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Optical Coherence Tomography-Guided Robotic
Ophthalmic Microsurgery via Reinforcement

Learning from Demonstration
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George Konidaris, Kris Hauser , and Joseph A. Izatt

Abstract—Ophthalmic microsurgery is technically difficult be-
cause the scale of required surgical tool manipulations challenge
the limits of the surgeon’s visual acuity, sensory perception, and
physical dexterity. Intraoperative optical coherence tomography
(OCT) imaging with micrometer-scale resolution is increasingly
being used to monitor and provide enhanced real-time visual-
ization of ophthalmic surgical maneuvers, but surgeons still face
physical limitations when manipulating instruments inside the eye.
Autonomously controlled robots are one avenue for overcoming
these physical limitations. In this article, we demonstrate the fea-
sibility of using learning from demonstration and reinforcement
learning with an industrial robot to perform OCT-guided corneal
needle insertions in an ex vivo model of deep anterior lamellar
keratoplasty (DALK) surgery. Our reinforcement learning agent
trained on ex vivo human corneas, then outperformed surgical
fellows in reaching a target needle insertion depth in mock corneal
surgery trials. This article shows the combination of learning from
demonstration and reinforcement learning is a viable option for
performing OCT-guided robotic ophthalmic surgery.

Index Terms—Deep learning in robotics and automation,
learning from demonstration, medical robots and systems,
microsurgery.

I. INTRODUCTION AND BACKGROUND

O PHTHALMIC microsurgeries are among the most com-
monly performed surgical procedures worldwide [1], [2].

These surgeries challenge the limits of surgeon’s visual acuity,
sensory perception, and physical dexterity because they require
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Fig. 1. Illustration of the “big bubble” DALK procedure. The surgeon inserts
a needle as deep as possible into the stroma without puncturing Descemet’s
membrane (DM), then injects air to create a lamellar dissection of DM from the
stroma. The top three layers are then removed and replaced with donor tissue.

placement and manipulation of surgical tools with micrometer-
scale precision and milli-Newton scale forces in delicate ocular
tissues [3].

To visualize the operative field, ophthalmic microsurgical
procedures are performed using a stereoscopic microscope sus-
pended above the patient which provides a top–down view with
limited depth perception provided by stereopsis. One particu-
larly promising but difficult procedure is deep anterior lamellar
keratoplasty (DALK), a novel form of partial thickness corneal
transplantation [see Fig. 1]. In DALK microsurgery, the top three
layers of the patient’s cornea (epithelium, Bowman’s layer, and
stroma) are replaced, but the bottom two layers (Descemet’s
membrane (DM) and endothelium), which are still viable, are
preserved [4]. Published studies have shown that successful
DALK procedures have fewer comorbidities than conventional
full-thickness corneal transplantation, which carries a ten-year
risk of failure of 10 to 35% [5]. However, DALK is technically
very difficult to perform. This is because taken together, the
DM and endothelial layers are only 20-μm thick, so manually
dissecting the ∼500-μm thick bulk of the overlying corneal
layers [6] with sharp tools while not penetrating the DM and
endothelial layer is exceedingly difficult. An improvement over
manual dissection is the “big bubble” technique [7], in which
the stroma and epithelium are separated from DM before re-
section by advancing a needle (or cannula) into the stroma and
injecting air between the layers to achieve pneumodissection
[see Fig. 1]. However, this technique still requires the ophthalmic
microsurgeon to position the needle at a precise location deep in
the cornea without puncturing the micrometers thick endothe-
lium. Studies have shown that increased needle depth short of
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Fig. 2. Comparison of surgical field views for DALK. (a) Surgeon’s view of
DALK during live human surgery through a conventional operating microscope.
White arrows denote the edge of a partial lamellar dissection. (b) Top down view
of an ex vivo human cornea mounted onto an artificial anterior chamber used
for studies in this report. Estimating the needle depth inside the cornea is very
difficult from the views in (a) and (b). (c)–(e) OCT B-scan views along the
needle’s axis from ex vivo needle insertion trials performed by surgical fellows.
The needle depth in the cornea from this view is much more apparent. (c) Unsuc-
cessful insertion due to needle depth too shallow for successful layer separation.
The white arrow points to the top surface of the needle, and green/magenta lines
illustrate real-time automated segmentation of the epithelium and endothelium.
(d) Successful insertion with the needle well positioned to inject air to separate
stroma and DM. (e) Unsuccessful demonstration due to needle puncturing
through both DM and endothelium.

puncture, expressed as a percentage of corneal thickness, in-
creased the likelihood of fully separating the layers [8], [9]. If the
stroma and DM fail to fully separate, or if the needle perforates
the endothelium, most surgeons abandon DALK and typically
convert to conventional full-thickness corneal transplantation.
Thus, tens of micrometers separate DALK failure from success.
Because of this difficulty, stroma–DM separation failure rates in
the literature have been reported as high as 44 to 54% [10]–[12]
and perforation rates reported up to 27.3% [11]. One potential
reason the failure rates are so high for this procedure is because
of how difficult it is to determine needle depth in the cornea
from the conventional view through the surgical microscope
[see Fig. 2(a)].

