information from the environment

about these features.

The objective we use at the foundation of our approach is the mutual information

between skills and observations. This objective is principled as it provides a way to

measure the number of distinct skills that can be executed from some representation.

8



The objective is also unsupervised because measuring the mutual information does not

require expensive supervision in the form of rewards or action labels. Maximizing mutual

information in practice does require a world model, but this world model can be trained in

an unsupervised manner from cheap interaction data. Note, however, that the experiments

in this thesis will make the assumption that a world model has been provided to the agent.

This is not a scalable assumption, and Chapter 6 discusses how different types of world

models can be learned.

Our approach to unsupervised skill discovery can also be expressed in terms of empower-

ment. Empowerment is the maximum mutual information between skills and observations

with respect to the agent’s set of skills and thereby represents the maximum number of

skills that can be executed from some representation (Klyubin et al., 2005; Salge et al.,

2013; Jung et al., 2012; Mohamed and Rezende, 2015; Gregor et al., 2016). In terms of

empowerment, our approach addresses the first challenge of learning diverse sets of policies

by computing the empowerment of different representations and the second challenge of

state uncertainty by maximizing empowerment with respect to the agent’s representation

learning function and behavior policy.

1.1 Contributions

This section details the three contributions of the thesis and describes how the contri-

butions relate to prior work.

1. Tighter variational lower bound on the mutual information between skills

and observations

We introduce a tighter variational lower bound on the mutual information between

skills and observations relative to prior empowerment-based skill discovery methods

(Gregor et al., 2016; Florensa et al., 2017; Eysenbach et al., 2019; Achiam et al., 2018).

The tighter bound results from adding a conditioning variable to the variational

9



posterior distribution in the mutual information term that represents the skillset

under consideration. The tighter variational lower bound enables agents to better

measure the diversity of a candidate skillset, which in turn makes it easier to discover

more diverse skillsets. To tractably maximize this mutual information lower bound

with respect to the agent’s skillset, we also introduce a new actor-critic architecture.

We provide a theorem proving that our variational mutual information objective

provides a tighter bound than prior work. We also provide empirical support that

our improvements to mutual information optimization enable agents to learn skillsets

that are often orders of magnitude larger than prior work.

Context: Maximizing the mutual information between skills and observations

to address the first challenge of learning diverse skillsets has been an approach

that has been tried previously. Indeed, the original unsupervised skill discovery

algorithms (Gregor et al., 2016; Florensa et al., 2017; Eysenbach et al., 2019; Achiam

et al., 2018; Sharma et al., 2020) all tried to learn skills by maximizing some mutual

information between skills and observations. After these algorithms were unable

to learn large skillsets, another class of algorithms emerged (Zheng et al., 2025a;

Strouse et al., 2022; He et al., 2025; Hu et al., 2024, 2025; Park et al., 2022, 2023b,

2024b) arguing that changes needed to be made to the mutual information objective

to boost exploration such as (i) adding regularization terms (Strouse et al., 2022;

He et al., 2025; Zheng et al., 2025a), (ii) applying skill factorization where each

dimension of the skill makes changes to a particular state dimension (Hu et al.,

2024, 2025; Carr et al., 2025), or (iii) swapping the entropy terms in the mutual

information objective for other terms (e.g., contrastive losses) (Laskin et al., 2022;

Zheng et al., 2025a; Warde-Farley et al., 2019; Achiam et al., 2018; Zhang et al.,

2021; Choi et al., 2021; Campos et al., 2020). Others argued that mutual information

is not capable of learning large skillsets in continuous settings and thus some other

diversity metric was needed (Park et al., 2022, 2023b, 2024b). Yet, recent work has
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demonstrated that many of these changes do not produce significantly larger skillsets

(Levy et al., 2025). Our first contribution provides strong evidence that the main

problem with the original mutual information objective was that prior algorithms

were maximizing a loose lower bound on the objective, meaning that agents were

often significantly underestimating the diversity of skillsets when evaluating different

sets of skills, in turn making it difficult to learn diverse skillsets.

2. Maximizing empowerment with respect to a representation learning

function discourages belief state aliasing

The second contribution is to show that maximizing empowerment with respect to

an RNN (or other representation learning function) encourages the RNN to provide

more information about the underlying state. That is, maximizing empowerment

encourages the RNN to resolve belief state aliasing and disentangle histories that

correspond to different underlying distributions of states.

We support this claim with both theoretical and empirical results. We provide two

theorems to support this contribution. The first theorem shows that the average

empowerment produced by an RNN is upper bounded by the average empowerment

produced by a representation learning function that outputs sufficient statistic

representations. Given that sufficient statistic representations provide as much

information about the underlying state as the agent’s history and thereby have

no belief state aliasing, this theorem provides evidence that empowerment can

help overcome the problem of state uncertainty caused by poor representation

learning. Yet this theorem does not provide evidence that empowerment can provide

a dense reward signal that continually encourages agents to disentangle histories

associated with different belief states. In practice, it may require numerous updates

to disentangle histories and thus a dense reward signal is important. The purpose of

the second theorem is to show that empowerment is indeed a dense reward signal for

discouraging belief state aliasing. The theorem shows that if the agent is considering

11



two RNNs and one RNN provides more information about the underlying state than

the other (i.e., one RNN reduces state uncertainty on average more than the other),

the RNN providing more information will produce an average empowerment at least

as large as the other RNN (and larger under some easily achievable conditions) and

thus be encouraged by the empowerment objective.

We also support this claim with empirical results in (a) low-dimensional fully

observable environments, (b) high-dimensional fully observable environments, and

(c) partially observable environments. In all of these settings, we demonstrate that

our approach can jointly learn both large sets of skills and the representations

the skills are conditioned on. Indeed, our approach is the first unsupervised skill

discovery approach to learn both skills and representations in partially observable

environments.

Context: This idea of using empowerment for representation learning builds on the

work of Klyubin et al. (2008) and Capdepuy (2011) who also implemented similar

ideas but in more limited contexts. Both used a simpler version of empowerment

that maximizes the mutual information between a single primitive action and the

succeeding observation. This version of mutual information does not enable agents

to learn longer-horizon skills, which are important for downstream tasks. Also,

the single primitive action version of empowerment is difficult to use as a signal

for representation learning because often different states do not have significantly

different one-step empowerment but may have different longer-horizon empowerment.

In addition, both works applied their approaches to fully observable grid-world

or simpler settings, whereas we apply our approach to continuous and partially

observable settings. We also provide the theorems mentioned above that prove that

empowerment encourages information seeking by representation learning. Other

works that used empowerment for representation learning include Bharadhwaj

et al. (2022), which also only employed single-step empowerment to fully observable
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settings. Their approach also incorporates task rewards into the objective so it is

not fully unsupervised representation learning. In addition, related to our work

are multi-step inverse methods (Lamb et al., 2023; Rudolph et al., 2024) that use

an objective similar to the mutual information between single-step actions and

downstream observations for representation learning. However, these results also do

not learn skills and are only applied to fully observable settings.

3. Maximizing empowerment with respect to a behavior policy encourages

information seeking by environment interaction

The third contribution of the thesis is to show that maximizing empowerment

with respect to a behavior policy encourages agents to seek information through

environment interaction. That is, maximizing an empowerment reward can be a

solution to the problem of state uncertainty caused by partial observability. If

the following are true: (a) there are some features of the state that the agent is

uncertain about, (b) this uncertainty is reducing the size of an agent’s skillset, and

(c) the agent can take actions in the environment to elicit information about the

unknown features, then maximizing an empowerment reward will encourage these

information-seeking actions and the agent may be able to reduce some uncertainty

caused by partial observability.

We support this contribution with both theoretical and empirical results. We provide

one theorem that shows that if the agent is considering two behavior policies and

one policy terminates in a representation that provides more information about the

underlying state than the terminating representation achieved by the other policy,

then the policy that provides more information will produce larger empowerment

on average and thus will be encouraged by the empowerment objective. We also

provide empirical results in a few simple domains showing that agents prefer to

execute information-seeking policies.
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Context: To our knowledge, this thesis provides the first results showing empower-

ment encourages information-seeking actions. Many prior works have also performed

empowerment maximization but for different applications such as stabilization (Jung

et al., 2012; Karl et al., 2017; Zhao et al., 2020) or predator avoidance (Mohamed

and Rezende, 2015). These applications are critical for agents but information

seeking is notable because it can be a long-term driver of skillset growth. In realistic

settings, there will often be features of the state that the agent is not only uncertain

about but that also depress the size of an agent’s skillset. Our result that empower-

ment encourages information seeking means an empowerment-maximizing agent will

continually be encouraged to learn about these unknown state features and thereby

build its skillset over time.

Also related to our contributions on information seeking are algorithms that directly

encourage information seeking such as those that minimize belief state uncertainty

(Rhinehart et al., 2021; Aoki et al., 2011; Williams, 2007; Kreucher et al., 2005).

The key advantage of using empowerment for information seeking instead of trying

to directly minimize state uncertainty is that there is not always a strong correlation

between information and empowerment. Sometimes small bits of information can

have large impacts on an agent’s skillset. For example, consider the agent in

the drone setting that is not sure which one of two buttons is the “On” button.

Conversely, large bits of information can have no impact on an agent’s skillset (e.g.,

the number of blades of grass in some area or the exact pattern of a QR code). An

agent that is trying to directly maximize information may exert effort trying to

extract these bits of information and thus be very inefficient at growing its skillset.

On the other hand, agents that maximize empowerment will be encouraged to focus

on the bits of information that most impact the size of their skillset.
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CHAPTER 2

Background and Related Work

This chapter provides the relevant background and related work information needed

to understand the contributions of the thesis. The background sections describe how

environments and agents are modeled in this thesis, define empowerment, and review

relevant properties of mutual information, among other topics. The related work sections

discuss prior work in the main areas within artificial intelligence research covered by this

thesis: unsupervised reinforcement learning, representation learning in partially observable

settings, and information seeking.

2.1 Modeling the Environment

In this thesis, we will model the environment using a discrete-time Controlled Hidden

Markov Process (CHMP), which is a probabilistic graphical model defined by the tuple

(S,A,Ω, p(s0), p(st+1|st, at), p(ot|st)). S is the state space with states s ∈ S; A is the action

space with actions a ∈ A; Ω is the observation space with observations o ∈ Ω; p(s0) is the

initial state distribution; p(st+1|st, at) is the state transition dynamics; and p(ot|st) is the

distribution over observations given the current state. A CHMP setting is thus equivalent

to a Partially Observed Markov Decision Process (POMDP) (Åström, 1965; Kaelbling
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et al., 1998) without a reward function. In this thesis, we will consider CHMPs with both

(a) Markov and (b) non-Markov observations. In the Markov variant, the distribution over

underlying states given the latest observation is conditionally independent of the prior

history of actions and observations: p(st|ot) = p(st|a0, o1, . . . , at−1, ot). On the other hand,

in the non-Markov variant, there is some history of actions and observations in which

p(st|ot) ̸= p(st|a0, o1, . . . , at−1, ot). Note that in this thesis, we will use the environment

characterizations of “non-Markov” and “partially observable” interchangeably.

2.2 Modeling the Agent

The goal of the thesis is to train an agent to learn three particular functions. The

first function is a recurrent neural network fη : C × A × O → C that maps learned

representations ct ∈ C, actions at, and observations ot+1 to the next learned representation

ct+1. The goal of this representation learning is to learn sufficient statistic representations

xt ∈ X , which are representations that provide distributions over the underlying state

that are conditionally independent of the prior history of actions and observations:

p(st|xt) = p(st|a0, o1, . . . , at−1, ot).

The second function is a skillset function fλ : C → p(π) that maps a learned represen-

tation ct to a distribution over policies p(π), in which each policy π : C → A maps learned

representations to primitive actions. Specifically, in this thesis, the skillset function will

output a skill-conditioned policy πz : C × Z → A, which maps learned representations

ct and skills z ∈ Z to primitive actions. For instance, in our implementation, fλ will

output the parameters (i.e., the weights and biases) of a skill-conditioned policy neural

network. This skill-conditioned policy represents a distribution over policies p(π) because

the combination of (i) a skill z sampled from some fixed distribution over skills p(z) and (ii)

the skill-conditioned policy πz, produces some policy π mapping learned representations

to actions. This skillset function will be trained to learn all the distinct skills an agent

could execute from some learned representation ct. A distinct skill in the context of
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empowerment will mean a policy that terminates in observations that are not targeted

by other policies in the p(π) skillset. Note that the skillset function will be trained in

simulation using the agent’s world model.

The third function is a behavior policy πb : C → A that maps learned representations

ct to primitive actions at. In contrast to the skill-conditioned policies the agent learns, the

agent will use this behavior policy to actually interact in the environment. Specifically, this

policy will be encouraged to seek information, meaning that the agent will be encouraged to

take actions to achieve learned representations with less uncertainty about the underlying

state.

2.3 Mutual Information and Empowerment

Given two random variables, A and B, defined by two distributions including (i) a

source distribution p(a) and (ii) a channel distribution p(b|a), the mutual information

between A and B, I(A;B), measures the rate at which samples of A that can be sent

across the channel p(b|a) producing a sample b that can then be decoded back to the

original sample of a with arbitrarily low error for each use of the channel. That is, mutual

information captures the number of distinct values of a ∼ A that can be reliably sent

across the channel. I(A;B) is defined

I(A;B) = H(B)−H(B|A) (2.1)

= H(A)−H(A|B) (2.2)

= Ea∼p(a),b∼p(b|a)[log p(a)− log p(a|b)], (2.3)

where H(C) of some random variable C is the Shannon entropy (Shannon, 1948): H(C) =

Ec∼p(c)[− log p(c)]. Per line 2.2, mutual information is higher when (i) the entropy H(A) is

higher, which can occur when there are more distinct samples of a sent across the channel,

and/or (ii) H(A|B) is lower, which means the samples of a are more distinct in terms of
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Figure 2.1: Probabilistic graphical model for executing skills π from some starting learned
representation c0. The initial state random variable S0 is sampled from the distribution of
underlying states p(s0|c0). Future states are sampled from the state transition dynamics
p(st+1|st, at). Actions are sampled from the policy π. Learned representations are sampled
from some distribution p(ct+1|ct, at, ot+1). Observations are sampled from the observation
distribution p(ot|st).

the samples b that they target. As a result of the entropy terms, mutual information is

measured in logarithmic units (e.g., bits or nats).

To measure the number of distinct skills contained in some skillset defined by p(π)

when the skillset is executed from some learned representation c0, the mutual information

I(Π;On|c0) between a skill random variable Π and skill-terminating observation random

variable On can be used. The source distribution is the distribution over policies p(π|c0).

The channel distribution p(on|c0, π) samples skill-terminating observations from the proba-

bilistic graphical model shown in Figure 2.1, where (i) the initial state p(s0|c0) is sampled

from the underlying distribution over states, (ii) future states are sampled from the state

transition dynamics p(st+1|st, at), (iii) primitive actions are generated from the policy

π, (iv) learned representations are generated by some distribution p(ct+1|ct, at, ot+1), and

(v) observations are sampled from the observation distribution p(ot|st). This mutual
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information is defined

I(Π;On|c0) = H(On|c0)−H(On|c0,Π) (2.4)

= H(Π|c0)−H(Π|c0, On) (2.5)

= Eπ∼p(π|c0),on∼p(on|c0,π)[log p(π|c0, on)− log p(π|c0)]. (2.6)

Thus, per line 2.4, the number of distinct skills grows when the entropy H(On|c0) increases,

which can occur when the number of observations on a skillset targets increases, and/or

the conditional entropy H(On|c0,Π) decreases, which can occur when different skills

target different groupings of skill-terminating observations on. Similarly, per line 2.5,

the number of distinct skills grows when H(Π|c0) grows, which can occur when a more

entropic distribution over policies is executed, and/or H(Π|c0, On) decreases, which can

occur when different skills target different groupings of skill-terminating observations.

The empowerment of a representation measures the maximum mutual information

between skills and observations with respect to the skillset p(π|c0):

E(c0) = max
p(π|c0)

I(Π;On|c0). (2.7)

That is, empowerment is the largest number of distinct skills that can be executed from

some representation c0.

2.4 Relevant Properties of Mutual Information

We will use the following four properties of mutual information in this thesis:

1. Data-Processing Inequality:

I(A;B) ≥ I(A;C) if c = f(b) (2.8)
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2. Convexity w.r.t. Channel Distribution:

I(A;C) ≤ Eb∼p(b)[I(A;C|b)] if p(c|a) = Eb∼p(b)[p(c|a, b)] (2.9)

3. Variational Lower Bound:

I(A;B) ≥ Ea∼p(a),b∼p(b|a)[log qψ(a|b)− log p(a)] (2.10)

4. Chain Rule:

I(A;B0, B1, . . . , Bn−1) = I(A;B0) + I(A;B1, . . . , Bn−1|B0) (2.11)

The Data Processing Inequality states that the mutual information between a random

variable A and another random variable B is at least as large as the mutual information

between A and a third random variable C that is some function of B (see Ch.2 in Cover

and Thomas (2006) for proof). For instance, one implication of this property is that

the mutual information between skills and observations is upper bounded by the mutual

information between skills and states, assuming observations ot are generated using some

function of states st. In other words, by using observations instead of states, the agent

may learn fewer skills because multiple states st may map to the same observation ot.

The second property is the convexity of mutual information with respect to the channel

distribution. That is, if the channel p(c|a), between two random variables A and C is

a weighted average of channels p(c|a, b) that involve a third random variable B (i.e.,

p(c|a) = Eb∼p(b)[p(c|a, b)]), then the mutual information between A and C, I(A;C), is less

than or equal to the weighted average of the mutual information between A and C when

conditioned on values of b (see chapter 2 in Cover and Thomas (2006)). The intuition here

is that if the channel distribution is actually a noisy mixture of channels, on average more

distinct samples of a can be sent over the channel if the exact channel was known. We
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will use this property in Chapters 4 and 5 to prove that using empowerment as a reward

function encourages information seeking through representation learning and environment

interaction.

The third property shows that if the posterior p(a|b) is replaced with a different

variational distribution qψ(a|b) with variational parameters ψ, then the variational mutual

information term IV (A;B) = Ea∼p(a),b∼p(b|a[log qψ(a|b) − log p(a)] is a lower bound of

the original mutual information I(A;B) (see Barber and Agakov (2003) for proof).

The looseness of the bound I(A;B)− IV (A;B) = Eb∼p(b)[DKL(p(a|b)||qψ(a|b))] depends

on an average KL divergence between the true and variational posteriors. That is, if

qψ(a|b) ≈ p(a|b), the bound will be tight but otherwise will be loose. Both prior work

and the work in this thesis will use a variational lower bound on the mutual information

between skills and observations because the true mutual information in continuous domains

is typically intractable to compute.

The fourth property is the chain rule for mutual information, which states that the

mutual information between a random variable A and a sequence of n random variables

B0, . . . , Bn−1 can be broken down into the sum of (i) the mutual information between

A and the first B0 in the sequence, I(A;B0), and (ii) the mutual information between

A and the remaining Bi terms conditioned on B0, I(A;B1, . . . , Bn−1|B0). We will use

this recursive property of mutual information in Chapter 5 to compute a longer horizon

version of empowerment using only shorter horizon mutual information terms.

2.5 Markov Decision Processes

This thesis will also involve solving a finite horizon Markov Decision Process (MDP)

(Puterman, 1994), which is a problem setting defined by the tuple (X ,A, p(xt+1|xt, at), R),

in which xt ∈ X are Markov representations (not necessarily the underlying state st),

at ∈ A are primitive actions, p(xt+1|xt, at) are the Markov transition dynamics, and
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R : X → R is the reward for achieving a particular representation xt. The objective

in a finite horizon MDP is to learn a policy π : X → A that maximizes expected,

cumulative reward: maxπ Eπ[
∑T

t=1R(xt)]. Finite horizon MDPs can be solved using

dynamic programming (Bertsekas, 2001) and reinforcement learning methods (Sutton

and Barto, 1998). In this thesis, we will implement a finite horizon MDP to maximize

empowerment with respect to a behavior policy to encourage information-seeking actions.

2.6 Related Work: Unsupervised Reinforcement Learn-

ing

The algorithms contained in this thesis are a part of a broader class of algorithms

known as Unsupervised Reinforcement Learning (URL). To decrease the cost of designing

and transmitting rewards, URL algorithms implement a pretraining phase where agents,

without rewards, try to learn components that can be useful for a downstream RL task

when a reward is introduced (Agarwal et al., 2025a). Most often, these components

are either (i) skills that target diverse observations (i.e., unsupervised skill discovery

algorithms), (ii) representations that serve as input to policies, and (iii) statistics of

policies that describe future state visitation distributions (e.g., the successor measure).

2.6.1 Skills (Unsupervised Skill Discovery)

Unsupervised skill discovery algorithms generally fall into two categories: (i) Goal-

Conditioned Reinforcement Learning (GCRL) and (ii) Mutual Information-based Skill

Learning.

GCRL algorithms learn policies that target particular observations (Kaelbling, 1993;

Andrychowicz et al., 2017; Levy et al., 2019; Durugkar et al., 2021; Ma et al., 2022; Chuck

et al., 2025; Sikchi et al., 2024; Agarwal et al., 2023; Park et al., 2023a; McClinton et al.,

2021; Nair et al., 2018; Nasiriany et al., 2019; Eysenbach et al., 2021). During pretraining,
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all observations can be used as potential goals for the agent to learn to achieve. Then

downstream GCRL tasks, in which the agent is asked to achieve a particular subset of goals,

can potentially be completed in a zero-shot manner. Two problems with unsupervised

GCRL algorithms are that (i) they may require that the agent know the distribution of

reachable goal observations and (ii) goal-conditioned policies can be difficult to learn in

stochastic settings, where specific observations cannot be achieved with high probability.

In this thesis, we present unsupervised skill discovery algorithms that can overcome both

of these limitations.

Mutual information-based skill learning aims to learn skillsets that maximize some

mutual information between skills and observations (Florensa et al., 2017; Eysenbach

et al., 2019; Achiam et al., 2018; Sharma et al., 2020; Choi et al., 2021; Strouse et al.,

2022; Park et al., 2024b; Zheng et al., 2025a; Hu et al., 2024; Baumli et al., 2021; Campos

et al., 2020; Laskin et al., 2022; Tiomkin et al., 2025). As noted in section 2.3, maximizing

mutual information with respect to a skill-conditioned policy encourages each of the skills

in the skill-conditioned policy to target a distinct skill-terminating observation. Learning

skills by maximizing mutual information can enable zero-shot performance in downstream

tasks. Given some goal observation on, the posterior distribution that many algorithms

learn, q(z|on), can be sampled to determine a skill to achieve the provided goal observation

in a zero-shot manner.

The work in this thesis improves on many existing mutual information-based skill

learning algorithms in three ways. First, we maximize a tighter variational lower bound

on mutual information relative to prior work (Gregor et al., 2016; Eysenbach et al.,

2019), making it easier to discover more diverse skillsets. Second, by maximizing mutual

information with respect to a representation learning function (e.g., an RNN), this thesis

provides algorithms for not only learning skills but also representations. This enables our

approach to address the issue of belief aliasing and thereby learn larger skillsets in partially

observable settings. Third, by maximizing empowerment with respect to a behavior policy,
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this thesis provides algorithms that encourage agents to achieve learned representations

with less underlying state uncertainty (i.e., encourages information seeking actions). This

additional reduction in state uncertainty enables agents to attain larger skillsets than

agents that only maximize mutual information with respect to a skill-conditioned policy.

2.6.2 Representations

Another segment of Unsupervised RL algorithms uses a pretraining stage to learn

compressed representations of observations that seek to only contain the information

needed for control (Ghosh et al., 2019; Ma et al., 2023; Islam et al., 2022; Lamb et al., 2023;

Levine et al., 2024; Rudolph et al., 2024). Some of these algorithms learn representations

by training inverse models that try to predict some initial primitive action given some

future observation (Islam et al., 2022; Lamb et al., 2023; Levine et al., 2024; Rudolph

et al., 2024). This approach is similar to a variant of our approach of maximizing mutual

information with respect to representation learning parameters. However, in this approach

the mutual information is between a single primitive action and a future observation

so these approaches do not learn temporally-extended, closed-loop skills, which can be

helpful for downstream tasks. In addition, the experiments for these methods have been

limited to Markov settings, whereas we show results where agents learn representations in

partially observable settings.

2.6.3 Policy Statistics

Another segment of unsupervised reinforcement learning uses a pretraining stage to

compute particular statistics of policies. In successor feature approaches, these statistics

are cumulative state features (Dayan, 1993; Barreto et al., 2017; Park et al., 2024a; Zhu

et al., 2025). In other approaches, the statistic is the successor measure, which provides

the discounted state visitation distribution achieved by a policy (Touati and Ollivier, 2021;

Touati et al., 2023; Agarwal et al., 2025b). These statistics can then be used to search
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for a policy that maximizes reward in a zero-shot manner. A key challenge with these

approaches is that they assume Markov observations. This thesis provides an unsupervised

RL algorithm that can learn Markov representations in partially observable settings as

well as skills conditioned on those representations.

2.7 Related Work: Representation Learning in Par-

tially Observable Settings

Also related to the work in this thesis is a class of algorithms that learn representations

in partially observable settings (Littman and Sutton, 2001; Lin and Mitchell, 1993;

Schmidhuber, 1991, 1990; Bakker, 2001; Hausknecht and Stone, 2015; Ni et al., 2022;

Wierstra et al., 2007; Heess et al., 2015; Hafner et al., 2019b; Allen et al., 2024). A key

difference from our work is that many of these approaches rely on manually-specified,

task-specific rewards to provide a signal for learning representations, which in practice can

be costly to implement and/or overly sparse. Our approach uses the mutual information

between skills and observations, which is unsupervised and task-invariant. Also, in contrast

to the algorithms presented in this thesis, these approaches do not jointly learn large

skillsets while performing representation learning.

2.8 Related Work: Information Seeking

There have been many prior works that have developed algorithms to encourage

information seeking (Aoki et al., 2011; Friston, 2009; Friston et al., 2016; Rhinehart

et al., 2021; Kreucher et al., 2005; Williams, 2007; Berseth et al., 2021; Fountas et al.,

2020), which is sometimes referred to as active state estimation in the sensor management

literature and minimizing surprise in the intrinsic motivation literature. The typical

objective these works use for decision making is to minimize the entropy of the agent’s

state uncertainty H(St+1|O≤t+1, A≤t) or maximize information gain I(Ot+1;St+1|O≤t, A≤t),
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which is the difference between the uncertainty with respect to the underlying state before

(i.e., H(St+1|O≤t, A≤t)) and after (H(St+1|O≤t+1, A≤t)) the next observation. These

objectives directly reward the agent for lower uncertainty. Another popular objective is

to minimize the entropy of the state visitation distribution H(dπ(s)), where the state

visitation distribution is dπ(s) = 1
T
(
∑T−1

t=0 pπ(st = s)), in which pπ(st = s) is the probability

of the agent using policy π achieving state s at time t, and T is the number of time

steps in an episode (Berseth et al., 2021; Rhinehart et al., 2021). This objective not

only encourages information seeking like minimizing the entropy of the state, but also

encourages the agent to prevent changes in the state.

The problem with these objectives for building skillsets by information seeking is that

more information does not mean larger skillsets. There can be settings where gaining

a small number of bits of information can have a large impact on the size of an agent’s

skillset. For instance, consider a scenario where (a) a robot is unsure which of two buttons

starts a microwave and (b) if the agent presses the wrong button, the microwave is

disabled. With respect to the feature of the state representing the correct start button for

the microwave, the uncertainty is not large as there is only one bit of information to be

gained. However, this single bit can have a large effect on the number of observations

an agent can reliably target, because by knowing how to start the microwave, the agent

can reliably cook a variety of foods. On the other hand, gaining many bits of information

about the underlying state can have a little to no impact on the size of an agent’s skillset.

For instance, a robot can count the number of blades of grass outside the building it is

in, ask strangers their middle names, or stare at randomly sampled QR codes and gain

many bits of information. But gaining information about these features of the state space

likely will not expand the number of observations they can reliably target. Given that

realistic settings are filled with state features that have a negligible impact on skillset

size, trying to maximize information gain likely will not be an efficient way to maximize

skillset size. On the other hand, maximizing empowerment can offer a more practical
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approach to information seeking as empowerment-maximizing agents will focus on the

bits of information that most affect the size of their skillsets.
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CHAPTER 3

Learning Diverse Skillsets with

Empowerment

Empowerment has been a popular objective for addressing the challenge of learning

diverse skillsets in an unsupervised manner, and with good reason. The mutual information

between skills and observations does provide a principled way to measure how many distinct

skills are in some set of policies. Thus, maximizing the mutual information with respect

to different skillsets should enable agents to learn large sets of distinct skills from some

starting representation. Yet, the initial unsupervised skill learning approaches that used

pure empowerment objectives (Gregor et al., 2016; Florensa et al., 2017; Eysenbach et al.,

2019; Achiam et al., 2018) were not able to learn large skillsets. For instance, Florensa

et al. (2017), Eysenbach et al. (2019), and Achiam et al. (2018) only report learning

at most 20 skills in popular MuJoCo domains like Swimmer and Half Cheetah, which

have relatively large observation spaces and where agents were able to execute skills for

hundreds of steps. The empowerment, or the maximum number of skills an agent can

execute in these domains, should be orders of magnitude larger.

After the initial set of empowerment-based algorithms was unable to generate large

skillsets, another wave of unsupervised skill discovery approaches argued that changes
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Figure 3.1: Existing empowerment-based skill discovery approaches maximize a loose
lower bound on mutual information that can significantly underestimate the diversity of
skillsets that differ from the current skillset. For instance, candidate skillset Π1 is more
diverse and has larger mutual information (i.e., ITrue(Z;O)) than candidate skillset Π2 as
each policy in Π1 targets a unique observation. Yet because the loose mutual information
bound employed by existing approach can penalize skillsets that are different from the
current skillset, existing approaches may assign a larger diversity score to the redundant
skillset. Our variational mutual information objective that provides a tighter bound on
mutual information fixes this issue and would assign a larger diversity score to candidate
skillset Π1.

needed to be made to the mutual information objective so that more skills could be learned

(Zheng et al., 2025a; Strouse et al., 2022; He et al., 2025; Hu et al., 2024, 2025; Park et al.,

2022, 2023b, 2024b). Some argued that regularization terms (Strouse et al., 2022; He et al.,

2025; Zheng et al., 2025a) should be added to boost exploration. Other works argued

that the skills should be factorized such that each dimension of the skill makes changes to

a particular state dimension (Hu et al., 2024, 2025; Carr et al., 2025). Others discussed

how the individual entropy terms in the mutual information needed to be swapped for

other terms (Laskin et al., 2022; Zheng et al., 2025a; Warde-Farley et al., 2019; Achiam

et al., 2018; Zhang et al., 2021). Others argued that mutual information is not capable

of learning large skillsets in continuous settings (Park et al., 2022, 2023b, 2024b). Yet,

the results of these works still showed skillset sizes that were orders of magnitude smaller

than the true empowerment of representations in these environments.

This chapter argues that the primary reason for the limited skillsets produced by the

original empowerment-based skill discovery algorithms was that they were maximizing a

loose lower bound on the mutual information between skills and observations. The loose
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bound was particularly poor for skillsets that deviated from the current greedy skillset. In

other words, when agents were evaluating the diversity of candidate skillsets, they were

often significantly underestimating the diversity of those skillsets, particularly those that

differed from the current skillset, even if they were truly more diverse than the current one.

Figure 3.1 provides an illustration of this idea. The result was often stagnant skillsets

that did not grow over time (Campos et al., 2020; Park et al., 2022; Levy et al., 2023).

The cause of the loose mutual information lower bound used by prior work is the

structure and the training of variational posterior distribution. When a variational mutual

information estimate is used to evaluate the diversity of some candidate skillset, (i) the

variational posterior should condition on some variable representing this candidate skillset

and (ii) this variational posterior should be trained to match the true posterior of the

candidate skillset, not the current skillset. We fix this issue with a new variational lower

bound on mutual information. In this objective, (i) the variational posterior is conditioned

on a variable representing the skillset under consideration and (ii) the variational posterior

is trained to match the true posterior of the candidate skillset.

Yet, maximizing this new variational mutual information objective with respect to an

agent’s skillset is difficult. The optimization problem is equivalent to a bandit problem

in which actions are skillsets and the reward is the mutual information of executing the

skillset action from some representation (i.e., the reward is how diverse the skillset is).

Optimizing this objective with a traditional actor-critic architecture is not practical. The

actor could be implemented as a mapping from an agent’s representation to an action

vector that represents an agent’s skillset. Specifically, the action vector could represent the

parameters of a skill-conditioned policy neural network, which means the skillset action

could be thousands of dimensions long. The problem with this implementation, though,

lies with the critic, which would need to approximate how mutual information changes

from small, simultaneous adjustments to numerous parameters in the skill-conditioned

policy.
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To make maximizing our new variational mutual information objective tractable, we

introduce a new actor-critic architecture. The actor takes the form described above.

But instead of training a single traditional critic, we show that we can simulate the

gradients of this critic using parameter-specific critics. That is, for each parameter in the

skill-conditioned policy action, we train in parallel a different parameter-specific critic to

approximate the mutual information for skillsets that involve small changes to only one of

the parameters of the skill-conditioned policy while the other parameters remain constant.

We support our claim that the combination of (a) the tighter variational lower bound

on mutual information and (b) the new actor-critic architecture can produce large skillsets

with a variety of empirical results. Because our approach is compute intensive, all

environments we trained on have low-dimensional underlying state spaces. Yet many have

other challenging features such as stochastic transition dynamics and/or high-dimensional

observations (i.e., images). In all settings, our approach learned vastly larger skillsets than

the baselines, which include algorithms from the original set of pure empowerment-based

skill discovery algorithms, including VIC (Gregor et al., 2016) and DIAYN Eysenbach

et al. (2019), and one leading algorithm from the next wave of empowerment-adjacent

algorithms, CSF (Zheng et al., 2025a).

3.1 Deriving a Tighter Bound on Mutual Information

To make computing the empowerment of a representation more tractable, both existing

work and our approach start with a lower-bound empowerment objective (in equations 3.1

and 3.2) that limits the search space of skillsets to those formed by (i) skill-conditioned

policies πz : C × Z → A, which map representations and skills to actions, and (ii) fixed
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distributions over skills p(z), rather than all possible skillsets:

max
p(π)

I(Π;On|c) ≥ max
πz

I(Z;On|c, πz) (3.1)

= max
πz

Ez∼p(z),on∼p(on|c,πz ,z)[log p(z|c, πz, on)− log p(z))]. (3.2)

The lower bound results from the combination of the Data-Processing Inequality and the

smaller search space.

Our approach differs from prior work, though, in the precise variational mutual informa-

tion objective we use to replace the true mutual information. Computing the true mutual

information in equations 3.1 and 3.2 for different candidate skill-conditioned policies πz is

not tractable in continuous settings as a result of the posterior distribution p(z|c, πz, on),

which would require integrating over the intermediate variables (e.g., a0, o1, c1, . . . , an−1, on)

in a trajectory. Instead, it is common practice to replace the original posterior with a

variational posterior distribution (e.g., qψ(z|c, πz, on) parameterized by ψ (Mohamed and

Rezende, 2015):

IV (Z;On|c, πz) = Ez∼p(z),on∼p(on|c,πz ,z)[log qψ(z|c, πz, on)− log p(z))]. (3.3)

This produces a lower bound on the original mutual information (i.e., IV (Z;On|c, πz) ≤

I(Z;On|c, πz)) and the gap is an average KL divergence between the true and variational

posteriors (Barber and Agakov, 2003; Poole et al., 2019):

I(Z;On|c, πz)− IV (Z;On|c, πz) = Eon∼p(on|c,πz)[DKL(p(z|c, πz, on)||qψ(z|c, πz, on))] (3.4)

That is, the variational lower bound on mutual information will be tight if the variational

posterior is close to the true posterior.

There are two issues with the way prior work (Gregor et al., 2016; Eysenbach et al.,

2019; Achiam et al., 2018) handles the variational mutual information objective when

32



evaluating the diversity of some candidate skillset πz, which together can result in a loose

lower bound. First, instead of using the variational posterior qψ(z|c, πz, on), they remove

the πz conditioning variable so that the variational posterior is qψ(z|c, on). Second, they

train qψ(z|c, on) to only match the posterior of the current skillset p(z|c, πCurrent
z , on) using

the KL divergence objective DKL(p(z|c, πCurrent
z , on)||qψ(z|c, on)). This means that for

some candidate skillset πz, prior work will be measuring the diversity of that skillset with

a variational mutual information term IV that uses a variational posterior trained to match

the true posterior of the current skillset πCurrent
z , not the true posterior of the candidate

skillset. As a result, if the true posterior of the candidate skillset differs significantly from

the true posterior of the current skillset (e.g., same skills target different observations),

then the variational mutual information will form a loose lower bound and thus significantly

underestimate the diversity of the candidate skillset, even when the candidate skillset is

more diverse. Note, however, that this lower bound will be tighter when candidate skillsets

are more similar to the current skillset as the KL divergence between the candidate and

current posteriors will not be too different. Thus, the variational mutual information

objective used by prior work can discourage skillsets that are both more diverse and

different from the current skillset in favor of skillsets that are more similar to the current

greedy skillset.