One approach to augment the surgeon’s view of the operating
field is the use of intraoperative optical coherence tomography
(OCT) in combination with the surgical microscope. OCT is
a noncontact optical imaging modality that provides depth re-
solved cross-sectional images in tissues [13]. Commercial [14]–
[16] and research-based [17]–[19] intraoperative OCT systems
allow for live volumetric imaging of ophthalmic surgery. We
have previously demonstrated the use of a custom-designed
research intraoperative OCT system, which provides live vol-
umetric imaging with micrometer-scale resolution [19], for
real-time corneal surface segmentation and needle tracking [20]
during simulated DALK procedures in ex vivo human corneas
mounted in an artificial anterior chamber [Fig. 2(b)]. Real-time
reconstructed cross-sectional views of the DALK procedure
along the needle axis [see Fig. 2(c)–(e)] allow surgeons to

visualize the top surface of the needle throughout the insertion
procedure (the metal needle itself is opaque to OCT light, thus
only the top surface is seen). While OCT is beneficial for
visualization of procedures at the micrometer scale, surgeons
still encounter physical limitations when attempting to perform
needle manipulations at this scale. Microsurgeon hand tremor
has been measured with root mean square (rms) amplitude of 50
to 200 μm [21], [22], which is one reason robot manipulation
could be beneficial for ophthalmic microsurgery.

Robots have been used to accomplish a wide variety of
surgical tasks across several specialties including otolaryngol-
ogy [23], urology [24], gastroenterology [25], and orthope-
dics [26]. Many robotic surgeries are performed laparoscopically
with the da Vinci robot (Intuitive Surgical, Sunnyvale, CA,
USA), but this system has been found to be unsuitable for
ophthalmic microsurgery due to poor visualization and lack of
microsurgical tools [27]. To fill this need, both cooperatively
controlled and teleoperated robots have been designed specifi-
cally for ophthalmic surgery [28]–[32] and have recently been
used to perform vitreoretinal surgery in humans [33]. Coop-
erative and teleoperated systems can provide tremor reduction
and/or motion scaling, thereby increasing a surgeon’s ability to
steadily hold and move tools to desired locations. However, these
robots require input from a highly trained surgeon each time
surgery is performed. Automating difficult or repetitive surgical
tasks using robots could potentially increase the reliability of
procedures, decrease operating time, and improve patient access
to difficult but more beneficial procedures.

Extensive research has been conducted investigating needle
insertions using flexible steerable needles, which can be con-
trolled by the insertion and rotation speed of the needle [34] and
monitored using ultrasound [35]. Sampling-based planners [36]
and inverse kinematics [37] have been used to autonomously
control flexible steerable needles. While flexible needle steering
and DALK needle insertions have similar goals, advance a
needle to a desired position, the relative scale of the needle to
the tissue is vastly different. Flexible needle insertions are often
performed on organs much larger than the needle such as the
liver or breast. In DALK, the needle diameter is close to 80%
of the corneal thickness [see Fig. 1], so changes in the needle
position can have a large effect on the shape of the cornea.

Automating other common surgical procedures such as su-
turing and removal of undesirable tissue is another area of
active research. Examples of automated tissue removal include
simulated brain tumor removal using a cable driven robot [38],
squamous cell carcinoma resection [39], and ablation of kidney
tumors [40]. A semiautonomous robotic system developed by
Shademan et al. [41] used near-infrared markers and a com-
mercial suturing tool to perform in vivo end-to-end anastomosis
of porcine intestine. Others have automated these procedures
using examples generated by humans performing the task in a
process called learning from demonstration (LfD). Notable sur-
gical LfD successes include tying knots faster than humans [42],
suturing [43], cutting circles, and removing spherical tumors in
tissue phantoms [44].

Learning from demonstration enables a robot to learn to
perform a task without requiring an expert to explicitly program
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each action or movement. This is beneficial for complex tasks
when an expert can perform the task, but not describe how to
perform the task in sufficient detail for reproduction. However,
LfD can result in suboptimal behavior if the demonstrations are
low quality or the environment is substantially different from
the one in which the demonstrations were collected. Improving
beyond behaviors learned from demonstration is a common
objective in LfD and has been accomplished using various meth-
ods [42], [45], including reinforcement learning (RL) [46]–[48].
Deep reinforcement learning has recently been used to exceed
human performance in challenging game-playing domains such
as Atari [47], [49] and Go [50], [51]. While most research on
deep reinforcement learning has been conducted in simulation,
some work has successfully applied these techniques to real
world environments. Examples include robots learning to open
doors [52], picking office supplies from a bin [53], and fitting
shapes into matching holes [46], [54].