We address this issue and produce a tighter variational lower bound on mutual infor-

mation by (i) including a variable representing πz in the posterior (i.e., qψ(z|c, πz, on))

and then (ii) training the variational posterior to match the true posterior of the candi-

date skillset πz: minψDKL(p(z|c, πz, on)||qψ(z|c, πz, on)). Thus, we also define variational

mutual information using equation 3.3. These changes enable agents to better measure

the diversity of candidate skillsets, which in turn makes it more likely they can learn

diverse skillsets. Note that the next section will detail how we can represent an entire

skillset πz as a scalar value input to the variational posterior. Theorem 1 proves that this

procedure for the variational posterior distribution produces a tighter lower bound on
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mutual information.

Theorem 1. Let qψ0(z|c, πz, on) be a variational posterior distribution that (i) includes

a conditioning variable representing the candidate skillset πz and (ii) is trained to mini-

mize the KL divergence: DKL(p(z|c, πz, on)||qψ(z|c, πz, on)). Let qψ1(z|c, on) be a second

variational posterior distribution that (i) does not include a conditioning variable rep-

resenting the candidate skillset πz and (ii) is trained to minimize the KL divergence:

DKL(p(z|c, πCurrent
z , on)||qψ(z|c, on)). Then, the variational mutual information for can-

didate skillset πz produced by ψ0, I
V0(Z;On|c, πz), will form a tighter bound on the true

mutual information I(Z;On|c, πz) than the variational mutual information produced by

ψ1, I
V1(Z;On|c, πz):

IV1(Z;On|c, πz) ≤ IV0(Z;On|c, πz) ≤ I(Z;On|c, πz).

Proof. To start, I(Z;On|c, πz) is larger than both IV0(Z;On|c, πz) and IV1(Z;On|c, πz)

because their differences depend on average KL divergences between the true poste-

rior of the candidate skillset p(z|c, πz, on) and the variational posteriors qψ0(z|c, πz, on)

and qψ1(z|c, on), and KL divergences are nonnegative (Cover and Thomas, 2006). Next,

given that ψ0 can take the form of either (a) ψ1 if that is the optimal set of param-

eters for minimizing the average KL divergence between the true posterior and the

variational posterior qψ0(z|c, πz, on) or (b) any other set of parameters, then the average

KL divergence between the true posterior and the variational posterior formed by ψ0

must be no larger than the average KL divergence between the true posterior and the

variational posterior formed by ψ1: Eon∼p(on|c,πz)[DKL(p(z|c, πz, on)||qψ0(z|c, πz, on))] ≤

Eon∼p(on|c,πz)[DKL(p(z|c, πz, on)||qψ1(z|c, on))]. Given that the average KL divergence is

the difference between the true and variational mutual information terms (Barber and

Agakov, 2003), then I(Z;On|c, πz) − IV0(Z;On|c, πz) ≤ I(Z;On|c, πz) − IV1(Z;On|c, πz)

or IV0(Z;On|c, πz) ≥ IV1(Z;On|c, πz).
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3.2 Maximizing the Mutual Information Lower Bound

While the variational mutual information in equation 3.3 provides a tighter bound

on the true mutual information and thereby enables agents to more accurately measure

the diversity of a skillset, it is challenging to maximize with respect to skillsets formed

from skill-conditioned policies. That is, it is difficult to compute the following variational

empowerment objective:

EV (c) = max
πz

IV (Z;On|c, πz) (3.5)

= max
πz

Ez∼p(z),on∼p(on|c,πz ,z)[log qψ(z|c, πz, on)− log p(z)] (3.6)

This objective takes the form of a bandit problem with a potentially massive action space.

Here the bandit policy to be learned is a mapping from the starting representation c to

an action vector that represents the skill-conditioned policy πz. Specifically, this vector

would contain the potentially thousands of parameters (i.e., the weights and biases) that

make up the skill-conditioned policy neural network. The reward is the variational mutual

information IV (Z;On|c, πz) for executing that skillset action πz in representation c. That

is, the reward is how diverse the skillset πz is when it is executed from c.

The problem is that the traditional actor-critic would not be practical as a result of the

large action space. An actor fλ : C → πz that maps representations to skill-conditioned

policy parameters could be implemented. However, a critic Qα(c, πz) would be challenging

to train because the critic would need to approximate IV (Z;On|c, πz) for many skill-

conditioned policies πz that contain small changes to numerous parameters within πz,

which is a difficult function to learn.

Instead, we will use a different actor-critic approach that “simulates” the gradient

from the traditional actor-critic method. The key insight is that in the traditional

architecture, the gradient of the critic with respect to any parameter λj in the actor fλ is

dQ
λj

=
∑|πz |−1

i=0
dQ
dπi

z

dπi
z

dλj
, where πiz is the i-th entry of the πz vector. That is, we only need
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Figure 3.2: Figure visualizes the function form of a 1 hidden layer critic. We use this
visual to show that the derivative of Q with respect to a parameter λj of the bandit
policy actor depends on the derivatives of Q with respect to the individual entries in the
skill-conditioned policy vector πz.

to simulate how the Q function changes in response to small adjustments to each of the

parameters in πz (i.e.,
dQ
dπi

z
) while the others remain constant.

Before describing how we will take advantage of this insight when designing our actor-

critic, we first show that this is true for a 1-hidden layer MLP critic Qα(c, πz = fλ(c)) with

respect to some parameter λj in the bandit policy actor fλ(c). The critic will take the

following form, which is visualized in Figure 3.2. The output Q = n(hW1), in which n(·) is

a nonlinear function; h is the hidden layer vector with |h| dimensions; and hW1 performs

the dot product between vector h and the weight matrix W1, which is simply a vector

because Q is a scalar. Next, each entry hi ∈ h is defined hi = n(πzW0,i), in which W0,i

is the i-th column of weight matrix W0. Note that in this definition the neural network

connections between the observation c and hi are ignored because c has no dependence

on the parameters of the bandit policy actor λ. Lastly, each entry πiz ∈ πz is defined

πiz = f(λj, c, λ/j). That is, each entry in πz is some function of the parameter λj under

consideration, the initial observation c, and the other parameters (excluding λj) in λ.
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Figure 3.3: Visual of how the parameter-specific critics attach to the actor. In this
case, the actor maps a representation c to the parameters of the skill-conditioned policy
πz = [π0

z , π
1
z , . . . , π

|πz |−1
z ]. For each dimension in πz, there is a critic Qαi(c, πiz) that

approximates the variational mutual information of executing the skill-conditioned policy
πiz from representation c. πiz is a scalar representing the skill-conditioned policy, in which
all parameters j ̸= i take on the greedy value from the actor (i.e., fλ(c)[j]), while the i-th
parameter takes on value πiz.

With this functional form,

dQ

dλj
=

dQ

d(hW1)

( |h|−1∑
i=0

d(hW1)

dhi

dhi
d(πzW0,i)

( |πz |−1∑
k=0

d(πzW0,i)

dπkz

dπkz
dλj

))
=

|πz |−1∑
k=0

dπkz
dλj

( |h|∑
i=0

dQ

dhW1

d(hW1)

dhi

dhi
d(πzW0,i)

d(πzW0,i)

dπkz

)
=

|πz |−1∑
k=0

dQ

dπkz

dπkz
dλj

(3.7)

Thus, the gradient of Q with respect to each parameter of the bandit policy actor

depends on the gradients of Q with respect to each of the entries in πz (i.e., dQ
dπk

z
for

k = 0, . . . , |πz| − 1).

Given that we can match the gradients from the traditional actor-critic approach if

we can accurately estimate dQ
dπi

z
(i.e., how mutual information changes from small changes

to one parameter of πz assuming the other parameters are constant), we will use a new

actor-critic architecture. In this architecture, we train, in parallel, parameter-specific
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critics Qαi(c, πiz) to respectively approximate IV (Z;On|c, πiz) for i = 0, . . . , |πz| − 1, in

which πiz is a scalar representing the skill-conditioned policy in which all entries in πz

take on their greedy values from the actor fλ(c) except the i-th parameter which takes

on value πiz. We then use the trained critics to update the actor fλ so that it outputs

more diverse skill-conditioned policies πz using equation 3.7. Figure 3.3 provides a visual

of the parameter-specific actor-critic architecture. Note that to train the parameter-

specific critics, we also need to train in parallel parameter-specific variational posteriors

qψi(z|c, πiz, on) for i = 0, . . . , |πz| to minimize the KL divergence between the true posterior

p(z|c, πiz, on) and the variational posterior qψi(z|c, πiz, on).

Algorithm 1 Actor-Critic Method for Maximizing IV (Z;On|c, πz) w.r.t. πz
for all dimensions i = 0, . . . , |πz| − 1 in parallel do

for M iterations do
Update qψi : ψi ← ψi − α∇ψi

(DKL(p(z|c, πiz, on)||qψi(z|c, πiz, on))) with noisy πiz
end for
for M iterations do

Update Qαi : αi ← αi − α∇αi
((Qαi(c, πiz)− Target)2) with noisy πiz,

Target = Ez∼p(z),on∼p(on|c,πi
z ,z)

[log qψi(z|c, πiz, on)− log p(z)]
end for

end for
Update fλ: λ← λ+ α∇λ(

∑|πz |−1
i=0 Qαi(c, πiz = fλ(c)[i]))

Algorithm 1 provides the full algorithm for the actor-critic method for maximizing

our variational mutual information lower bound with respect to πz. The first step is

to train, in parallel and until convergence, all parameter-specific variational posteriors

qψi(z|c, πiz, on) to match the true posteriors p(z|c, πiz, on) for noisy skillsets πiz. The second

step is to train all parameter-specific critics Qαi(c, πiz), in parallel and until convergence,

to approximate variational mutual information for noisy skillsets πiz. The final step is to

update the actor.
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Figure 3.4: Sample state trajectories executed by a random policy in four of the five
settings. The blue marker in the stochastic four rooms agent is the agent navigating
around. The red marker in the pick-and-place task is the object that can be moved if the
agent is within some threshold. The black square in the RGB QR code tasks is the agent,
and the yellow square in the pick-and-place task is the object that can be moved if the
agent is within some threshold.

3.3 Experiments

We support our hypothesis that maximizing a tighter lower bound on mutual informa-

tion should have a large impact on the size of skillsets an agent can learn through several

experiments.

3.3.1 Environments

We tested our approach and a mix of baselines on five environments. All have

fully observable states and low-dimensional underlying state spaces, but they each have

features that make them more difficult such as stochastic transition dynamics and/or high-

dimensional observations. We need to test on domains with low-dimensional underlying

state spaces because maximizing mutual information is a compute intensive optimization
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as it requires searching across a large space of skillsets. We provide visualizations for four

of the five settings in Figure 3.4.

1. 2D Room

Our first setting is a 2D room with walls on all four sides. Actions are continuous,

2D vectors and reflect changes in (x, y) position. Observations are continuous, 2D

vectors and show the agent’s (x, y) position. The primary challenge in this domain

relative to the rest is that the skill-starting observation can be anywhere in the

room. That is, the agent needs to learn skillsets from all locations in the room

and these skillsets will differ significantly depending on where the agent starts. For

instance, the agent’s set of skills should act differently when the agent starts in

the top left corner of the room versus the center of the room. The remainder of

the environments will have a single starting state. In this task, skills consist of 8

primitive actions, while in the rest, skills consist of 5 primitive actions.

2. Stochastic Four Rooms Navigation

The next setting is another room environment but with stochastic transition dy-

namics. Actions are again 2D and reflect changes in (x, y) position. Observations

are 2D and show the agent’s (x, y) position. But now the transition dynamics work

by first executing the agent’s action in the current room and then transporting the

agent to the corresponding position in one of the four rooms selected at random. So

if the agent finished an action at a position (∆x,∆y) from the center of the bottom

left room, the agent may be transported to a position that is (∆x,∆y) from the

center of the top right room. Note that the observations show the actual position

rather than the delta from the center of each room.

3. Stochastic Four Rooms Pick-and-Place

This manipulation domain takes place in the same stochastic four rooms setting

except now there is an object that the agent can manipulate if the agent is within a
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certain threshold of the object. Note that in each stochastic transition, the agent

and object will travel to the same randomly selected room.

4. RGB QR Code Navigation

In this domain an agent learns to navigate amid a continually changing RGB-colored

QR code background. Observations are 507-dimensional RGB images and are highly

stochastic as the colored-QR code image fully changes after each action. Actions are

discrete and consist of a horizontal movement (move east/west/stay) and a vertical

movement (move north/south/stay).

5. RGB QR Code Pick-and-Place

This environment is the same as the navigation task except there is now an object

that can be moved if the object is within reach.

Given that the goal of the thesis is to develop unsupervised skill discovery approaches

that can learn large skillsets, we evaluate agents by the variational mutual information of

the skillsets they have learned.

3.3.2 Baselines

We compare our approach to a mix of baselines. In the 2D room task we compare

to Variational Intrinsic Control (VIC) (Gregor et al., 2016), Diversity Is All You Need

(DIAYN) (Eysenbach et al., 2019), Contrastive Successor Features (CSF) (Zheng et al.,

2025a), and a variant of our approach where we train the parameter-specific critics

to approximate the loose lower bound of mutual information where the parameter-

specific variational posteriors are not conditioned on the skillset under consideration.

The remaining four environments compare our approach to VIC and a variant of Goal-

Conditioned RL (Choi et al., 2021).

We compare to VIC and DIAYN in order to compare to two of the original pure

empowerment-based skill discovery methods. VIC is similar to our approach as it maxi-
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mizes the mutual information between skills and skill-terminating observations, but uses

the loose lower bound on the mutual information by not including the candidate skillset

in the variational posterior. DIAYN uses a different mutual information than both VIC

and our approach as it is between skills and observations from randomly selected time

steps along a trajectory. DIAYN also includes a policy entropy term in the objective that

encourages stochastic policies. We compare to CSF as it is one of the leading algorithms

among the recent wave of unsupervised skill discovery approaches. CSF provides a mutual

information-based version of METRA (Park et al., 2024b), which is another leading

approach. We compare to the baseline of our approach that uses the loose lower bound

to assess whether the performance of our approach is due to the tighter bound or the

bandit style approach to skillset optimization. We also compare to a goal-conditioned

RL approach as these have been successful in deterministic settings but are generally not

tested in stochastic settings where specific states cannot be achieved with high probability.

3.3.3 Results

Table 3.1: Average (±std) variational mutual information of learned skillsets (nats)

Algorithm 2D Room 4 Rooms Nav 4 Rooms Pick QR Nav QR Pick

Ours 8.0± 0.0 5.1± 0.3 8.7± 0.3 3.5± 0.1 6.0± 0.2
VIC 4.1± 1.3 0.2± 0.4 −0.1± 0.3 −0.4± 0.0 −0.6± 0.1
DIAYN −0.4± 0.0 N/A N/A N/A N/A
CSF −0.4± 0.7 N/A N/A N/A N/A
Loose Bound 4.1± 0.8 N/A N/A N/A N/A
GCRL N/A 0.3± 0.4 3.9± 0.6 −0.4± 0.3 −2.6± 5.8

Table 4.1 provides the average variational mutual information (5 random seeds) for

our approach and the set of baselines. The results are reported in the logarithm unit of

nats. For instance, the skillset our approach learned in the 2D room contains 8.0 nats

of skills, which is equivalent to around 2980 skills. As the table reports, our approach

learned vastly larger skillsets than the baselines in all settings. The baseline that came

closest was VIC in the 2D room, but our approach still learned around 50 times more
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Figure 3.5: Some visualization of the entropy terms in the 2D room domain. Both the
left and center images visualize the H(On) entropy term, which shows the observation
coverage of the skillset. Specifically, the left image shows the trajectories from a single
starting observation produced by 45 randomly sampled skills. The center image shows
the skill-terminating (x, y) positions from 1000 randomly sampled skills when starting
at the green marker near the bottom left corner. The right image visualizes the H(Z)
and H(Z|On) entropy terms, which sample skills from the fixed skill space p(z) and the
trained variational posterior qψ(z|o0, πz, on), respectively. The randomly sampled skills
are shown by the 20 squares. For each skill, 5 samples from the variational posterior
qψ(z|c0, πz, on) are shown as circles. The large observation coverage and the very tight
variational posterior around each skill shows the agents is learning large, diverse skillsets.

skills (our skillset had 3.9 more nats of skills).

We can also assess the performance of our approach by visualizing the four entropy

terms in the symmetric version of the mutual information between skills and observations:

H(On), H(On|Z), H(Z), and H(Z|On). For instance, Figure 3.5 visualizes the H(On),

H(Z), and H(Z|On) terms for the 2D room domain. As the H(On) images show, the

skills in the learned skillset target nearly all the possible observations. The H(Z|On)

image, which visualizes the samples from the tight variational posterior, shows that skills

are targeting highly precise (x, y) coordinates. Figures 3.6-3.9 visualize the entropy terms

for the remaining settings. These similarly show that our approach is learning large and

diverse skillsets.

43



H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 3.6: Entropy visualizations for the stochastic four rooms domain. Left image
visualizes H(On) by marking the skill-terminating state from 1000 skills randomly sampled.
The center image visualizes H(On|Z) by showing 12 samples of skill-terminating states
from 4 specific skills randomly sampled. The right image visualizes (i) H(Z) by showing
the skill space (black rectangle) and (ii) H(Z|On) by showing samples of the variational
posterior (empty circles) for four different skills (filled squares)).

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 3.7: Images show the entropy visualizations for the stochastic four rooms pick-and-
place domain. The left image shows the skill-terminating observations on that result from
1000 skills uniformly sampled from the learned skill space. The near uniform coverage
of the observation space shows that H(On) is large. The middle image focuses on four
skills, uniformly sampled from the skill space, and for each skill shows 12 samples of
skill-terminating observations. Per the image, each skill targets an abstract observation
representing an offset from the center of a room for both the agent and object, showing
that H(On|Z) is low. The right image focuses on four skills and shows 5 samples from
the variational posterior qψ(z|o0, l, πz, on). Per the image, the samples form a narrow
distribution around the executed skill, showing that H(Z|On) is low.
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H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 3.8: Entropy visualizations for the RGB QR code navigation task. Left image
visualizes H(On) by marking the skill-terminating states on produced by executing 1000
samples of skills from the learned skill space. Center image visualizesH(On|Z) by executing
four skills 12 times each and recording the skill-terminating observations. Each skill targets
an abstract (x,y) position. The right image shows samples from the variational posterior
distribution. Note that in this case, the latent space is four dimensional even though the
underlying state space is two dimensional. Because the agent does not need those extra
dimensions, you see the horizontal lines in the variational posterior visualization.

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 3.9: Entropy visualizations for the RGB QR code pick-and-place tasks. Left image
visualizes H(On) by marking the skill-terminating observations on produced by executing
1000 samples of skills from the learned skill space. Center image visualizes H(On|Z) by
executing four skills 12 times each and recording the skill-terminating states. Each skill
targets an abstract (x,y) position for both the agent and object. The right image shows
samples from the variational posterior distribution. Per the visuals, as expected, the agent
learns a diverse skillset as H(On) is large while the conditional entropies H(On|Z) and
H(Z|On) are small.
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CHAPTER 4

Reducing State Uncertainty from

Belief State Aliasing using

Empowerment

The previous chapter showed how empowerment addresses the problem of learning

diverse sets of policies in an unsupervised manner. Yet, agents will not be able to learn

many distinct policies if the agent operates in representations with high uncertainty in

the underlying state. This is because more uncertainty produces more randomness in the

transition dynamics, which in turn broadens the distributions of observations a skill targets.

If this broadening results in skills targeting overlapping distributions of observations, the

skills can become redundant and the number of distinct skills in a skillset falls. Thus, a

second major challenge to learning large skillsets in an unsupervised manner is minimizing

state uncertainty.

In order to manage state uncertainty, agents must address the two sources of state

uncertainty. One source is from the inherent partial observability in the environment. That

is, for some histories of actions and observations ht, the probability of the underlying state

(i.e., p(st|ht)) will not always be 1. For instance, when the agent in the drone setting in
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Figure 1.4 has not seen which button is the start button for the drone, the agent will have

some uncertainty about the underlying state (i.e., p(left button == On | history ht) =
1
2
). The second source of state uncertainty is from poor representation learning that

causes belief state aliasing. Belief state aliasing occurs when an agent’s RNN (or other

representation learning function such as an observation encoder in fully observable settings)

takes two histories of actions and observations with different underlying distributions of

state (i.e., different belief states) and encodes them to the same or similar representations.

Figure 1.2 depicts this situation in the drone setting where the agent’s RNN maps two

histories, where one history signals that the left button is the “On” button while the other

history signals that the right button is the “On” button, to the same representation. For

this aliased representation c, p(left button == On | c) = 1
2
. As a result of both of these

sources of uncertainty, the size of the skillset that can be executed from representation c

falls because the agent cannot reliably control the drone.

This chapter shows how maximizing empowerment with respect to the parameters of

the representation learning function discourages belief state aliasing. That is, maximizing

empowerment with respect to an RNN, for instance, encourages the RNN to disentangle

histories representing different underlying distributions of states. This should be an

intuitive result because if some belief state aliasing is depressing the size of an agent’s

skillset, training the RNN to maximize the size of an agent’s skillset using empowerment

should naturally encourage the RNN to disentangle these aliased histories. To bolster this

hypothesis, this chapter provides both theoretical and empirical support.

We provide two theorems showing how empowerment encourages agents to seek

information (i.e., reduce uncertainty) about their underlying state through representation

learning. First, we prove that the average empowerment produced by an RNN is maximized

when the agent’s representations are sufficient statistic representations of histories with

respect to the underlying state. That is, empowerment is maximized when there is no

belief state aliasing in the agent’s representations. This result is notable because it
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Figure 4.1: Our second theorem shows that Empowerment provides a dense reward for
discouraging belief state aliasing. That is, RNNs are rewarded for disentangling histories
that represent different underlying distributions of states even if the RNN is not able
to fully disentangle histories. For instance, if the RNN has two options: (i) make no
change and (ii) disentangle a group of eight histories such that they are broken up into
two representations, empowerment will encourage the RNN to perform the latter even
though it does not fully disentangle the histories.

means that training an RNN to maximize empowerment can be an objective for learning

representations with minimal belief state uncertainty. Yet, this theorem does not provide

evidence that the empowerment reward is dense with respect to the RNN. It may take

numerous small changes for an RNN to output sufficient statistic representations of

histories and the first theorem alone does not explain whether empowerment reward is

sufficiently dense to encourage the RNN to make these changes.

Our second theorem proves that empowerment is a dense reward by showing that

given any two RNNs, if one RNN provides more information about the underlying state

than the other, then the average empowerment produced by the more informative RNN

will be at least as large as the average empowerment produced by the other RNN (and

larger under some easily achievable conditions), and thus the empowerment objective

will prefer the RNN that provides more information. As a result, empowerment is a

dense reward as it encourages RNNs to disentangle representations even if the resulting

representations are not yet sufficient statistic representations. For instance, as described

in Figure 4.1, if an RNN is deciding between two options in which one option involves
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no change to its parameters, and the second option involves disentangling a set of eight

histories that correspond to different belief states such that the set of eight is split into

two representations, empowerment will encourage this disentanglement so long as it

increases the agent’s skillset. Future RNN updates can then try to further disentangle the

remaining histories. We also note that empowerment not only encourages more informative

representations, but it will encourage the RNN to disentangle those representations that

are most depressing the size of an agent’s skillset. In real-world settings there may be

numerous histories with different belief states that become entangled, but many of these

aliased state features will have little to no impact on the agent’s skillset size and thus

should not be a priority for disentanglement. By training the RNN to directly maximize

skillset size, the RNN should prioritize the particular belief state aliasing that most affects

the number of distinct skills in an agent’s skillset.

We also support our claim that empowerment discourages belief state aliasing with

a series of empirical results. In both fully observable and partially observable settings,

we show that empowerment enables agents to simultaneously learn skills and informative

representations, ultimately resulting in large skillsets. Our approach vastly outperforms

other baselines such as VIC Gregor et al. (2016), DIAYN (Eysenbach et al., 2019), CSF

(Zheng et al., 2025a), and variations of our approach.

4.1 Theoretical Analysis

We next provide our two theorems. The purpose of the first theorem is to show

that average empowerment produced by an RNN can be no larger than the average

empowerment produced by a representation function that outputs sufficient statistic

representations. That is, the average empowerment produced by an RNN is maximized

when it outputs sufficient statistic representations of histories with respect to the underlying

state. This is an important result because it shows empowerment can be an objective for

removing belief state aliasing without actually needing access to the underlying state space.
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Yet this theorem does not provide evidence that empowerment can be a dense reward for

continually encouraging information seeking (i.e., uncertainty reduction). The purpose

of the second theorem is to show that empowerment is a dense reward for information

seeking. This theorem shows that if there are two RNNs and one RNN provides additional

information about the underlying state, it will produce larger average empowerment under

certain conditions and thereby be encouraged by the empowerment objective.

Theorem 2. Let η be the parameters of any RNN fη : C × A × O → C and let ηx :

X ×A×O → X be a function that takes as input sufficient statistics xt, actions at, and

observations ot+1 and outputs sufficient statistic representations xt+1, then the average

empowerment produced by η is upper bounded by the average empowerment produced by

ηx: Ec0∼p(c0|η)[E(c0, η)] ≤ Ex0∼p(x0|ηx)[E(x0, ηx)].

Proof.

Ec0∼p(c0|η)[E(c0, η)] = Ec0∼p(c0|η)[I(Z;On|c0, η, π∗
z)] (4.1)

≤ Ec0∼p(c0|η),x0∼p(x0|c0,η)[I(Z;On|c0, x0, η, π∗
z)] (4.2)

≤ Ex0∼p(x0|ηx)[I(Z;On|x0, ηx, πxz )] (4.3)

≤ Ex0∼p(x0|ηx)[I(Z;On|x0, ηx, πx,∗z )] (4.4)

= Ex0∼p(x0|ηx)[E(x0, ηx)] (4.5)

Line 4.1 applies the definition of the empowerment of the tuple (c0, η), in which

c0 is a learned representation and η is a set of RNN parameters. π∗
z represents the

mutual information maximizing skill-conditioned policy parameters when the starting

representation is co and the RNN parameters are η.

The lower bound in line 4.2 applies the convexity property of mutual information with

respect to the channel distribution (Cover and Thomas, 2006; Capdepuy, 2011). The
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convexity property states that in a mutual information I(A;B), if the channel distribution

(i.e., the distribution p(b|a) for all p(a, b) > 0) is a weighted mixture of channels p(b|a, c)

(i.e., p(b|a) =
∫
c
p(c)p(b|a, c)), then the original mutual information of the mixed channel is

upper bounded by the average mutual information of the individual channels in the mixture

(i.e., I(A;B) ≤ Ec∼p(c)[I(A;B|C)]). In our case, the channel distribution, which provides

the distribution of skill-terminating observations given (i) the starting representation c0,

(ii) RNN parameters η, (iii) skill-conditioned policy π∗
z , and (iv) skill z, is p(on|c0, η, π∗

z , z).

And this channel distribution is a weighted mixture of the channels that also include

the sufficient statistic representation: p(on|c0, η, π∗
z , z) =

∫
x0
p(x0|c0, η)p(on|c0, x0, η, π∗

z , z).

Consequently, I(Z;On|c0, η, π∗
z) ≤ Ex0∼p(x0,η)[I(Z;On|c0, x0, η, π∗

z)].

Line 4.3 removes the dependence on the RNN parameterized by η by (i) using the

RNN defined by ηx to produce the representations that serve as the input to the skill-

conditioned policy and (ii) replacing π∗
z with a specific skill-conditioned policy πxz . As

we will show, this will replace each mutual information term, I(Z;On|c0, x0, η, π∗
z), with

a new mutual information term, I(Z;On|x0, ηx, πxz ), that is at least as large. For each

context x0, π
x
z will be constructed as follows. For each x0, find the tuple (c0, x0) with

the largest I(Z;On|c0, x0, η, π∗) as there can be multiple contexts c0 associated with the

same sufficient statistic x0. Then, for each x0 let πxz be the skill-conditioned policy dis-

tribution p(at|x0, xt) =
∫
ct
p(ct|c0, x0, xt, st)p(at|c0, x0, xt, ct, st) =

∫
ct
p(ct|c0, x0, xt)p(at|ct),

in which p(at|ct) is the probability specified by the skill-conditioned policy defined by

π∗
z . p(ct|c0, x0, xt, st) = p(ct|c0, x0, xt) because given the tuple (c0, x0), Ct → Xt → St

form a Markov chain. (Note that the skill-conditioned policies in this proof will take as

input the step number t as input, or there can n skill-conditioned policies for each of

the n actions taken in a skill). Thus, the skill-conditioned policy πxz will have the same

distribution over actions as executed by π∗
z when conditioned on the contexts xt from the

RNN defined by ηx. Next, we show that for all (c0, x0), the original mutual information

I(Z;On|c0, x0, η, π∗
z) is upper bounded by the new mutual information I(Z;On|x0, ηx, πxz ).
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We first show that for each mutual information term I(Z;On|c0, x0, η, π∗
z) from which

πxz was constructed in the previous step, I(Z;On|x0, ηx, πxz ) = I(Z;On|c0, x0, η, π∗
z). That

is, we replace the original mutual information term with an equivalent mutual information

term. Given that the source distributions p(z) are the same by definition as they are

fixed, to show that the mutual information terms are the same, we need to show that

the channel distributions p(on|c0, x0, η, π∗
z , z) = p(on|x0, ηx, πxz , z) are the same for all

(z, on) tuples. We show this below by proving by induction that the joint distributions

p(xt−1, st−1, at−1, st, ot, xt|c0, x0, η, π∗
z , z) = p(xt−1, st−1, at−1, st, ot, xt|x0, ηx, πxz , z) for t =

1, . . . , n. Then because the joint distributions p(xn−1, sn−1, an−1, sn, on, xn|c0, x0, η, π∗
z , z) =

p(xn−1, sn−1, an−1, sn, on, xn|x0, ηx, πxz , z) for the last time step, the channel distributions

are equal: p(on|c0, x0, η, π∗
z , z) = p(on|x0, ηx, πxz , z).

The proof by induction goes as follows. In the base case at t = 1, the distribution

p(x0|c0, x0, η, π∗
z , z) = p(x0|x0, ηx, πxz , z) because the same x0 appears in the conditioning

variables. p(s0|c0, x0, η, π∗
z , z) = p(s0|x0, ηx, πxz , z) because C0 → X0 → S0 form a Markov

chain. p(a0|c0, x0, η, π∗
z , z, s) = p(a0|c0, x0, η, π∗

z , z) = p(a0|x0, ηx, πxz , z) using the definition

of πxz . p(s1, o1|c0, x0, η, π∗
z , z, s0, a0) = p(s1, o1|x0, ηx, πxz , z, s0, a0) as the next state s1 and

observation o1 only depend on s0 and a0 and is independent of the other variables. Lastly,

p(x1|c0, x0, η, π∗
z , z, s0, a0, o1) = p(x1|x0, ηx, πxz , z, s0, a0, o1) because the next context x1

only depends on x0, a0, o1, which are the same in both cases. Thus, the base case of the in-

duction proof is true as p(x0, s0, a0, o1, x1|c0, x0, η, π∗, z) = p(x0, s0, a0, o1, x1|x0, ηx, πxz , z).

Assuming the proof holds through t = k−1, then at step t = k, p(xk−1, sk−1|c0, x0, η, π∗
z , z) =

p(xk−1, sk−1|x0, ηx, πxz , z) because the joint distributions p(xk−2, sk−2, ak−2, ok−1, xk−1|c0, x0, η, π∗
z , z) =

p(xk−2, sk−2, ak−2, ok−1, xk−1|x0, ηx, πbz, z). p(ak−1|c0, x0, η, π∗
z , z, xk−1) = p(ak−1|x0, ηx, πxz , z, xk−1)

using the definition of πxz . Again, p(sk, ok, xk|c0, x0, η, π∗
z , z, xk−1, sk−1, ak−1) = p(sk, ok, xk|x0, ηx, πxz , z, xk−1, sk−1, ak−1)

as sk, ok only depend on sk−1 and ak−1 and xk only depends on xk−1, ak−1, ok. Thus, the

induction proof holds through step t = k as p(xk−1, sk−1, ak−1, sk, ok, xk|c0, x0, η, π∗
z , z) =

p(xk−1, sk−1, ak−1, sk, ok, xk|x0, ηx, πxz , z).
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Thus, I(Z;On|x0, ηx, πxz ) = I(Z;On|c0, x0, η, π∗
z) for those (c0, x0) tuples from which

πxz was constructed. For the other smaller I(Z;On|c0, x0, η, π∗
z) terms that were not used

to construct πxz , these will also be replaced by I(Z;On|x0, ηx, πxz ). If in these replacements,

the new mutual information I(Z;On|x0, ηx, πxz ) > I(Z;On|c0, x0, η, π∗
z), the inequality in

line 4.3, will be replaced by a strictly less than.

In line 4.4, the lower bound results from replacing the skill-conditioned policy πxz with

the optimal skill-conditioned policy πx,∗z for the specific x0 context and RNN defined by

ηx. If this replacement produces larger mutual information, then the inequality becomes

a strictly less than.

The final line 4.5 uses the definition of the empowerment of a sufficient statistic x0

with representation distribution defined by ηx. This completes the proof that an RNN

defined by η produces an average empowerment that is upper bounded by the averaged

empowerment of a function ηx that generates sufficient statistic representations.

Theorem 3. Let ηa and ηb be the parameters of two RNNs such that for any joint

distribution p(h, ca0, c
b
0, s) in which h is a history, ca0 and cb0 are the contexts produced by

processing the history through the two respective RNNs a and b, and s be a state sampled

from the belief state distribution p(s|h). Assuming (i) I(Cb
0;S|Ca

0 ) > 0 (i.e., ηb provides

more information about the underlying state than ηa) and (ii) Ca
t → Cb

t → St form a

Markov chain when conditioned on ca0, c
b
0 for t = 0, 1, . . . , n−1, then Eca0∼p(ca0 |ηa)[E(c

a
0, η

a)] ≤

Ecb0∼p(cb0|ηb)[E(c
b
0, η

b)].
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Proof.

Eca0∼p(ca0 |ηa)[E(c
a
0, η

a)] = Eca0∼p(ca0 |ηa)[I(Z;On|ca0, ηa, πa,∗z )] (4.6)

≤ Eca0∼p(ca0 |ηa),cb0∼p(cb0|ca0 ,ηa)[I(Z;On|ca0, cb0, ηa, πa,∗z )] (4.7)

≤ Ecb0∼p(cb0|ηb)[I(Z;On|cb0, ηb, πbz)] (4.8)

≤ Ecb0∼p(cb0|ηb)[I(Z;On|cb0, ηb, πb,∗z )] (4.9)

= Ecb0∼p(cb0|ηb)[E(c
b
0, η

b)] (4.10)

Line 4.6 applies the definition of the empowerment of the tuple containing a context

representation and RNN parameters. πa,∗ represents the mutual information maximizing

skill-conditioned policy parameters for the (context, RNN) tuple of (ca0, η
a).

The lower bound in line 4.7 applies the convexity property of mutual information with

respect to the channel distribution (Cover and Thomas, 2006; Capdepuy, 2011). In our case,

if the RNN defined by ηb provides more information about the underlying state than ηa (i.e.,

I(Cb;S|Ca) > 0), then the channel distribution p(on|ca0, ηa, πa,∗z , z) is a weighted mixture of

channels p(on|ca0, cb0, ηa, πa,∗z , z) (i.e., p(on|ca, ηa, πa,∗z , z) =
∫
cb0
p(cb0|ca0, ηa)p(on|ca0, cb0, ηa, πa,∗z , z))

and so the mutual information of the mixed channel I(Z;On|ca0, ηa, πa,∗z ) is upper bounded

by the average mutual information of the individual channels Ecb0∼p(cb0|ca0)[I(Z;On|ca0, cb0, ηa, πa,∗z )].

Line 4.8 removes the dependence on the RNN parameterized by ηa by (i) using the

RNN defined by ηb to produce the representations that serve as inputs to the skill-

conditioned policy and (ii) replacing πa,∗z with a specific skill-conditioned policy πbz. As

we will show, this will replace each mutual information term, I(Z;On|ca0, cb0, ηa, πa,∗z ),

with a new mutual information term, I(Z;On|cb0, ηb, πbz), that is at least as large. For

each context cb0, π
b
z will be constructed as follows. For each cb0, find the tuple (ca0, c

b
0)

with the largest I(Z;On|ca0, cb0, ηa, πa,∗) as there can be multiple contexts ca0 associated
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with the same cb0. Then, for each cb0 let πbz be the skill-conditioned policy distribution

p(at|cb0, cbt) =
∫
cat
p(cat |ca0, cb0, cbt , st)p(at|ca0, cb0, cbt , cat , st) =

∫
cat
p(cat |ca0, cb0, cbt)p(at|cat ), in which

p(at|cat ) is the probability specified by the skill-conditioned policy defined by πa,∗z . That is,

the skill-conditioned policy πbz will have the same distribution over actions as executed by

πa,∗z when conditioned on the contexts cbt from the RNN defined by ηb. Next, we show that

for all (ca0, c
b
0), the original mutual information I(Z;On|ca0, cb0, ηa, πa,∗z ) is upper bounded

by the new mutual information I(Z;On|cb, ηb, πbz).