Using a real world model of the challenging domain of
ophthalmic microsurgery, we present methods for ex vivo au-
tonomous robotic DALK needle insertions under OCT guidance
using deep deterministic policy gradients from demonstrations
(DDPGfD) [46]. DDPGfD is an off-policy reinforcement learn-
ing algorithm which employs two neural networks, an actor
network and a critic network. The actor produces a policy,
which maps the state of the environment (the location of the
needle relative to the corneal surfaces) to actions (how to move
the needle), while the critic takes state and action as input and
determines the value of taking the action in the state. We chose
this method over on-policy RL techniques such as proximal
policy optimization [55] or trust region policy optimization [56]
because DDPGfD easily allows the use of expert demonstrations
when learning a policy and has been shown to work in real
world environments [46]. Intraoperative OCT provides volumet-
ric imaging with micrometer resolution during the procedure,
real-time corneal surface segmentation and needle tracking [20]
quantitatively monitors the procedure, and an industrial robot
enables precise positioning of the needle. We leverage expert
demonstrations to seed the initial behavior and decrease the time
required to learn while allowing for improvement and general-
ization beyond the demonstrations via reinforcement learning.

A secondary goal of this work is to demonstrate the feasibility
of using deep reinforcement learning as a control method for
robotic ophthalmic microsurgery. DDPGfD offers advantages
over more traditional approaches for controlling the robot, e.g.,
a PID controller or motion planning. A PID controller, or simple
linear motion, may be able to move the needle to the desired
position in some instances, but could not compensate for corneal
deformation, which can be large given the relative size of the
needle to the cornea. Motion planning could account for corneal
deformation, but to do so requires physical modeling of how
the cornea will deform and how the needle will move inside the
cornea. Obtaining models with the required accuracy to support
motion planning would be difficult, and any new cornea or
needle that deviates from the models could cause errors. By using
reinforcement learning, we permit motions more complex than
simple lines while removing the need to model the environment,

and by learning from demonstrations we allow the surgeon to
transfer their skill to the robot in a natural manner.

II. METHODS

In this section, we first review the theory behind deep deter-
ministic policy gradients from demonstration. Next, we explain
the state space, action space, reward function, and network archi-
tecture used in this work. We then describe the numerical simula-
tion we performed to determine hyper-parameter values which
minimized the number of episodes required to learn the task.
Finally, we describe our robotic ex vivo insertion experiment.

A. Reinforcement Learning Framework

We followed the DDPGfD framework [46], [57], [58]
and modeled our environment as a Markov decision process
(MDP) [59] with a continuous state space s ∈ S, continuous ac-
tion space a ∈ A, transition function to determine the next state
s′ = T (s, a), and reward function r(s, a). The critic network,
Q(s, a), determined the value of a state–action pair and was pa-
rameterized by a weight vector θ. The actor network,μ(s), deter-
mined the action the agent took in state s and was parameterized
by a weight vector φ. The goal of DDPGfD, as in Q-learning,
is to find the optimal policy, μ∗(s), by finding the optimal
Q-function, Q∗(s, a). An optimal policy maximizes the total
discounted reward R =

∑∞
i=0 γ

ir(si, ai), where γ is a discount
factor between zero and one. An optimal Q-function/policy is
found by updating the weights of the actor and critic networks
based on state, action, reward, next state transitions (s, a, r, s′)
experienced in the environment and stored in a replay buffer.

Both actor and critic networks utilized target networks [49],
[60],Q′(s, a)parameterized by θ′ andμ′(s)parameterized byφ′,
respectively, when updating their weights. This helped stabilize
learning. Initially, target networks were copies of the actor and
critic networks and were periodically updated to match their
nontarget counterparts. Critic network updates minimized a loss
based on the Bellman equation [61] using N transitions from
the replay buffer and the target networks, as shown in (1) [58]

bi = ri + γQ′ (s′i, μ
′(s′i))

minimize
wrt θ

1

N

N∑

i=0

(bi −Q(si, ai))
2 . (1)

Because the action space was continuous, it was not feasible to
enumerate all possible actions to find the action that maximized
Q(s, a). Instead, the actor network was updated to minimize the
negative value (i.e. maximize) the mean value of Q(s, a) for the
N sampled transitions, as shown in (2) [58]

minimize
wrt φ

− 1

N

N∑

i=0

Q (si, μ(si)) . (2)

We incorporated expert demonstrations by training the actor
and critic networks on (s, a, r, s′) demonstration tuples before
performing online learning [62].
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These tuples stayed in the replay buffer during online learning
and have shown to accelerate learning [46], [47]. However, the
demonstrations only covered a small subset of possible states
and actions leaving most of the state/action space unexplored.
Because of this, state action pairs that had not been visited could
have received erroneously high Q-values when using only the
loss functions in (1) and (2) to learn. To mitigate this problem,
others have used a classification loss for the Q-function [47], or
a behavior cloning (BC) loss for the actor network [63] when
training from demonstrations. We used a behavior cloning loss
in this work given by

LBC =
1

N

N∑

i=0

(μ(si)−H(si)) (3)

where H(si) is the action the human took in state si. The final
loss functions for the critic and actor networks used in this work
were a weighted sum of multiple individual losses. The critic
and actor losses were

Lcritic = λwQ
LwQ

+ λQLQ

Lactor = λwµ
Lwµ

+ λBCLBC + λμLμ (4)

where LQ is the loss from (1), LwQ
is an L2-norm loss on the

critic network weights, Lμ is the loss from (2), LBC is the
behavior cloning loss on the expert demonstrations from (3),
Lwµ

is an L2-norm loss on the actor network weights, and the
λ variables controlled the relative contribution of each loss.

B. State Space, Action Space, Reward Function,
and Extracting Demonstrations

1) State and Action Spaces: We kept track of two separate
state spaces, one for the transition function of the MDP and one
for learning. The transition function state space in the simulation
was the x, y, z, pitch and, yaw of the needle tip. Our learning
state space consisted of seven values, which are illustrated in
Fig. 3. They were: Δx from goal, Δy from goal, Δyaw to face
goal, Δpitch to face goal, or avoid endothelium, needle percent
depth, goal depth minus needle depth (Δdepth from goal), and
a corneal deformation value d equal to the sum of squared
residuals of a second-order polynomial fit to the epithelium of
a B-scan along the needle. Indenting or deforming the cornea
distorts the view of both embedded and inferior structures, such
as surgical instruments and anterior segment anatomy. With
the distorted view, the surgeon’s understanding of anatomical
relationships can be altered and affect successful performance
of the procedure, which is why we included this deformation
value in our state space.

The action space permitted yaw and pitch changes of ±5◦

(between −20◦ to 20◦ yaw and −5◦ to 25◦ pitch) and movement
of the needle between 10 to 250 μm in the direction it was facing
at each time step. These limits where chosen to allow the agent to
have precise control of the needle and to minimize deformation
when deployed on real tissue.

Sparse reward functions are considerably easier to specify
than shaped reward functions and require significantly less tun-
ing. Additionally, when combined with demonstrations, sparse

Fig. 3. Needle insertion state space. (a) En face OCT view of a needle in
cornea. (b) OCT Cross sectional view along the needle’s axis. The green dot
represents the needle tip and the magenta dot represents the goal. The blue
line represents the tangent line at the point where the needle would perforate
the endothelium. The dashed orange line represents the second-order fit of the
epithelium segmentation and was used to compute corneal deformation value d.

rewards have been shown to outperform shaped rewards [46].
Because of this, we used the following sparse reward function:

r(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

5, if
(

Δx
ρx

)2

+
(

Δy
ρy

)2

≤ 1

and Δdepth from goal ≤ ε%

and d ≤ εd

0, otherwise

(5)

where ρx and ρy form an ellipse around the goal in thex–y plane,
ε% is a percentage depth threshold, and εd is a deformation
threshold. We used an elliptical goal, as opposed to a circular
goal, because the length of the insertion (in our setup along
the x-axis) is more important than any displacement from the
apex along the axis perpendicular to the insertion (in our setup
along the y-axis). The corneal deformation threshold was set by
a corneal surgeon after viewing multiple B-scans of needles in
corneas and the associated deformation metric. If the agent re-
ceived a positive reward, the episode terminated. However, there
were five other conditions that also resulted in the termination
of an episode, i.e., a percent depth greater than 100 (needle
perforation), a percent depth less than 20, a Δx greater/less than
zero (needle past the goal depending on insertion direction),
a Δy greater than εy , or the number of steps in the episode
exceeded a threshold. These additional termination conditions
were added because they are either failure cases in DALK
(needle perforation, needle too shallow, past goal), or to prevent
unnecessarily long episodes. Thresholds for our reward and
termination conditions were: ρx = 0.35 mm, ρy = 0.5 mm,
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ε% = 5%, εd = 6 mm2, εy = 1.2 mm, and a maximum of 25
steps per episode.

2) Extracting Demonstrations: In our previous work [20],
we recorded the volumetric OCT time series of ex vivo DALK
needle insertions performed by corneal surgical fellows. To
utilize this data as demonstrations for all of our experiments,
we segmented the epithelial/endothelial surfaces and tracked
the needle using our automatic algorithm for all volumes in
each time series from this previous data. Then, we fit a cubic
spline to the x, y, and z position of the tracked needle over
time, thereby smoothing the surgeon’s trajectories and enabling
us to map the demonstrations onto our restricted action space.
We divided the spline into segments no longer than 250 μm
and for each segment endpoint we found a volume in the time
series where the original needle position was closest to the
spline fit. These needle position/volume pairs provided us with
a smoothed trajectory that also approximated the deformation of
the cornea. The last needle position in the smoothed trajectory
was used to set the x–y goal location and the goal depth was
set to 85% for each demonstration. Finally, we computed the
(s, a, r, s′) tuples for each trajectory. States and next states were
computed from the needle/volume pairs. To find the actions at
each state, we computed the distance, change in yaw, and change
in pitch, between the current needle tip and the needle tip of the
next needle/volume pair. Rewards for state–action pairs were
computed using (5).