We first show that for each mutual information term I(Z;On|ca0, cb0, ηa, πa,∗z ) from which

πbz was constructed in the previous step, I(Z;On|cb0, ηb, πbz) = I(Z;On|ca0, cb0, ηa, πa,∗z ). That

is, we replace the original mutual information term with an equivalent mutual information

term. Given that the source distributions p(z) are the same by definition as they are

fixed, to show that the mutual information terms are the same, we need to show that

the channel distributions p(on|ca0, cb0, ηa, πa,∗z , z) = p(on|cb0, ηb, πbz, z) are the same for all

(z, on) tuples. We show this below by proving by induction that the joint distributions

p(cbt−1, st−1, at−1, st, ot, c
b
t |ca0, cb0, ηa, πa,∗z , z) = p(cbt−1, st−1, at−1, st, ot, c

b
t |cb0, ηb, πbz, z) for t =

1, . . . , n. Then because the joint distribution p(cbn−1, sn−1, an−1, sn, on, c
b
n|ca0, cb0, ηa, πa,∗z , z) =

p(cbn−1, sn−1, an−1, sn, on, c
b
n|cb0, ηb, πbz, z) at the last time step, the channel distributions are

equal: p(on|ca0, cb0, ηa, πa,∗z , z) = p(on|cb0, ηb, πbz, z).

The proof by induction goes as follows. In the base case at t = 1, the distribution

p(cb0|ca0, cb0, ηa, πa,∗z , z) = p(cb0|cb0, ηb, πbz, z) because the same cb0 appears in the conditioning

variables. p(s0|ca0, cb0, ηa, πa,∗z , z) = p(s0|cb0, ηb, πbz, z) because p(s0|ca0, cb0, z) = p(s0|cb0, z)

per the Markov assumption in the theorem statement. p(a0|ca0, cb0, ηa, πa,∗z , z, s0) =

p(a0|ca0, cb0, ηa, πa,∗z , z) = p(a0|cb0, ηb, πbz, z) using the definition of πbz. p(s1, o1|ca0, cb0, ηa, πa,∗z , z, s0, a0) =

p(s1, o1|cb0, ηb, πbz, z, s0, a0) as the next state s1 and observation o1 only depends on s0 and

a0 and are independent of the other variables. Lastly, p(cb1|ca0, cb0, ηa, πa,∗z , z, s0, a0, o1) =

p(cb1|cb0, ηb, πbz, z, s0, a0, o1) because the next context cb1 only depends on cb0, a0, o1, which

are the same in both cases. Thus, the base case of the induction proof is true as
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p(cb0, s0, a0, s1, o1, c
b
1|ca0, cb0, ηa, πa,∗z , z) = p(cb0, s0, a0, s1, o1, c

b
1|cb0, ηb, πbz, z).

Assuming the proof holds through t = k−1, then at step t = k, p(cbk−1, sk−1|ca0, cb0, ηa, πa,∗z , z) =

p(cbk−1, sk−1|cb0, ηb, πbz, z) because the joint distribution p(cbk−2, sk−2, ak−2, sk−1, ok−1, c
b
k−1|ca0, cb0, ηa, πa,∗z , z) =

p(cbk−2, sk−2, ak−2, sk−1, ok−1, c
b
k−1|cb0, ηb, πbz, z). p(ak−1|ca0, cb0, ηa, πa,∗z , z, cbk−1, sk−1) = p(ak−1|ca0, cb0, ηa, πa,∗z , z, cbk−1) =

p(ak−1|cb0, ηb, πbz, z, cbk−1) using the definition of πbz. Again, p(sk, ok, c
b
k|ca0, cb0, ηa, πa,∗z , z, cbk−1, sk−1, ak−1) =

p(sk, ok, c
b
k|cb0, ηb, πbz, z, cbk−1, sk−1, ak−1) as sk, ok only depend on sk−1 and ak−1 and cbk

only depends on cbk−1, ak−1, ok. Thus, the induction proof holds through step t = k as

p(cbk−1, sk−1, ak−1, sk, ok, c
b
k|ca0, cb0, ηa, πa,∗z , z) = p(cbk−1, sk−1, ak−1, sk, ok, c

b
k|cb0, ηb, πbz, z).

Thus, I(Z;On|cb0, ηb, πbz) = I(Z;On|ca0, cb0, ηa, πa,∗z ) for those (ca0, c
b
0) tuples from which

πbz was constructed. For the other smaller I(Z;On|ca0, cb0, ηa, πa,∗z ) terms that were not used

to construct πbz, these will also be replaced by the I(Z;On|cb0, ηb, πbz) terms that are at

least as large as I(Z;On|ca0, cb0, ηa, πa,∗z ). If the replacement mutual information terms are

larger, then the inequality in line 4.8 will be replaced by a strictly less than.

In line 4.9, the lower bound results from replacing the skill-conditioned policy πbz with

the optimal skill-conditioned policy πb,∗z for the specific cb0 context and RNN defined by ηb.

If this replacement produces larger mutual information, then the inequality becomes a

strictly less than.

The final line 4.10 uses the definition of the empowerment of a context cb0 with

representation distribution defined by ηb. This completes the proof that an RNN defined

by ηb providing more information on the underlying state than an RNN defined by ηa,

produces average empowerment that is at least as large as the other RNN.
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4.2 Maximizing Mutual Information w.r.t. Skills and

Representations

Maximizing empowerment with respect to a representation function in practice involves

maximizing a mutual information objective with respect to both a skill-conditioned policy

and a representation function:

max
η

Ec0∼p(c0|η)[E(c0, η)] ≥ max
η,fλ

Ec0∼p(c0|η)[I(Z;On|c0, η, πz = fλ(c0))]. (4.11)

η is the parameters of the representation function and fλ is a function that outputs the

skill-conditioned policy parameters for a particular context c0. Thus, the left side of 4.11

shows the objective of maximizing, with respect to the representation learning parameters,

the average empowerment of the context representations produced by a candidate set of

representation learning parameters. Given that the empowerment of a representation still

needs to be learned, we maximize a lower bound of this average empowerment objective, in

which the maximum mutual information is replaced with the current mutual information

term.

To maximize the mutual information term objective in equation 4.11, we use two actor-

critic architectures. The first actor-critic is the same as the one introduced in Chapter

3. The actor fλ : C → πz maps context representations c to a vector representing the

parameters of a skill-conditioned policy. The parameter-specific critics Qαi : C × πiz → R

approximate the mutual information of skillsets defined by the scalar πiz, which represents

a skill-conditioned policy in which all dimensions j ̸= i are set to the greedy values

of fλ(c0)[j], while the i-th component is set to πiz. To help the parameter-specific

critics approximate variational mutual information, the first actor-critic also includes

parameter-specific variational posteriors qψi(z|c0, η, πiz, on) that are trained to match the

true posteriors of candidate skillsets.
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The second actor-critic is responsible for training the representation learning parameters

(e.g., the parameters of an RNN) such that they produce high average empowerment.

The actor fγ : v → η maps a fixed vector v to the representation learning parameters η.

The parameter-specific critics Qξi : η
i → R approximate the average mutual information

produced by the set of representation learning parameters ηi:

Qξi(η
i) ≈ Ec0∼ηi [E(c0, ηi)]. (4.12)

Similar to πiz, η
i is a scalar that represents the vector of representation learning parameters

in which dimensions j ̸= i take on the greedy value from the actor fγ(v)[j], while the i-th

dimension assumes value ηi. Also, similar to the first actor-critic, to assist the parameter-

specific critics in approximating average mutual information, the second actor-critic will

also have parameter-specific variational posteriors qψi(z|c0, ηi, on) that are trained to

match the true posteriors of candidate skillsets. Note the repeated use of ψi notation is

for simplicity. Different sets of variational posterior parameters are used in the first and

second actor-critics.

Algorithm 2 provides the algorithm for updating both the skill discovery and represen-

tation learning actor-critics, which are visualized in Figure 4.2. The algorithm alternates

between updating the two actor-critics. For each actor-critic update, the parameter-specific

critics are initially updated by first updating the parameter-specific variational posteriors

and then the parameter-specific critics. For instance, for the skill discovery actor-critic,

the variational posteriors qψi(z|c0, πiz, on) are first trained to match the true posteriors

p(z|c0, πiz, on) for noisy πiz for M iterations (M = 300 in our experiments). Then the

parameter-specific critics Qαi(c0, π
i
z) are trained to approximate the variational mutual

information IV (Z;On|c0, πiz) for noisy πiz for M iterations. After the variational posteriors

and critics have been updated during each actor-critic update, the actor is then updated

once using an objective that sums all the parameter-specific critic objectives. For instance,

in the representation learning actor-critic, the actor fγ is updated using the objective

58



Skill Discovery 
Actor-Critic

Parameter-Specific Critics
…

Actor

Representation Learning 
Actor-Critic

Parameter-Specific Critics
…

Actor

Figure 4.2: We use two actor-critic architectures to maximize our average mutual in-
formation with respect the parameters of a skill-conditioned policy and an RNN. The
actor-critic on the left is designed to learn diverse skillsets across various contexts c0.
The actor fλ(c0) maps a context to a skillset θz. The parameter-specific critics measure
how many distinct skills are in each skillset θiz using variational mutual information. The
actor-critic on the right is designed to learn RNNs that output representations producing
large average mutual information across all contexts. The actor fλ(a) maps a constant
vector a to the parameters, η, of the RNN. Each parameter-specific critic measures the
average mutual information produced by the RNN defined by the scalar ηi.
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Algorithm 2 Skill Discovery and Representation Learning with Empowerment

▷ Update Skill Discovery Actor-Critic
for all dimensions i = 0, . . . , |πz| − 1 in parallel do

for M iterations do ▷ Update Variational Posterior
Update qψi : ψi ← ψi− ϵ∇ψi

(DKL(p(z|c0, πiz, on)||qψi(z|c0, πiz, on))) with noisy πiz
end for
for M iterations do ▷ Update Critic

Update Qαi : αi ← αi − ϵ∇αi((Qαi(c0, π
i
z)− Target)2) with noisy πiz,

Target = Ez∼p(z),on∼p(on|c0,πi
z ,z)

[log qψi(z|c0, πiz, on)− log p(z)]
end for

end for
Update fλ: λ← λ+ ϵ∇λ(

∑|θz |−1
i=0 Qαi(c0, π

i
z = fλ(c0)[i])) ▷ Update Actor

▷ Update Representation Learning Actor-Critic
for all dimensions i = 0, . . . , |η| − 1 in parallel do

for M iterations do ▷ Update Variational Posterior
Update qψi : ψi ← ψi − ϵ∇ψi

(DKL(p(z|c0, ηi, on)||qψi(z|c0, ηi, on))) with noisy ηi

end for
for M iterations do ▷ Update Critic

Update Qξi : ξ
i ← ξi − ϵ∇ξi((Qξi(η

i)− Target)2) with noisy ηi,
Target = Ec0∼p(c0|ηi),z∼p(z),on∼p(on|c0,ηi,z)[log qψi(z|c0, ηi, on)− log p(z)]

end for
end for
Update fγ: γ ← γ + ϵ∇γ(

∑|η|−1
i=0 Qξi(η

i = fγ(a)[i])) ▷ Update Actor
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Grayscale Room
Plus

Intersection Push
Noisy

Grayscale Room

Figure 4.3: Sample image observations from each of the four high-dimensional fully
observable settings.

J(γ) =
∑|η|−1

i=0 Qξi(η
i = fγ(v)[i]), where fγ(v)[i] outputs the i-th component of the vector

fγ(v).

4.3 Experiments

The central hypothesis of this chapter is that agents can reduce uncertainty and thereby

learn large skillsets by jointly maximizing mutual information with respect to both skillsets

and representations. We evaluate our approach that implements this hypothesis as well

as a collection of baselines in a series of experiments.

4.3.1 Environments

We tested our approach and baselines in both fully observable and partially observable

settings.

Fully Observable Domains: We implemented the following six fully observable do-

mains. The first setting was a simple two-dimensional square room with a two-dimensional

observation space and a two-dimensional continuous action space. The second setting was

a stochastic version of the first setting, in which two extra dimensions are added to the

observation and these two dimensions are randomly sampled from the range [−1, 1]. The

remaining four settings have high-dimensional observations that consist of 32x32 grayscale
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images (1,024 dimensions). The first of these settings is again a two-dimensional room in

which the room is black and the agent is white. The second high-dimensional setting is a

stochastic version of the previous setting in which darker background pixels are randomly

sampled from a range of black to gray colors. The third high-dimensional setting is a

“plus” shaped intersection of horizontal and vertical hallways. The final high-dimensional

setting is a pushing task where the agent can move around an object if the object is within

a certain distance. Figure 4.3 shows sample image observations from the high-dimensional

settings. Note that these high-dimensional tasks are significantly harder than those in the

prior chapter, because the starting observation can be mostly anywhere in the environment

so the agent needs to learn large skillsets from most locations in the environment. The

number of primitive actions in each skill n = 7 for all tasks.

In addition to the experiments described so far where we focus on skill discovery, we

also implemented a set of downstream RL experiments in all the high-dimensional settings

except the push task. We implemented these downstream RL tasks as Goal-Conditioned

RL (GCRL) experiments (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017)

Partially Observable Domains: We evaluate whether our algorithm can learn

large skillsets in non-Markov settings using three environments. All environments are

small in terms of their observation dimensionality, but all involve continuous observation

and action spaces and all are non-Markov. Visuals of all three settings are provided in

Figure 4.4.

The first environment is a variant of the T-Maze setting (Bakker, 2001; Allen et al.,

2024). In this setting, an agent starts in a thin hallway and at the eastern end of the

hallway, a larger hallway perpendicular to the initial hallway opens either to the north or

south. In this variant, if the agent tries to enter the larger hallway in the wrong direction

(e.g., the agent makes a turn south but the hallway actually opens to the north), the agent

becomes stuck for the remainder of the episode. During each episode in evaluation, the

agent starts at the western end of the thin hallway and for only the first timestep the
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Figure 4.4: Visuals of the three non-Markov environments in which we evaluated our
approach.

agent is given a binary signal indicating whether the hallway opens to the north or south.

For the next 15 timesteps, the agent remains frozen in place no matter what (∆x,∆y)

action the agent executes. Then for the remainder of the episode, the agent is free to

move. The most diverse skillset πz that maximizes the mutual information is one in which

each skill targets a precise region of the (x, y), particularly in the large hallway. To do

this, the agent needs to have an RNN that “remembers” the initial binary signal that

describes the direction the hallway opens. Otherwise, the only observations an agent’s

skillset can definitively target are limited to the thin hallway.

In the second environment, Agent Observation, there is a randomly sampled (x, y) goal

region that an agent needs to navigate to before time expires, and if the agent fails to do

so then the agent is returned to the center for the remainder of the episode. However,

unlike a traditional goal-conditioned RL domain where agents are given the goal as part

of each observation, in this setting the agent needs to infer the goal from watching two

other agents pursue the goal, while the primary agent remains frozen in place. During the

first 5 timesteps of this period, the primary agent observes another agent move toward

and achieve the goal (shown by the orange circles in Figure 4.4). When the other agent

achieves the goal, the primary agent receives a signal that the goal has been achieved.

For the following 5 timesteps, the goal-achieving agent is removed and a different “decoy”
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agent starts to move randomly in a manner that is unlikely to achieve the goal (red circles

in Figure 4.4). After these 10 timesteps, the primary agent then must attempt to move

within a threshold of the goal (dashed orange square in Figure 4.4) in the next eight

actions. The mutual information maximizing skillset executes skills that first head to the

goal region, which was shown by the first observed agent, and then target distinct (x, y)

positions. In order to build this skillset, the agent needs an RNN representation that

remembers the goal location targeted by the first agent.

The third setting is a 4-bit password setting. During evaluation, the agent starts each

episode in the cage and receives a single bit of the password for each of the first four

timesteps. During each of the next four timesteps, the agent can output 1 bit of the

password. If there are any mistakes, the agent remains stuck in the cage for the remainder

of the episode. Note that this setting is more challenging than the first two as the agent

needs an RNN that remembers a sequence of observations (i.e., the password) as well as a

sequence of actions (i.e., the number of bits of the password the agent has already output).

The mutual information maximizing skillset will be one in which most skills start each

episode by outputting the correct 4-bit password and then target distinct regions outside

the cage.

Note that during the training episodes (i.e., non-evaluation episodes), we also provide

the agent with a type of curriculum to make it easier to jointly learn representations and

skills conditioned on those representations. These curricula are implemented as a wider

distribution of histories that include histories that extend the duration of observations

providing information about the underlying state. For instance, in T-Maze, the number of

timesteps that include the binary flag indicating the direction of the hallway is randomly

sampled from the range [1, 16] during training episodes, where 1 is the same as the

evaluation episodes. Similarly, in Agent Observation we randomly sample the duration

of the first agent that achieves the goal from the range of [5, 10] timesteps, in which 5

is the same as the evaluation episodes and 10 means no decoy agent is shown. In 4-Bit
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Password, we assist the agent by executing the correct bit (even if the agent outputs

the wrong bit) and provide the next bit as an additional dimension to the observation

for a randomly sampled number of timesteps in the range [0, 3], where 0 means no help

is provided and 3 means the agent does not have to correctly execute the first 3 bits of

the password and is also provided with a hint of the final bit. The purpose of adding

these curricula is that when mutual information is maximized with respect to both the

RNN and skill-conditioned policy, there is a chicken-and-egg problem that arises. The

RNN may be considering a change that adds information about the underlying state (i.e.,

reduces uncertainty) by assigning different representations to histories with different belief

states. However, if the fλ(c) actor, which outputs skill-conditioned policies πz, has not

been trained on these possible new representations, the skill-conditioned policy may be

poor, which may then cause the RNN to disregard this information-preserving change.

By extending the length of the information signal, the agent’s RNN will then consider

histories in which the last observation has the signal about the underlying state. If the

RNN happens to preserve information by assigning different representations to these final

observations with different signals, the skill-conditioned policies can be trained to be

effective in these representations. Then, in settings where there is no extended signal and

the RNN is considering a change from some entangled representation to representations

that preserve information and those representations already have good skill-conditioned

policies, the RNN will be encouraged to make that change.