3) Network Architecture and Hyperparameters: We utilized
the network architecture described previously [58]. The critic
network consisted of two hidden layers with 400, and 300 units
with rectified linear activation functions. Actions in the critic
network were included after the first hidden layer. The actor
network used a similar architecture as the critic network, but
had tanh activations for each of the outputs, bounding the actions
between −1 and 1. States and actions were normalized between
[−1, 1] based on scan dimensions, maximum/minimum angles,
etc. before passing through a network.

We used an ADAM optimizer [64] for training with β1 = 0.9,
β2 = 0.99, ε = 10−3, a 10−4 learning rate for the critic, and
a 10−4 learning rate for the actor. After each step in online
learning, we randomly sampled a batch of 256 transitions from
the replay buffer, which included the expert demonstrations, and
trained for 25 epochs [46], with a discount factor γ = 0.95.
Target networks were updated every 50 epochs. We used λwQ

=
5× 10−3, λQ = 1, λwµ

= 10−4, λBC = 2, and λμ = 1 for the
loss weights. The simulation and reinforcement learning code
were written in Python 3.5 using Tensorflow [65].

4) Simulated Needle Insertions: Prior to performing ex vivo
needle insertions, we ran numerically simulated needle inser-
tions to test the feasibility of using DDPGfD for this task, and
to determine hyperparameter values that minimized the number
of episodes required to learn the task.

Our simulated environment consisted of a static height map
of two corneal surfaces (epithelium and endothelium) and a
needle, modeled as a point. The simulated area was 12 mm (x)
by 8 mm (y) by 6 mm (z). We encoded the goal state as an offset
from the apex of the endothelial surface of the cornea and a

desired depth expressed as a percentage of corneal thickness. In
all experiments we used a goal offset of 0.75 mm in x and a goal
depth of 85%. An illustration of the simulation environment is
shown in Fig. 4.

Prior to online learning, we trained the actor and critic net-
works with 20 successful human demonstrations provided by
corneal surgical fellows for 500 epochs. After this pretraining,
we ran 250 simulated insertion episodes. For all experiments, we
assumed the needle had already been inserted into the cornea.
The starting needle location for each episode was determined by
first randomly choosing a point along a 20◦ arc 3.5 to 4.0 mm
away from the goal. Then, a starting depth was randomly chosen
between 40 to 60%. Finally, we randomly selected yaw and
pitch angles that were within ±5◦ and ±2.5◦ of facing the goal.
Following the methodologies presented in prior work [46], [58],
we ran our simulation according to Algorithm 1. At each time
step we computed the current state, ran an ε-greedy policy by
adding uniform noise sampled from±0.1 of the max action [63],
executed the action, computed the next state with noise, and
computed the reward/termination. We added N (0, 0.01 mm)
to the needle’s x, y, and z position, N (0, 0.1◦) to the needle’s
pitch, N (0, 0.3◦) to the needle’s yaw, N (0, 0.026 mm) to the
epithelium, andN (0, 0.032 mm) to the endothelium. These noise
statistics were obtained from our prior work [20] and were an
impediment to learning given the cornea is ∼500 μm thick.
Every five episodes we froze the weights of the actor network
and ran the current policy for 45 episodes on three simulated
validation corneas (15 each) that had not been used in training
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Fig. 4. Simulation environment with needle trajectories (colored lines) and
goal area (green ellipse). (a) 3-D view of the endothelium (black mesh) with
plotted trajectories. The epithelium was used in the simulation, but is not shown
here so the trajectories can be seen. (b) B-scan view of the simulated environment
at the location denoted by the blue rectangle in (a). Trajectories were projected
on to the slow axis before plotting.

or in demonstrations. We ran the simulation ten times to account
for different random initial network states.

C. Ex Vivo Human Cornea Robotic Needle Insertions

Following simulated needle insertions, DDPGfD was per-
formed using an ex vivo model of DALK with human cadaver
corneas and an industrial robot to position the needle.

1) System Description: Our ex vivo system, pictured in
Fig. 5(a), consisted of an OCT system, an IRB 120 industrial
robot (ABB, Zurich, Switzerland) with a custom 3-D printed
handle holding the needle, and a Barron artificial anterior cham-
ber (Katena, Denville, NJ, USA). Donor corneas, provided by
Miracles in Sight Eye Bank (Winston-Salem, NC, USA), were
mounted on the artificial anterior chamber and pressurized with
balanced salt solution. A 27-gauge needle was attached to the
end of the custom handle and bent upward with the bevel facing
down to prevent the handle from hitting the table when angling
the needle toward the corneal apex. The use of ex vivo corneas
for this study was approved by the Duke University Health Sys-
tem Institutional Review Board. The custom-built OCT system
utilized a 100 kHz swept-source laser (Axsun, Technologies
Inc., Billerica, MA, USA) centered at 1060 nm. OCT imaging
used a raster scan acquisition pattern with volume dimensions
of 5.47 × 12.0 × 8.0 mm, consisting of 990 samples/A-
scan, 688 A-scans/B-scan (500 usable A-scans/B-scan), and 96
B-scans/volume, which provided a volumetric update rate of
1.51 Hz.