4.3.2 Baselines

Fully Observable Baselines: In the fully observable experiments, we compare

our full approach that jointly performs representation learning and skill discovery to six

other existing algorithms, including three from prior work and three ablations of our

approach. The three algorithms from prior work we compare to are the explicit version

of Variational Intrinsic Control (VIC) (Gregor et al., 2016), Diversity Is All You Need
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(DIAYN) (Eysenbach et al., 2019), and Contrastive Successor Features (CSF) (Zheng

et al., 2025a). The main differences between these approaches and our approach are

the learnable action space and how the posterior is trained. Instead of treating the

skill-conditioned policy as the learnable action space as in our bandit RL approach, these

treat the primitive action space as the trainable action space. In addition, instead of

conditioning the posterior on the proposed skillset to achieve a tighter mutual information

lower bound, these approaches do not condition on the proposed skillset. VIC differs

from DIAYN by using the skill-terminating observation in the mutual information term,

while DIAYN samples observations from the entire skill trajectory. CSF differs from

VIC and DIAYN by training the posterior using a contrastive lower bound on mutual

information. In addition, CSF trains the skill-conditioned policy using a modified version

of mutual information that subtracts an “anti-exploration” term. Note that CSF is a

recent approach that reports state-of-the-art results and is a mutual information-based

version of METRA (Park et al., 2024b), which is another recent leading approach.

The three ablations of our approach that we compare against include (i) our approach

without representation learning (i.e., the observation encoder is an identity function:

fc(o0) = o0), (ii) our approach but we do not condition the variational posterior on the

skill-conditioned policy as in prior work (i.e., this ablation maximizes a loose lower bound

on mutual information), and (iii) our approach but we fix the observation encoder. (Note

that we only implement (i) for the two low-dimensional observation settings as some

representation learning is needed for the high-dimensional settings.) We compare to (i)

because per Theorem 2, if our approach is working as expected the average empowerment

of a learned representation should be close to the average empowerment of a sufficient

statistic representation and in the low-dimensional settings the observation is a sufficient

statistic. We compare to (ii) in order to evaluate the effect of training skill-conditioned

policies using a loose lower bound on mutual information. The comparison to VIC also

achieves this, but VIC does not treat the skill-conditioned policy parameters as the action
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space. We compare to (iii) to show the importance of training the observation encoder

with empowerment rather than simply using a randomly initialized function to encode

observations.

In the downstream GCRL experiments, we implement four algorithms. One algorithm

learns a goal-conditioned policy outputting primitive actions conditioned on a learned

representation from the first phase of experiments. The second algorithm learns a goal-

conditioned policy that outputs skills using the learned representation and skillsets learned

during the first phase. The third algorithm trains a goal-conditioned policy outputting

primitive actions using the representation from a fixed observation encoder. The fourth

algorithm learns a goal-conditioned policy outputting primitive actions directly from pixels

(i.e., does not use the observation encoder from the first phase).

Partially Observable Baselines: We compare to two other algorithms in the

three partially observable settings. First we compare to the fully observable version of

our approach that trains an observation encoder to maximize empowerment rather than

an RNN. This comparison will assess whether the RNN is learning representations that

are closer to sufficient statistics of histories rather than simply encodings of the last

observation. We also compare to our approach but with a fixed RNN. This comparison

will test whether a randomly initialized RNN by default assigns representations that

disentangle histories, which may mean no training of an RNN is necessary.

Except for the downstream task settings, all tasks evaluate agents based on the size of

their skillsets, measured using average variational mutual information Ec0∼p(c0|η)[IV (Z;On|c0, η, πz].

4.3.3 Results

Fully Observable Skill Discovery Results

Table 4.1 shows the fully observable variational mutual information results for all

algorithms in all settings. Note that (i) the mutual information is shown in the logarithmic
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Table 4.1: Average (±std) variational mutual information of learned skillsets (nats)

Algorithm 2D Noisy 2D Gray Noisy Gray Plus Push

Ours 8.0± 0.0 7.6± 0.1 5.7± 0.3 4.7± 0.3 4.5± 0.1 6.4± 0.4
VIC 4.1± 1.3 4.4± 1.0 0.3± 0.6 0.5± 0.5 0.5± 0.6 −0.1± 0.6
DIAYN −0.4± 0.0 −0.4± 0.0 −0.4± 0.1 −0.4± 0.0 −0.3± 0.0 −0.7± 0.0
CSF −0.4± 0.7 −0.6± 0.2 0.3± 0.9 −0.2± 0.4 −0.6± 0.3 0.1± 0.2
No Abs 7.7± 0.3 4.6± 0.8 N/A N/A N/A N/A
Fixed Abs 7.5± 0.5 4.4± 0.7 2.4± 0.2 1.9± 0.2 2.4± 0.1 3.6± 0.4
Loose Bound 4.1± 0.8 3.6± 0.3 2.1± 0.7 2.1± 0.3 2.0± 0.3 2.8± 0.5

units of nats (e.g., in the Noisy 2D room domain, the agent learns 7.6 nats of skills or

≈ 2, 000 skills) and (ii) variational mutual information can be negative if it is a loose lower

bound on mutual information. The results show strong across-the-board outperformance

by our approach. Relative to the approaches that used loose lower bounds on mutual

information to evaluate skill-conditioned policies πz (i.e., VIC, DIAYN, CSF, and Loose

Bound, which is the ablation that trains a variational posterior not conditioned on πz), our

approach learns far larger skillsets. For instance, the best performance of these approaches

was by VIC and Loose Bound in the low-dimensional tasks where our approach still

learned 3.9 more nats of skills (i.e., 49x more skills) and 3.2 more nats of skills (25x more

skills) in the 2D and Noisy 2D domains, respectively. Relative to the ablation that uses a

fixed observation encoder (i.e., Fixed Abs), our approach learned far larger skillsets except

for the simplest low-dimensional setting where there was smaller outperformance. This

outperformance shows that training the observation encoder with empowerment performs

better than using a randomly initialized function to encode observations. Interestingly,

our approach also outperformed the ablation in the low-dimensional settings that simply

used the low-dimensional observation as the policy input, which in theory should serve as

an upper bound for our approach. We believe our approach performed better in practice

because in domains such as the Noisy 2D room in which different observations can be

close in the observation space but need to support different skill-conditioned policies, it is

helpful to learn representations that separate these observations in order to output different
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Figure 4.5: Learning curves for the low-dimensional tasks. The x-axis measures the
number of updates to the skill-conditioned policy and observation encoder actors (i.e., the
number of passes through Algorithm 2). The y-axis shows the average variational mutual
information I(Z;On|C0).

skill-conditioned policies πz. Further, Figures 4.5, 4.6, and 4.7 provide the learning curves

for the first set of experiments, showing that our approach learns efficiently. For instance,

in the low-dimensional tasks our approach can learn thousands of skills in around 1000

gradient steps to the two actors, while the image domains required around 3000 gradient

steps for agents to reach their peak performance.

Qualitatively, the agents learn large distinct skillsets that target large portions of the

reachable observation space as can be seen by visuals of the different entropy terms in

the mutual information objective such as H(On), H(Z), H(Z|On). For instance, the

left images in Figures 4.8 and 4.9 show 45 trajectories from randomly sampled skills

from the Noisy 2D, Plus, Noisy Gray, and Push settings. The center images show 1,000

skill-terminating (x, y) positions for the agent (and object in Push) from randomly sampled

skills. These images show the agent has learned skills that cover most of the observation

space. The right images show sampled skills (colored squares) and for each skill, shows

samples from the variational posterior. The tight variational posterior distributions

confirm the agent is learning precise and distinct skills.
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Figure 4.6: Learning curves for the regular and noisy grayscale rooms tasks. The x-axis
measures the number of updates to the skill-conditioned policy and observation encoder
actors (i.e., the number of passes through Algorithm 2). The y-axis shows the average
variational mutual information I(Z;On|C0).

Figure 4.7: Learning curves for the plus intersection and push tasks in the first set of
experiments. The x-axis measures the number of updates to the skill-conditioned policy
and observation encoder actors (i.e., the number of passes through Algorithm 2). The
y-axis shows the average variational mutual information I(Z;On|C0).
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Figure 4.8: Some qualitative results from the Noisy 2D domain (top row) and Plus
Intersection domain (bottom row). The left column shows the trajectories from a single
starting observation produced by 45 randomly sampled skills. The center column shows
the skill-terminating (x, y) positions from 1000 randomly sampled skills when starting
at the green marker. The right column shows 20 randomly sampled skills (squares), and
for each skill, 5 samples (circles) from the variational posterior qψ(z|c0, πz, on). The large
state space coverage and tight variational posterior around each skill shows the agents is
learning large, diverse skillsets.
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Figure 4.9: Some qualitative results from the Noisy Gray domain (top row) and Push
domain (bottom row). The left column shows the trajectories from a single starting
observation produced by 45 randomly sampled skills. The center column shows the
skill-terminating (x, y) positions from 1000 randomly sampled skills when starting at the
green marker. The right column shows 20 randomly sampled skills (squares), and for
each skill, 5 samples (circles) from the variational posterior qψ(z|c0, πz, on). The large
state space coverage and tight variational posterior around each skill shows the agents is
learning large, diverse skillsets.

Phase 2 Plus IntersectionPhase 2 Noisy Gray RoomPhase 2 Gray Room

Figure 4.10: Learning curves for the phase 2 experiments. The x-axis shows the number of
updates to the goal-conditioned policy and the y-axis shows the cumulative reward. The
hierarchical policy should achieve lower cumulative reward as a result of the particular
shortest path reward used and its temporally extended actions.
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Figure 4.11: Phase 2 goal-conditioned trajectories for the grayscale room (Left) and
Plus Intersection domains (Right) for the algorithm that learns a goal-conditioned policy
outputting primitive actions and is conditioned on the learned representation space.
Shaded regions are the episode goal and the line is the trajectory produced by the goal-
conditioned policy.

Figure 4.12: Phase 2 goal-conditioned trajectories for the grayscale room (Left) and
Plus Intersection domains (Right) for the algorithm that learns a goal-conditioned policy
outputting skills using the learned representation space and skills from pretraining. Shaded
regions are the episode goal and the line is the trajectory produced by the goal-conditioned
policy.
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T-Maze 4-Bit PasswordAgent Observation

Figure 4.13: Average skillset size (in nats) vs. number of algorithm iterations. Skillset
size is measured using variational mutual information. Mean and 1 std. of error computed
with 5 random seeds.

Fully Observable Downstream RL Tasks

In addition to learning large skillsets, the second set of experiments in downstream

RL tasks provides evidence that our approach can learn sufficient statistics of observa-

tions as the theory suggests. Figure 4.10 provides the learning curves for the second set

of experiments where agents were required to learn goal-conditioned policies to target

certain regions of the observation space. Figures 4.11 and 4.12 provide visuals of the goal-

conditioned trajectories. Per Figure 4.10, both algorithms that used the representations

learned during the first phase of experiments were able to learn effective goal-conditioned

policies as would be expected from an approach that learned representations close to

sufficient statistic representations. The hierarchical policy was able to learn with the best

sample efficiency, consistent with previous hierarchical RL work (Levy et al., 2019; McClin-

ton et al., 2021). In addition, we observed that the algorithm that used representations

from a randomly initialized observation encoder failed at all tasks, providing evidence

that empowerment is more effective at learning representations suitable for reinforcement

learning than some randomly initialized function.

Partially Observable Skill Discovery Results

Figure 4.13 plots the results for all algorithms in the three domains. The y-axis

measures skillset size using average variational mutual information. Note that skillset
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size is measured in logarithmic units (nats). The x-axis reflects the number of iterations

through algorithm 2. Our approach is the “Non-Markov” line (blue); the fully observable

ablation of our approach, which follows algorithm 2 but trains an observation encoder, is

shown by the “Markov” line (red); and the approach that uses algorithm 2 but does not

update the representation learning actor-critic is the “Fixed” line (black).

Our approach successfully learns large skillsets in all domains. In T-Maze, Agent

Observation, and 4-Bit Password our approach learned skillsets containing 5.4 nats (∼ 220

skills), 5.7 nats (∼ 300 skills), and 7.0 nats (∼ 1, 100 skills) of skills, respectively, in around

5,000 iterations of Algorithm 2. These skillset sizes were 5.2x, 16.4x, and 555.6x larger than

the performance of the fully observable ablation of our approach. The Fixed comparison

was not able to learn a meaningful skillset in any domain. The significant outperformance

relative to the comparisons shows the importance of learning representations of histories

that preserve information in non-Markov settings.

For additional evidence on the successful performance of our approach, we also provide

visuals of the different entropy terms included in the symmetric definitions of I(Z;On):

H(On), H(On|Z), H(Z), H(Z|On) for all tasks in Figures 4.14, 4.15, and 4.16. H(On),

which represents the distribution of skill-terminating observations produced by the trained

skillset, is visualized with both agent trajectories and by marking skill-terminating

observations. In all settings, the agents learn a skillset that mostly covers the observation

space that can be targeted. For instance, in T-Maze, the agent learns skills that can

target most of the larger hallway and never attempts to move to the non-existent hallway.

Similarly, in Agent Observation and 4-Bit Password, nearly all skills first pass through the

bottleneck (i.e., move to (x, y) goal in Agent Observation or enter the correct password

in 4-Bit Password) and then target a large area of observations. The H(On|Z) visuals,

which show the observations targeted by specific skills, show that each skill targets a

precise region of the observation space. Similarly, the visualizations of H(Z|On), which

show samples of the variational posterior qψ(z|on) forming tight distributions around the
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Figure 4.14: Entropy visualizations for the T-Maze domain. H(On) visualizes the distri-
bution of skill-terminating observations in two ways. The left most figure shows agent
trajectories from randomly selected skills z ∼ p(z). The adjacent figure marks skill-
terminating observations from 1000 randomly selected skills. As the images show, the
skills target most of the larger hallway regardless of which direction the hallway opens.
H(On|Z) visualizes the skill-terminating observations from four randomly selected skills,
showing five observations for each skill. The figure shows that each skill targets a precise
regions of the (x, y) space. The right most figure visualizes both H(Z) and H(Z|On) by
showing skills (filled squares) sampled from the fixed, uniform p(z) (shown by the inner
black square) as well as sampled from the variational posterior q(z|on). Note that the
samples from the variational posterior form tight distributions around the executed skill.
All the entropy visualizations confirm the agent has learned a large set of distinct skills as
the skillset covers a larger area of observations and each skill targets a precise region of
the observation space. In addition, the very different policies that occur when the hallway
opens north and south shows that the RNN is able to disentangle histories that do not
have the same distribution over underlying states.

76



Figure 4.15: Entropy visualizations for the Decoy Agent domain. H(On) visualizes the
distribution of skill-terminating observations in two ways. The top figure on the left
column shows agent trajectories from randomly selected skills z ∼ p(z). The bottom figure
on the left column marks skill-terminating observations from 1000 randomly selected skills.
Per the graphics, the agent’s skillset first moves to the goal (orange square) and then
targets a wide area of the observation space. H(On|Z) visualizes the skill-terminating
observations from four randomly selected skills, showing five observations for each skill.
This figure demonstrates that each skill targets a precise region of the (x, y) space. The
right most figure visualizes both H(Z) and H(Z|On) by showing skills (filled squares)
sampled from the fixed, uniform p(z) (in the shape of a 2D box in the ranges [-1,1]) as
well as samples from the variational posterior q(z|on). Note that the samples from the
variational posterior form tight distributions around the executed skill. All the entropy
visualizations confirm the agent has learned a large set of distinct skills as the skillset
covers a larger area of observations and each skill targets a precise region of the observation
space. In addition, the different policies that occur when the goal changes shows that
the RNN is able to disentangle histories that do not have the same distribution over
underlying states.
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Figure 4.16: Entropy visualizations for the 4-Bit Password domain. H(On) visualizes
the distribution of skill-terminating observations in two ways. The top figure on the left
column shows agent trajectories from randomly selected skills z ∼ p(z). The bottom figure
on the left column marks skill-terminating observations from 1000 randomly selected skills.
Note that because each skill lasts eight actions and because the agent is frozen in place
during the first four actions when it outputs a password, the agent can not move more
than four units in any direction. Per the figures, most skills in the skillset are executing
the correct password and then target a wide range of observations. H(On|Z) visualizes the
skill-terminating observations from four randomly selected skills, showing five observations
for each skill. Per the figure, each skill is targeting a precise region of the (x, y) space.
The right most figure visualizes both H(Z) and H(Z|On) by showing skills (filled squares)
sampled from the fixed, uniform p(z) (in the shape of a 2D box in the ranges [-1,1]) as
well as samples from the variational posterior q(z|on) that form tight distributions around
the executed skill. The entropy visualizations confirm the agent has learned a large set of
distinct skills as the skillset covers a larger area of observations and each skill targets a
precise region of the observation space. In addition, the fact that the agent can still learn
skills that cover the available observation space despite the randomly selected password
shows that the RNN is able to disentangle histories that do not have the same distribution
over underlying states.
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Figure 4.17: RNN representations in the T-Maze for when agent is in same starting (x, y)
position but received a different binary signal for the direction of the T-Maze 15 timesteps
earlier. Early in training these representations were virtually identical meaning that early
in training the agent was not able to disentangle these histories. But later in training,
the RNN was able to separate these histories as shown by some of the dimensions of the
4-dim vector that are more than 2 units apart.

executed skill, further demonstrate that the agent is learning diverse skillsets.

With respect to representation learning, the consistently large skillsets shown in the

entropy visualizations despite the underlying state randomly changing every episode shows

the RNN is able to disentangle histories representing different distributions of underlying

states. If the agent was failing at preserving information, such as the agent assigning

similar representations to the 16 different possible passwords in 4-Bit Password, the agents

would not have been able to learn large skillsets. In Figures 4.17, 4.18, 4.19, and 4.20, we

also show some of the actual learned representations of the trained agents for different

underlying states. In all tasks, early in training the agent was not able to disentangle

the histories representing different underlying states. For instance, in T-Maze, the agent

would assign nearly the exact same representation when the agent was in some (x, y)

position regardless of the signal the agent had received about the direction the hallway

opened. But as training continued, agents in all tasks were able to correctly separate

histories.

79



Figure 4.18: Figure shows sequences of RNN representations in T-Maze during episodes
where the agent first receives the binary signal, then remains frozen for 15 timesteps,
and then executes 5 actions to enter the larger hallway. The left table shows the RNN
sequence for when the hallway opens up; the center table shows the RNN sequence for
when the hallway opens down; and the right table shows the differences between the two.
The consistent large differences in the RNN sequences after training shows that not only
is the agent able to assign a different representation after the agent receives a different
binary signal, but is able to maintain that difference both while remaining frozen in place
and once the agent starts to move towards and enter the larger hallway.