2) System Calibration: Because our action space required
the robot to move and rotate about the needle tip, and we wanted
to move the needle relative to the cornea to begin episodes, we
needed to transform points back and forth between the OCT
coordinate frame and the robot coordinate frame. Moving about

Fig. 5. Ex vivo human cornea robotic needle insertion system and flow
diagram. (a) IRB 120 industrial robot with custom 3D printed handle holding a
27-gauge needle is outlined in cyan. The artificial anterior chamber is outlined
in white. The OCT scanner coupled into the optics of a stereo zoom microscope
is outlined in green. (b) Ex vivo episode flow diagram. The system acquired
a volume, segmented it, and produced the state. The state and previous action
were checked to see if the episode should terminate. If the episode continued,
the state was passed through the actor network to obtain the action the robot
should execute. After the robot executed the action, the process repeated.

the needle tip required us to find a 4 × 4 end effector to needle
tip transform, TN, and moving the needle relative to the cornea
required us to find the 4 × 4 world origin to OCT origin trans-
form, TOCT. To find these two transforms, we moved the robot to
eight different points inside the OCT field of view with various
pitch and yaw values. At each point we recorded the robot’s
end-effector position and the needle tip/base position in the OCT
volume using our previously described needle tracking [20].
Once we collected the eight points, we simultaneously found
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TN and TOCT by minimizing
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where TEE is the robot end-effector transform, m is the vector
[−12, 0, 0]T representing the length in millimeters of the needle,
t is the x, y, z needle tip position vector, and b is the x, y, z
needle base position vector [66], [67].

3) Safety: While we used expert demonstrations to seed the
robot’s initial behavior, exploration of the state/action space was
still necessary to improve the robot’s success rate. Because of
this need for exploration, the robot could potentially perform
unreasonable or unsafe actions. To prevent any unsafe behavior,
we implemented multiple safety constraints for this system uti-
lizing software and human oversight. We set software Cartesian
and angular velocity limits for the tool to 10 cm/s and π/4 rad/s.
Each joint on the robot was set to have an angular velocity limit of
π/2 rad/s. We used 3-D models of the environment and forward
kinematics of the robot to prevent the robot from colliding with
itself or other objects in the environment, such as the table and
the microscope. If any part of the modeled robot was determined
to be within 1 cm of another part of the modeled environment the
robot stopped moving. Our reinforcement learning action space
only permitted 250 μm movements at each step and the intended
action and anticipated location of the robot after performing the
action was shown to an operator on a user interface. Finally, the
robot could only move in response to the operator pressing a
button on the user interface.

4) Line Planner Experiment: To provide a baseline with
which to compare our reinforcement learning approach, we
performed DALK needle insertions using a simple line plan-
ner. After inserting the needle in the cornea, the line planner
advanced the needle in a straight line toward a goal position
above the apex of the endothelium. In our experiments we used
a goal depth of 90% and performed 18 insertions using six
corneas.

5) Reinforcement Learning Experiment: Each episode con-
tained two phases; the initial insertion and needle advancement
to the goal. Our state and action spaces were created for ad-
vancing the needle to the goal, which required us to program a
semiautomatic initial insertion routine for the ex vivo trials. We
began our semiautomatic insertion routine by randomly finding
a starting point along a 20◦ arc 4.0 to 4.5 mm away from the goal.
Then, we moved the robot outside the cornea facing the starting
location at a 15◦ downward tilt. Next, we advanced the needle
toward the starting location. At this point, the operator would
inspect the OCT volume and optionally advance the needle
further to ensure it was sufficiently embedded in the cornea. We
then attempted to recreate the same starting conditions in the
human corneas that we used in simulation (starting pitch ±2.5◦

of facing the goal, starting yaw ±5◦ from facing the goal, and
depth between 40 to 60%), but due to calibration errors, varying
cornea stiffness, and varying anterior chamber pressures, the

resulting starting yaws, pitches, and depths varied substantially
more than in simulation.

After the completion of the initial insertion, the reinforcement
learning policy was used to advance the needle toward the goal.
The advancement toward the goal phase, depicted in Fig. 5(b),
started by collecting one OCT volume of the environment, which
was then segmented to find the epithelial/endothelial surfaces
and the needle position/orientation. The segmented surfaces and
needle position/orientation were converted into our state space
representation then passed through the actor network to produce
an action, which was finally executed on the robot. After the
robot completed the action, another volume was acquired and
segmented to determine the reward. This process repeated until
the episode terminated.