Figure 4.19: Figure shows the different RNN representations for different episode goals
indicated by the movements of the first agent in the Decoy Agent setting. These represen-
tations are sampled after the first 10 timesteps of the episode when the agent has just
finished observing the two agents in the environment. Early in training, these representa-
tion were similar regardless of the goal observed. But after training, the agent’s RNN
was able to learn different representation for different goals. For instance, the top and
bottom lines show goals in the top right and bottom left, respectively. The agent was
able to learn a representation that nearly differs by 5 units along two of the dimensions.

Figure 4.20: Figure shows the different RNN representations for different episode passwords
in the 4-Bit password setting. These representations were sampled immediately after
the fourth timestep when the agent had been given the last bit of the password. Note
that, as shown in the table, the passwords provided to the agent were four-dim vectors of
continuous numbers. Instead of bits, each dimension was either in the range [0.25, 1.] or
[−1.,−0.25]. Early in training, these representation were nearly identical regardless of
the password provided. But after training, the agent’s RNN was able to learn different
representation for different passwords.
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CHAPTER 5

Reducing State Uncertainty from

Partial Observability using

Empowerment

The prior chapter showed that agents can address state uncertainty caused by poor

representation learning with empowerment. Yet even if agents are able to generate

sufficient statistic representations that provide as much information about the underlying

state as the agent’s full history, agents may still face significant state uncertainty that

can lower the size of their skillsets. We refer to this remaining uncertainty, when the

probability of the underlying state given an agent’s history is still greater than zero, as

state uncertainty caused by partial observability.

Agents in realistic settings continually face significant uncertainty from partial ob-

servability that affects the size of their skillset. For instance, given their limited view of

the world, agents may enter some room and not know where certain objects are located

as other agents may have moved them. Or the agent may see some device that may be

slightly different than other devices the agent has used, and thus the agent is uncertain

about certain properties of the device. In both of these situations when the agent does not
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know where an object is located or an agent is unsure about certain important properties

of a device, the agent’s skillset may be smaller as it cannot definitively achieve observations

that involve manipulating the object or effectively using the device.

To overcome state uncertainty caused by partial observability, agents can extend

their histories. That is, they can execute actions in the environment and observe new

observations that together may provide information about the features of the state they

are uncertain about. Indeed, realistic settings are often filled with sources of information

about the underlying state. For instance, if an agent is unsure where some object is

located, it can on its own probe different locations in the environment. Or if an agent is

unsure of some properties of a device, it can interact with the device (e.g., touch different

buttons) to seek information about these properties. But there are also more efficient

ways than trial-and-error in which agents can gain information from their environment.

For instance, agents can watch other agents act in the world. If an agent is unsure of

some properties of a device (e.g., what button turns on a device), the agent can watch

another agent use the device. More sophisticated agents can seek information even more

efficiently by asking other agents (e.g., chatbots) questions or searching the internet (e.g.,

YouTube).

The purpose of this chapter is to demonstrate that empowerment encourages informa-

tion seeking behaviors that can reduce state uncertainty caused by partial observability.

Specifically, when empowerment is maximized with respect to a behavior policy that

interacts with the environments, agents are encouraged to seek information about the

underlying state. This should be an intuitive result. If there is some uncertainty about

features of the underlying state that is depressing the size of an agent’s skillset, an

objective that encourages actions to grow the size of an agent’s skillset should encourage

agents to take actions that reduce this uncertainty.

In this chapter, we provide theoretical and empirical results to defend this hypothesis.

We provide a theorem that shows that empowerment encourages information seeking
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policies because if an agent is considering two behavior policies and one policy provides

more information about the underlying state than the other, then the average empowerment

by the information seeking policy will be at least as high as the other policy (and higher

under some easily achievable conditions). We also demonstrate in a few simple settings

that when empowerment is used as a reward and an agent’s policy is trained to maximize

this reward, the agent will seek information.

This chapter also introduces a longer horizon version of empowerment that can be

used as a reward for decision making. Computing empowerment over long horizons (i.e.,

maximizing the mutual information between skills and observations far into the future) is

difficult for a few reasons. First, it is hard to learn a single skill-conditioned policy that

can target distant observations. Second, these skill-conditioned policies may need more

parameters which would require more compute for training. Third, learning a world model

that can predict far into the future, a required ingredient for computing long-horizon

empowerment, is difficult to train. We show a more practical approach may be to use

a different version of empowerment in which the mutual information is defined to be

between skills and sequences of equally-spaced sufficient statistic representations. This

definition of mutual information is helpful because it can be maximized using dynamic

programming so that agents still only need to learn short-horizon mutual information

terms between skills and observations.

5.1 Theoretical Analysis

This section shows that empowerment provably encourages information seeking through

environment interaction and thus can reduce state uncertainty caused by partial observabil-

ity. Theorem 4 shows that if there are two behavior policies and one policy provides more

information about the underlying state than the other, then the average empowerment

produced by the more informative policy will be at least as large as the other policy, and

thus will be preferred by an empowerment-maximizing objective.
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Theorem 4. Let πa and πb be the behavior policies executed from the same same sufficient

statistic representation x, and let p(xa, sa, xb, sb) be the joint distribution of the policy-

terminating sufficient statistic representations and states produced by the two behavior

policies. If (i) for all xa, the marginal distribution p(sa|xa) = p(sb|xa), (ii) I(Xb;Sb|Xa) >

0, and (iii) Xa
t → Xb

t → St form a Markov chain when conditioned on xa, xb for

t = 0, 1, . . . , n− 1, then Exa∼p(xa)[E(xa)] ≤ Exb∼p(xb)[E(xb)].

Proof.

Exa0∼p(xa0)[E(x
a
0)] = Exa0∼p(xa0)[I(Z;On|xa0, πa,∗z )] (5.1)

≤ Exa0∼p(xa0),xb0∼p(xb0|xa0)[I(Z;On|xa0, xb0, πa,∗z )] (5.2)

≤ Exb0∼p(xb0)[I(Z;On|xb0, πbz)] (5.3)

≤ Exb0∼p(xb0)[I(Z;On|xb0, πb,∗z )] (5.4)

= Exb0∼p(xb0)[E(x
b
0)] (5.5)

Line 5.1 applies the definition of the empowerment of a sufficient statistic represen-

tation. The RNN parameters, which form a function that outputs sufficient statistic

representations, are ignored as they are fixed in this proof. πa,∗ represents the mutual

information maximizing skill-conditioned policy parameters when the starting sufficient

statistic representation is xao.

The lower bound in line 5.2 applies the convexity property of mutual information with

respect to the channel distribution (Cover and Thomas, 2006; Capdepuy, 2011). In our case,

if I(Xb;S|Xa) > 0), then the channel distribution p(on|xa0, πa,∗z , z) is a weighted mixture of

channels p(on|xa0, xb0, πa,∗z , z) (i.e., p(on|xa, πa,∗z , z) =
∫
xb0
p(xb0|xa0)p(on|xa0, xb0, πa,∗z , z)) and so

the mutual information of the mixed channel I(Z;On|ca0, ηa, πa,∗z ) is upper bounded by the

average mutual information of the individual channels Exb0∼p(xb0|xa0)[I(Z;On|xa0, xb0, πa,∗z )].
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Line 5.3 removes the dependence on sufficient statistic representations xat for t ≥ 0 by (i)

using the sufficient statistic representations xbt for t ≥ 0 and (ii) replacing πa,∗z with a specific

skill-conditioned policy πbz. As we will show, this will replace each mutual information term,

I(Z;On|xa0, xb0, πa,∗z ), with a new mutual information term, I(Z;On|xb0, πbz), that is at least

as large. For each context xb0, π
b
z will be constructed as follows. For each xb0, find the tuple

(xa0, x
b
0) with the largest I(Z;On|xa0, xb0, πa,∗) as there can be multiple representations xa0

associated with the same xb0. Then, for each x
b
0 let π

b
z be the skill-conditioned policy distribu-

tion p(at|xb0, xbt) =
∫
xat
p(xat |xa0, xb0, xbt , st)p(at|xa0, xb0, xbt , xat , st) =

∫
xat
p(xat |xa0, xb0, xbt)p(at|xat ),

in which p(at|cat ) is the probability specified by the skill-conditioned policy defined by πa,∗z .

That is, the skill-conditioned policy πbz will have the same distribution over actions as

executed by πa,∗z when conditioned on the contexts xbt . Next, we show that for all (xa0, x
b
0),

the original mutual information I(Z;On|xa0, xb0, πa,∗z ) is upper bounded by the new mutual

information I(Z;On|xb, πbz).

We first show that for each mutual information term I(Z;On|xa0, xb0, πa,∗z ) from which

πbz was constructed in the previous step, I(Z;On|xb0, πbz) = I(Z;On|xa0, xb0, πa,∗z ). That

is, we replace the original mutual information term with an equivalent mutual infor-

mation term. Given that the source distributions p(z) are the same by definition as

they are fixed, to show that the mutual information terms are the same, we need to

show that the channel distributions p(on|xa0, xb0, πa,∗z , z) = p(on|xb0, πbz, z) are the same for

all (z, on) tuples. We show this below by proving by induction that the joint distribu-

tions p(xbt−1, st−1, at−1, st, ot, x
b
t |xa0, xb0, πa,∗z , z) = p(xbt−1, st−1, at−1, st, ot, x

b
t |xb0, πbz, z) for t =

1, . . . , n. Then because the joint distribution p(xbn−1, sn−1, an−1, sn, on, x
b
n|xa0, xb0, πa,∗z , z) =

p(xbn−1, sn−1, an−1, sn, on, x
b
n|xb0, πbz, z) at the last time step, the channel distributions are

equal: p(on|xa0, xb0, πa,∗z , z) = p(on|xb0, πbz, z).

The proof by induction goes as follows. In the base case at t = 1, the distribu-

tion p(xb0|xa0, xb0, πa,∗z , z) = p(xb0|xb0, πbz, z) because the same xb0 appears in the condition-

ing variables. p(s0|xa0, xb0, πa,∗z , z) = p(s0|xb0, πbz, z) because p(s0|xa0, xb0, z) = p(s0|xb0, z)
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per the Markov chain assumption in the theorem statement. p(a0|xa0, xb0, πa,∗z , z, s0) =

p(a0|xa0, xb0, πa,∗z , z) = p(a0|xb0, πbz, z) using the definition of πbz. p(s1, o1|xa0, xb0, πa,∗z , z, s0, a0) =

p(s1, o1|xb0, πbz, z, s0, a0) as the next state and observation only depends on s0 and a0 and is

independent of the other variables. Lastly, p(xb1|xa0, xb0, πa,∗z , z, s0, a0, o1) = p(xb1|xb0, πbz, z, s0, a0, o1)

because the next sufficient statistic representation xb1 only depends on xb0, a0, o1, which

are the same in both cases. Thus, the base case of the induction proof is true as

p(xb0, s0, a0, s1, o1, x
b
1|xa0, xb0, πa,∗z , z) = p(xb0, s0, a0, s1, o1, x

b
1|xb0, πbz, z).

Assuming the proof holds through t = k−1, then at step t = k, p(xbk−1, sk−1|xa0, xb0, πa,∗z , z) =

p(xbk−1, sk−1|xb0, πbz, z) because the joint distribution p(xbk−2, sk−2, ak−2, sk−1, ok−1, x
b
k−1|xa0, xb0, πa,∗z , z) =

p(xbk−2, sk−2, ak−2, sk−1, ok−1, x
b
k−1|xb0, πbz, z). p(ak−1|xa0, xb0, πa,∗z , z, xbk−1, sk−1) = p(ak−1|xa0, xb0, πa,∗z , z, xbk−1) =

p(ak−1|xb0, πbz, z, xbk−1) using the definition of πbz. Again, p(sk, ok, x
b
k|xa0, xb0, πa,∗z , z, xbk−1, sk−1, ak−1) =

p(sk, ok, x
b
k|xb0, πbz, z, xbk−1, sk−1, ak−1) as sk and ok only depends on sk−1 and ak−1 and xbk

only depends on xbk−1, ak−1, ok. Thus, the induction proof holds through step t = k as

p(xbk−1, sk−1, ak−1, sk, ok, x
b
k|xa0, xb0, πa,∗z , z) = p(xbk−1, sk−1, ak−1, sk, ok, x

b
k|xb0, πbz, z).

Thus, I(Z;On|xb0, πbz) = I(Z;On|xa0, xb0, πa,∗z ) for those (xa0, x
b
0) tuples from which πbz

was constructed. For the other smaller I(Z;On|xa0, xb0, πa,∗z ) terms that were not used to

construct πbz, these will also be replaced by the I(Z;On|xb0, πbz) terms that are at least

as large as I(Z;On|xa0, xb0, πa,∗z ). If the replacement mutual information terms are larger,

then the inequality in line 5.3 will be replaced by a strictly less than.

In line 5.4, the lower bound results from replacing the skill-conditioned policy πbz

with the optimal skill-conditioned policy πb,∗z for the specific xb0 representation. If this

replacement produces larger mutual information, then the inequality becomes a strictly

less than. The final line 5.5 uses the definition of the empowerment of representation xb0.
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5.2 A More Practical Longer Horizon Empowerment

Next we introduce a longer-horizon version of empowerment because maximizing the

mutual information between skills and observations that are far into the future is difficult

for a few reasons. First, it is hard to learn a single skill-conditioned policy that can target

distant observations. Second, these skill-conditioned policies may need more parameters

which would require more compute for training. Third, training a world model that can

predict far into the future, which would be a required ingredient to performing long-horizon

empowerment, would be challenging. We show that a more practical approach may be to

use a different version of empowerment in which the mutual information is defined to be

between skills and sequences of K equally-spaced sufficient statistic representations:

I(Z;Xn, X2n, X3n, . . . , XKn|c, πz). (5.6)

The key benefit of this formulation of mutual information is that it can be maximized

using dynamic programming. That is, it can be maximized by solving small subproblems

that only require optimizing short horizon mutual information terms between skills and

observations.

Consider the following mutual information term between skills Z2n and two equally-

spaced sufficient statistic representations Xn, X2n:

I(Z2n;Xn, X2n|x0, π2n
z ), (5.7)

in which Z2n denotes that the skills last for 2n primitive actions. Using the Chain Rule

property of mutual information 2.4, this mutual information can be broken down into the
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mutual information terms between skills and observations n steps into the future:

I(Z2n;Xn, X2n|x0, π2n
z ) = I(Z2n;Xn|x0, π2n

z ) + I(Z2n;X2n|x0, Xn, π
2n
z )

= I(Z2n;Xn|x0, π2n
z ) + I(Z2n;X2n|Xn, π

2n
z ) (5.8)

In line 5.8, the x0 conditioned variable in the second term is removed because the

channel distribution is independent of x0 given sufficient statistic representation xn:

p(x2n|x0, xn, πz) = p(x2n|xn, πz). Next, let’s assume that Xn and X2n are generated

by executing nested skills, which will work as follows. To start, a higher level skill

z2n is sampled from the fixed distribution z2n ∼ p(z2n). Then, one component of the

skill-conditioned policy π2n
z will propose some skill zn given x0 and z2n. That skill will

be passed to a skill-conditioned policy πnz that then executes the skill for n-primitive

actions. After this skill completes, the second component of skill-conditioned policy π2n
z

will propose another skill zn, which again is passed down to a skill-conditioned policy πnz

which executes the skill for n steps. Note that below we will show that it is trivial to

design that second component of π2n
z to achieve high I(Z2n;X2n|Xn, π

2n
z ).

With this nested structure for producing trajectories, using the data processing in-

equality (Cover and Thomas, 2006), upper bounds of both mutual information terms can

be achieved by removing the outer skill-conditioned policy π2n
z and then using the mutual

information maximizing n-step skill-conditioned policies πn,∗z :

I(Z2n;Xn|x0, π2n
z ) + I(Z2n;X2n|Xn, π

2n
z ) ≤ I(Zn;Xn|x0, πnz ) + I(Zn;X2n|Xn, π

n
z )

≤ I(Zn;Xn|x0, πn,∗z ) + I(Zn;X2n|Xn, π
n,∗
z )

(5.9)

That is, the size of the agent’s skillset over 2n actions, I(Z2n;Xn, X2n|x0, π2n
z ), is upper

bounded by the sum of two n-step empowerment terms. Note that a lower bound to

these two mutual information terms in 5.9 (using the Data Processing Inequality), is the
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maximum mutual information between skills and observations, which is the type of mutual

information this thesis has focused on:

I(Zn;On|x0, πnz ) + I(Zn;O2n|Xn, π
n
z ) ≤ I(Zn;Xn|x0, πnz ) + I(Zn;X2n|Xn, π

n
z ) (5.10)

Thus, the process of computing the mutual information between skills and the sequence

Xn, X2n for a single skill-conditioned policy π2n
z requires first solving the simpler subprob-

lem of maximizing n-step mutual information.

Next, the mutual information I(Z2n;Xn, X2n|x0, π2n
z ) needs to be maximized with

respect to the two components of the skill-conditioned policy π2n
z . One component outputs

the first n-step skill zn, while the second component outputs the second zn skill. We first

discuss how the second component of π2n
z can be hardcoded to achieve a high value of

I(Z2n;O2n|xn, π2n
z ) = I(Zn;O2n|xn, πn,∗z ), in which the latter I(Zn;O2n|xn, πn,∗z ) is the n-

step empowerment that was learned when n-step skillsets were trained. To achieve this high

mutual information, the following procedure should be followed. First, the high level skill

z2n will be a concatenation of two zn skills, in which each zn ∼ p(zn) is randomly sampled

from the distribution over skills. Second, the first component of the skill-conditioned policy

π2n
z only takes as input the first zn vector in z2n. Then when the agent is in representation

xn, the second component simply proposes a skill equal to the second zn vector in zn.

Given that (i) p(on|xn, z2n) = p(on|xn, zn) and that (ii) this procedure induces a uniform

p(zn) for the second skill, then I(Z2n;X2n|xn, π2n
z ) = I(Zn;O2n|xn, πn,∗z ).

The remaining optimization step is to maximize I(Z2n;Xn, X2n|x0, π2n
z ) with respect

to the first component of π2n
z . As we show next, this maximization is very similar to

maximizing n-step mutual information with respect to an n-step skill-conditioned policy.