We trained the actor and critic networks for 500 epochs on
20 successful surgical fellow demonstrations and then trained
the robot on 150 ex vivo insertion episodes. The learned policy
from the simulation was not used in the ex vivo experiment.
To minimize the number of corneas required, we performed
approximately 10 insertions on each cornea. We evaluated the
policy the agent had learned after a set number of training
episodes (0, 50, 100, 125, and 150) by running ten insertions
on two corneas. We spread the ten insertions over two different
corneas (five each) at each of the evaluation checkpoints to test
how well the learned policy generalized across corneas.

After 150 episodes, we ran ten additional insertions using the
final policy to obtain a total of 20 data points spread over three
corneas. This data was compared to the performance achieved by
corneal surgical fellows using a dataset obtained in a previously
described experiment [20]. Briefly, three fellows were asked to
perform 20 DALK needle insertions each on ex vivo human
corneas mounted on an artificial anterior chamber. The fellows
were instructed to position their needle to 80 to 90% depth using
only an operating microscope (ten insertions) or an operating
microscope and OCT images displayed on a monitor next to
the microscope (ten insertions). The OCT image provided was
a tracked cross section along the axis of the needle labeled with
the needle’s calculated percent depth in the cornea.

We compared the mean and variance of the perforation-free
final percent depth and the deformation between the line planer
and final learned policy of RL. The variances were compared
using Levine’s test [68] and the means were compared using a
two-sided T-test (deformation) and Welch’s t-test (depth) [69].
The depths and deformation values were obtained via automatic
segmentation. To compare the performance of the fellows to
the robot using RL, we determined final perforation-free needle
depths via manual segmentation. We used a two-sided T-test
to determine if there was a significant difference in the mean
between the final perforation-free percent depth obtained by the
robot using RL compared to the surgical fellows using OCT, and
we used Welch’s t-test [69] to determine if there was a significant
difference in the mean final depth between the robot using RL
and the fellows who only used the microscope.

III. RESULTS

Learning curves for the numerically simulated needle inser-
tions are shown in Fig. 6(a)–(c), while learning curves for the ex
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Fig. 6. Learning curves for simulated (a)–(c) and ex vivo (d)–(g) needle insertions. Means are denoted by solid lines and shaded regions represent the 90th and
10th percentiles. (a) Final distance between goal and the needle in the x–y plane. (b) Final difference between the goal depth and the needle depth expressed as a
percentage of corneal thickness. (c) Success rate of the policy. (d) Final distance between goal and the needle in the x–y plane. (e) Final difference between the
goal depth and the needle depth expressed as a percentage of corneal thickness. (f) Sum of squared residuals of a second-order polynomial fit to the epithelium, a
measure of corneal deformation. (g) Success rate of the policy.

vivo needle insertions are shown in Fig. 6(d)–(g). The reported
metrics (success, distance, depth, and deformation) for the ex
vivo insertions were obtained from automatic segmentation and
tool tracking during the episode. In the ex vivo experiments the
agent had increasing success and reduced variability in percent
depth and deformation as the number of training episodes in-
creased. Due to the constraints and limits we imposed on the
robot, there were no adverse safety events during the ex vivo
learning process.

The line planner was able to reach the goal depth with an
acceptable level of deformation eight times. In nine other trials
either the deformation was too large, or the needle was not deep
enough to be considered a successful trial. The line planner
punctured the endothelium once. The mean perforation-free
final percent depth and deformation (obtained via automatic
segmentation) for the line planner was 80.34% ± 7.56% and
5.34 ± 2.86 (N = 17), compared to 84.16% ± 4.01% and
2.72 ± 1.03 (N = 20) for RL. The difference in mean for the
final percent depth between RL and the line planner was not
statistically significant (p = 0.08), but the difference in variance
was (p = 0.03). The difference in mean deformation between
RL and the line planner was statistically significant (p = 0.001),
but the difference in variance was not (p = 0.06). Learning from
demonstration did not have any perforation-free trials (N = 10)
and had an average deformation of 9.41 ± 5.87.

After succeeding in four trials at the 50 episode checkpoint,
the agent’s performance decreased at the 100 episode mark. A
major reason for this decrease in performance was due to the
agent’s behavior near the goal. Once the needle approached the
goal, the agent began to take actions with large changes in pitch
and yaw. A large pitch change in one direction would then be
followed by a large change in pitch in the opposite direction. This
oscillation near the goal caused substantial corneal deformation,

Fig. 7. Failure case after 100 training episodes. (a)–(d) Graphs of needle depth
as a percentage of corneal thickness, corneal deformation, change in yaw, and
change in pitch for each step in the episode. The dashed line in each graph
represents where the images in (e)–(j) begin. (e)–(j) OCT cross sections along
the axis of the needle for the final six steps in the episode. The large changes in
pitch caused deformation of the cornea and a shallow final needle depth.

or the needle becoming too shallow in the cornea, resulting
in a failed episode. This undesirable behavior is depicted in
Fig. 7. The magnitude of swings in pitch near the goal decreased
between episode 100 and 150. At the 125 training episode
checkpoint only one episode failed due to perforation of the
endothelium from a large negative change in pitch.