To derive the objective, we can first simplify the mutual information term to take into
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account the way the second component of the skill-conditioned policy is designed:

I(Z2n;Xn, X2n|x0, π2n
z ) = I(Z2n;Xn|x0, π2n

z ) + I(Z2n;X2n|Xn, π
2n
z ) (5.11)

≥ I(Z2n;On|x0, π2n
z ) + I(Z2n;O2n|Xn, π

2n
z ) (5.12)

= I(Z2n;On|x0, π2n
z ) + V 1(xn) (5.13)

(5.14)

Line 5.11 applies the chain rule discussed earlier. The inequality in line 5.12 where

observations replace sufficient statistic representations in the mutual information results

from the data processing inequality. Line 5.13 accounts for the way the second component

of π2n
z is designed and replaces the second mutual information term with a scalar value

V 1(xn) = I(Zn;On|xn, πnz ), which is the mutual information learned with n-step skillsets

were learned. A superscript of 1 is used to denote that the remaining skills are of length 1∗n

primitive actions. With this updated mutual information term, the mutual information

objective to maximize with respect to π2n
z is:

max
π2n
z

I(Z2n;On|x0, π2n
z ) + V 1(xn) (5.15)

This is similar to the objective of learning a skill-conditioned to maximize n-step mutual

information except now agents also have to take into account the size of the skillsets they

can execute from future representations xn as measured by the scalar V 1(xn). That is,

when converting some high-level skills z2n to a lower level skills zn, π2n
z needs to consider

both the diversity of the On observation but also the diversity of the O2n observations

that can be achieved from representation xn, which reflected in the V 1(xn) value. It could

be the case π2n
z outputs redundant skills zn for different z2n because it wants to have more

skills that begin in representation xn so that more observations O2n can be targeted.

This mutual information maximization can be handled with the same actor-critic

architecture discussed in Chapter 3. The actor maps sufficient statistic representations

90



to a vector of parameters representing the skill-conditioned policy π2n
z . But now the

parameter-specific critics will approximate I(Z2n;On|x0, πi,2nz ) + V 1(xn), in which πi,2nz is

a scalar representing the skill-conditioned policy where all parameters j ≠ i are set to the

greedy value of fλ(x0)[j], except for the i-th parameter, which takes the value of πi,2nz . In

addition, parameter-specific variational posteriors will be used to approximate the true

posterior p(z2n|x0, πi,2nz , on) in the mutual information term I(Z2n;On|x0, π2n
z ).

This approach can then be scaled to maximize the mutual information between skills and

K-length sequences of sufficient statistic representations (i.e., I(ZKn;Xn, X2n, X3n, . . . , XKn|c, πKnz ))

using a dynamic programming approach. At each iteration k = 2, . . . , K, set V k−1(xn)

equal to I(Z(k−1)n;O2n|xn, π(k−1)n
z ) + V k−2(x2n) learned during the previous step. (Note

that at k = 2, V k−2 = 0.) The mutual information objective is then

max
πk
z

I(Zk;On|x0, πkz ) + V (k−1)n(xn). (5.16)

Algorithm 3 Maximizing I(ZKn;Xn, X2n, . . . , XKn) with dynamic programming

for k = 2, . . . , K do
for all dimensions i = 0, . . . , |πkz | − 1 in parallel do

for M iterations do
Update qψi,k : ψi,k ← ψi,k−α∇ψi,k

(DKL(p(z
k|x0, πi,kz , on)||qψi,k(zk|x0, πi,kz , on)))

end for
for M iterations do

Update Qηi,k : η
i,k ← ηi,k − α∇ηi,k((Qηi,k(x0, π

i,k
z )− Target)2),

Target = Ezk∼p(zk),on∼p(on|x0,πi,k
z ,zk)[log qψi,k(zk|x0, πi,kz , on)− log p(zk)]

end for
end for
Update fλk : λ

k ← λk + α∇λk(
∑|πk

z |−1
i=0 Qηi,k(x0, π

i,k
z = fλk(x0)[i]))

end for

Algorithm 3 provides the full algorithm for computing our version of long-horizon

empowerment, including the equations for updating the actor, parameter-specific critics,

and parameter-specific variational posteriors.
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5.3 Training Skills, Representations, and Behavior

Policies with Empowerment

We treat maximizing empowerment with respect to a behavior policy as a finite-horizon

MDP. The representations are generated by the RNN that was trained to maximize em-

powerment. Although these representations may not be sufficient statistic representations

of histories with respect to the underlying state, we will denote these representations as

xt and treat them as if they are sufficient statistics and thus Markov representations. The

action space is the regular primitive action space. The reward r(xt) depends on the time

step. For the first n− 1 timesteps, the reward is 0. For the final time step, the reward

r(xn) is V
K(xn) = I(ZK ;O2n|xn, πKz ) + V K−1(X2n) that was learned using Algorithm 3.

Given that the reward depends on time, we implement n different actors πκt : X → A

and n different critics Qζt : X ×A → R for t = 0, . . . , n− 1 so that there is an actor-critic

pair for each of the n time steps when the behavior policy interacts with the environment.

Alternatively, a time variable can be included in a single actor and critic.

Algorithm 4 provides our complete approach. In each iteration, the agent first interacts

with the environment using an ϵ-greedy version of its behavior policy πκ. Then the agent

maximizes the mutual information with respect to (i) skill-conditioned policies, (ii) a

representation learning function, and (iii) a behavior policy.

5.4 Experiments

5.4.1 Environments

We evaluated our complete approach in Algorithm 4 in three partially observable

settings, which are visualized in Figure 5.1.

Password-Protected Cage: In this environment, an agent starts each episode

locked in a password-protected cage. During the initial four timesteps, the agent can move

92



Algorithm 4 Learning Skills, Representations, and Behavior Policies with Empowerment

while not converged do
▷ Interact with Environment

Collect new history with ϵ-greedy policy: β ← [a0, o1, . . . , an−1, on]

▷ Update Skill Discovery Actor-Critic
for all dimensions i = 0, . . . , |πz| − 1 in parallel do

for M iterations do ▷ Update Variational Posterior
Update qψi : ψi ← ψi− ϵ∇ψi

(Ec0∼p(c0|β)[DKL(p(z|c0, πiz, on)||qψi(z|c0, πiz, on))])
end for
for M iterations do ▷ Update Critic

Update Qαi : αi ← αi − ϵ∇αi(Ec0∼p(c0|β)[(Qαi(c0, π
i
z)− Target)2])

Target = Ec0∼p(c0|β),z∼p(z),on∼p(on|c0,πi
z ,z)

[log qψi(z|c0, πiz, on)− log p(z)]
end for

end for
Update fλ: λ← λ+ ϵ∇λ(Ec0∼p(c0|β)[

∑|θz |−1
i=0 Qαi(c0, π

i
z = fλ(c0)[i])]) ▷ Update Actor

▷ Update Representation Learning Actor-Critic
for all dimensions i = 0, . . . , |η| − 1 in parallel do

for M iterations do ▷ Update Variational Posterior
Update qψi : ψi ← ψi − ϵ∇ψi

(Ec0∼p(c0|β)[DKL(p(z|c0, ηi, on)||qψi(z|c0, ηi, on))])
end for
for M iterations do ▷ Update Critic

Update Qξi : ξ
i ← ξi − ϵ∇ξi((Qξi(η

i)− Target)2) with noisy ηi,
Target = Ec0∼p(c0|ηi,β),z∼p(z),on∼p(on|c0,ηi,z)[log qψi(z|c0, ηi, on)− log p(z)]

end for
end for
Update fγ: γ ← γ + ϵ∇γ(

∑|η|−1
i=0 Qξi(η

i = fγ(a)[i])) ▷ Update Actor

Compute long-horizon empowerment with Algorithm 3 (if applicable)

▷ Update behavior policy Actor-Critic
for each actor-critic pair t = 0, . . . , n− 1 do

for M iterations do ▷ Update Critic
Update Qζi : ζ

i ← ζ i − ϵ∇ζi(Ext∼p(xt|β)[(Qζi(xt, at)− Target)2),
if t+ 1 == n then Target = Ext∼p(xt|β),xt+t∼p(xt+1|xt,at)[V

K(xt+1)]
else Target = Ext∼p(xt|β),xt+t∼p(xt+1|xt,at)[Qζt+1(xt+1, a = πκt(xt+1))]
end if

end for
Update πκt : κ

t ← κt +∇κt(Ext∼p(xt|β)[Qζt(xt, at = πκt(xt))]) ▷ Update Actor
end for

end while
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Figure 5.1: The three environments to which we applied our complete approach in
Algorithm 4

.

around the cage but cannot escape. On the fifth timestep, the agent needs to output a

password in the form of a scalar number. If this number is within a certain threshold of

the true password, which is some number in the range [−1, 1], the agent is free to leave

the cage for the remainder of the episode. Otherwise, the agent remains stuck in place

inside the cage for the remainder of the episode. During the initial four timesteps, the

agent can obtain the password by both (i) moving to a particular region on the west side

of the cage (shown by the orange square) and then (ii) looking up, which in this case is

an extra action dimension that needs to be greater than 0.

Maximizing empowerment with respect to an RNN should cause the agent to learn

different representations for histories that (i) end in different (x, y) positions and (ii)

signal different passwords as well as no password. For instance, a history that contains a

password of −0.5 should be encoded to a different representation than a history with a
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password of 0.5. Maximizing empowerment with respect to the behavior policy should

encourage the agent during the initial four timesteps to obtain the password by moving to

the password region and looking up. If the agent were to compare two behavior policies:

(i) move to some position in the password area, look up to get password, and then look

down and (ii) move to the same position in the password region but then not look up, the

first policy should on average achieve larger empowerment because this behavior enables

the agent to leave the cage in the future, whereas the second behavior will often cause the

agent to remain locked in the cage because the password is not known.

Password-Protected Cage (Extra Info): This is the same environment as the

prior password-protected cage except we add extra state uncertainty that has no effect

on the size of an agent’s skillset. Specifically, we add an extra dimension to the agent’s

observation that shows the grayscale color of the tile the agent is currently on. In each

episode, we divide the cage into 2 × 10 = 20 tiles (i.e., boxes) and randomly assign a

number in the range [−1.25, 1.25] to the tile. The observation the agent receives will

include a dimension that shows the grayscale color for the tile the agent is currently on.

The purpose of this change was to add extra uncertainty in the underlying state (i.e.,

20 new state features), but uncertainty that has no effect on the size of an agent’s skillset.

This is true because regardless of whether or not the agent knows the color of the tiles in

the cage, the agent is still limited to learning skills that target (x, y) positions. In the

case where the colors of tiles are unknown, each skill targets a set of observations that

include a particular small (x, y) region and then all the possible colors of the tile the skills

terminate on. If the colors are known, each skill targets a smaller set of observations that

includes the same (x, y) and the exact color. However, the number of sets of observations

that a skillset targets is not different.

Drone Start: This setting implements a variant of the drone setting discussed in

chapter 1. The environment consists of two agents, a “drone”, and two buttons. The

buttons are shown by the orange regions in Figure 5.1. The primary agent can move
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around a 2D room as well as potentially fly a drone in a larger 2D region provided that

the agent first pushes the “On” button before the “Off” button. However, if the agent

pushes the “Off” button first, the drone remains frozen in place for the remainder of the

episode. The location of the “On” button is randomly selected each episode. In addition

to moving around and potentially controlling the drone, the agent also has another action

dimension enabling it to “look around”. If the agent does look around, it will see the

other agent on the correct “On” button.

Maximizing empowerment with respect to the agent’s RNN should force the RNN to

assign different representations to histories that (i) terminate with the agent and drone

in different (x, y) positions, (ii) signal different “On” button locations, and (iii) show

the drone is currently “On” versus “Off”. Maximizing empowerment with respect to

the behavior policy should at least encourage the agent to execute the look around to

determine which button starts the drone.

5.4.2 Results

Table 5.1: Empowerment Maximization Results

Env Info Seek (%) Mean Emp. Gain (nats)

Cage 100 2.15
Cage (Extra Info) 100 1.5
Drone Start 100 3.13

The results in Table 5.1 show that our full approach works as expected and that

the agent executes the correct information-seeking action. The first column shows the

percentage of episodes after training that the agent performs the environment-specific

information-seeking action, which was 100% in all episodes. The second column compares

the average empowerment gain when comparing a policy that seeks information compared

to another policy that achieves the same distribution over marginal states but does not

seek information. For instance, in the drone setting, one pair of actions that was examined

included (a) an action that stayed still but looked up for at least one time step to determine
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Figure 5.2: Agent executes the information-seeking action of moving to the password
region on the left side of the cage and looking up to obtain the password.

the start button and (b) an action that stayed still but looked down for the entire policy.

The empowerment gain for the information-seeking actions was significant. For instance,

in the regular password-protected cage and drone start buttons, the mean empowerment

gain from information seeking was 2.15 and 3.13 nats, respectively, which is equivalent to

increasing the skillset by around 8.5x and 22.9x, respectively, from seeking information.

Figures 5.2 and 5.3 show some sample trajectories in the password-protected cage and

drone start environments. In the password-protected cage setting in Figure 5.2, the agent

first moves to the password region across the blue dashed line while looking up, thereby

attaining the password. Then, the agent enters the correct password and leaves the cage.

In the drone start environment, the first action the agent takes before it has observed

the password is to move towards the top left while looking around to see the other agent

(i.e., the agent executes the correct information-seeking action). Then if the other agent

appears on the left side, the agent moves left turning the drone on. On the other hand, if

the other agent is on the right side, the agent moves right across the button threshold

turning the drone on before again moving left.
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Figure 5.3: Agent executes the information-seeking action of looking around to see the
other agent and then moving to the correct start button. Regardless of the location of
the button, the agent first moves towards the top left while looking up. Then, if the agent
observed that the button is on the left side, the agent moves to the left side as shown by
green trajectory. However, if the agent observes that the button is on the right side, the
agent first moves right to turn the drone on. The red trajectory shows the movement of
the drone after the agent turns it on.
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CHAPTER 6

Future Work and Conclusion

6.1 Open Problems in Empowerment Research

There are several remaining open problems for training empowerment-based agents.

This section highlights a few of these problems.

6.1.1 World Models

One key challenge is that computing the empowerment of a representation requires a

world model. The mutual information objective involves the expectation, Ez∼p(z),on∼p(on|c0,πz ,z)[·],

which requires sampling many skills and executing them using the skill-conditioned policy

πz. The most practical way to sample from the expectation in an unbiased manner is

through simulation, which is why a world model is needed. The experiments in this thesis

assumed the agent has access to the world model (i.e., the distribution p(ot+1|ht, at), in

which ht is the history of actions and observations through time t and at is the next

action), but this is not a scalable approach. One possible solution is to try to learn this

distribution (i.e., learn the world model) (Ha and Schmidhuber, 2018; Hafner et al., 2019a,

2020, 2021, 2024; Bruce et al., 2024). Yet predicting high-dimensional and stochastic

observations is challenging.
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A potentially more practical alternative is to learn latent world models, in which an

agent predicts compressed representations of future observations (Grill et al., 2020; Guo

et al., 2022; Ghugare et al., 2023; Assran et al., 2023; Bardes et al., 2024; Levy et al., 2023).

The problem with many of these approaches is that they can suffer from mode collapse in

which the agent learns to map all observations to similar latent representations. We have

provided a potential solution to this problem: integrate the latent world model into the

mutual information objective (Levy et al., 2024). Instead of measuring I(Z;On|c0, πz), we

proposed using the lower bound objective I(Z;Zenc|c0, πz) in which zenc is sampled from

an observation encoder pτ (zenc|o). Our work then showed how this mutual information

objective can be trained in a way such that the observation encoder pτ (zenc|o) could

output latent representations that can be modeled by a latent world model p(zenc|c0, a0).

However, this method was not used for the experiments in this thesis.

6.1.2 Exploration

In order to train some type of accurate world model, agents need to have executed

a variety of primitive actions from a variety of different histories. Thus, another key

problem is how to encourage agents to explore different actions. Specifically, is there a

way to adapt the empowerment maximization objective so that agents can explore while

they are still maximizing empowerment? As this thesis and prior empowerment work

(Jung et al., 2012; Mohamed and Rezende, 2015; Karl et al., 2017; Zhao et al., 2020)

have demonstrated, maximizing empowerment produces various important behaviors

like stabilization, predator avoidance, and information seeking. Ideally, agents can

maximize some empowerment-related reward that still encourages these behaviors while

also encouraging exploration.
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Figure 6.1: Humans can control empowerment-maximizing agents by manipulating the
empowerment reward. For instance, consider the situation in the image where a human
wants the empowerment-maximizing robot to move to the yellow star. The human can
encourage the robot to do this by penalizing actions, like action 1, that go off course.
Specifically, the human could take the action of pausing or limiting the robot’s motor
control, which can significantly limit its empowerment. On the other hand, if the robot
progresses towards the goal, the human could let the robot continue, resulting in the agent
achieving a representation with relatively high empowerment.

6.1.3 Controlling Empowerment-based Agents

Another open problem is how humans can control empowerment-based agents such as

the ones described in this thesis. The conventional way agents trained via unsupervised

skill discovery are controlled by humans is to divide training into two phases. In the first

phase, agents build their skillsets using the USD algorithm. Then in the second phase,

humans can control the agent by introducing a reward function, which forces the agent to

learn a new policy that selects skills from the skillset learned during the prior phase that

maximize reward. For empowerment-based agents, this approach is problematic because

empowerment-based agents can learn massive skillsets that may be intractable to search

through. For instance, empowerment-based agents that maximize the longer-horizon

versions of empowerment such as the objective introduced in the prior chapter, learn

skillsets that grow exponentially with time. Searching through these massive skillsets may

not be feasible.
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A more practical alternative for controlling empowerment-maximizing agents may be

for humans to manipulate the empowerment reward of agents. Humans can manipulate

the empowerment reward by altering the agent’s transition dynamics. For instance, if

the robot does something the human does not like, the human could pause or limit the

robot’s motor control such as in Figure 6.1 or place the agent in some location where

there is not much to do (i.e., give the robot a timeout). If the robot uses money to

pay for its energy, the human could potentially take some of this money away. All

of these human interventions cause the agent to achieve relatively low empowerment

representations, which should discourage these behaviors. On the other hand, humans

can reward empowerment-maximizing agents through the opposite interventions (e.g., not

pausing motor control, giving the agent more objects to interact with or more money to

pay for energy). With this approach, humans can control the agent’s behavior and the

agent’s action space remains the relatively small primitive action space.

6.2 Conclusion

In order to achieve general-purpose agents that can execute large sets of skills at a low

price, the cost of skill discovery must be low. This will be difficult using the dominant

frameworks of reinforcement learning and behavior cloning, where skill discovery can

require expensive labor-intensive procedures like designing rewards and teleoperating robots

for each new skill the agent needs to learn. This thesis demonstrates that empowerment

can address two major issues in skill discovery — policy diversity and state uncertainty —

in an unsupervised manner. Thus, this thesis provides evidence that Empowerment-based

agents can build skillsets at a lower cost, and thus may provide a more scalable approach

to training general-purpose agents.
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