Fig. 8 shows OCT cross sections along the needle’s axis at
the end of insertions. Overlaid on top of these images is the
path of the needle tip projected onto 2-D. Fig. 8(a) and (b)
shows two successful insertions performed by a surgical fellow
used as training examples for LfD. Fig. 8(c) and (d) shows
two insertions performed after learning from demonstration
and Fig. 8(e) and (f) shows two insertions after 150 training
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Fig. 8. Comparison of needle motions between surgical fellow and the robot.
(a)–(f) OCT cross sections along the axis of the needle at the end of nee-
dle insertions. Green represents the path (projected onto 2-D) of the needle
tip throughout the insertion. (a)–(b) Insertions performed by surgical fellow.
(c) and (d) Insertions performed by the robot after learning from demonstration.
(e) and (f) Insertions performed by the robot after 150 reinforcement learning
training episodes.

episodes using the final learned policy. The policy before any
online learning (LfD) advanced the needle toward a point below
the endothelial apex, which caused significant unwanted defor-
mation of the cornea. This deformation caused the automatic
segmentation to prematurely and incorrectly report perforations
in some trials. Our segmentation method assumed the epithelial
and endothelial corneal surfaces would be smooth. When the
cornea became too deformed the segmentation would underes-
timate the deformation, but needle tracking would accurately
report the needle’s position causing the needle depth to be
reported as greater than 100%. Fortunately, these failures in
segmentation did not substantially impact learning because the
actions causing incorrect segmentation were undesirable any-
way due to the deformation they caused. In contrast, using the
final learned policy (after 150 training episodes) the robot was
able to position the needle at the correct depth with minimal
deformation.

The mean and standard deviation of the final perforation-free
percent depth obtained by the robot using the learned policy was
84.75% ± 4.91% (N = 20) compared to 78.58% ± 6.68% for
the surgical fellows using OCT (N = 28) and 61.38%± 17.18%
for the surgical fellows using only the operating microscope
(N = 15). The difference in mean final percent depth between
the robot and fellows using OCT was statistically significant
(p = 0.001) as was the difference between the robot and fellows
not using OCT (p = 0.0001). These statistics are illustrated in
Fig. 9.

Fig. 9. Comparison of the final needle depth expressed as a percent of corneal
thickness for perforation-free episodes between the robot using the final learned
policy and corneal surgical fellows. A black X indicates the mean of the group
and error bars denote one standard deviation.

IV. CONCLUSION

In this article our robot learned to insert a needle in tissue
to a specific depth better than surgical fellows by using rein-
forcement learning from demonstration under OCT guidance.
The learned policy achieved the desired results with minimal
deformation to the tissue and generalized over multiple corneas.
Behavior cloning expert demonstrations initialized the agent’s
behavior but did not prevent the agent from improving upon the
demonstrations. Simpler methods for controlling the robot were
either never successful (behavior cloning), or not as successful
as reinforcement learning (line planner). While the line planner
was able to successfully complete a trial in some cases, it was
less consistent in achieving a target depth and had significantly
more deformation than the reinforcement learning method.

We used a hand-crafted state space to reduce the number of
episodes required to learn a suitable policy. Height maps of the
two corneal surfaces and the tool could instead be used as state
input to actor and critic networks removing the need to create a
state space representation by hand. The most general approach
would be to pass the entire OCT volume through a convolutional
neural network which produces actions as the output. Combining
perception and control into a single network has been shown to
improve performance over separate perception and control net-
works [54]. However, this general approach would most likely
require an excessive and infeasible number of corneal samples
to learn a reasonable policy, even with expert demonstrations.

In this article we only used successful demonstrations from
experts in the replay buffer and when applying a behavior
cloning loss. Any set of demonstrations, successful or unsuc-
cessful, can be used in the replay buffer for DDPGfD. To reduce
the likelihood of unwanted behavior when learning, such as that
exhibited after 100 trials [see Fig. 7], one could put transitions
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from unsuccessful demonstrations in the replay buffer and/or add
an additional loss function that penalizes the agent for taking the
undesired actions in certain states.

The goal of “big bubble” DALK is to separate DM from the
stroma by pneumodissecting those layers. Ideally, the reward
from an insertion would be determined by whether pneumodis-
section occurred, rather than a proxy metric (needle depth) as
used here. Using pneumodissection as a sparse reward might
increase the probability of an agent learning a policy leading
to bubble formation, but demonstrations would be more costly
to obtain because one human cornea would be destroyed per
episode. We drastically reduced the number of limited human
corneas needed to learn a policy by using the final percent depth
of the needle as a proxy for success, since it has been shown to
be correlated with successful bubble formation [9].

An ex vivo model of the microsurgical procedure was used in
this project because there are obvious medical-legal and ethical
constraints to having a robot first learn a microsurgical procedure
directly on patients. The presented data demonstrate the promise
and potential of RL/LfD in this procedure, but transferring this
directly to human surgery may require refinement of the ex vivo
models. For example, the ex vivo model used in this article
prevented the cornea from moving during the needle insertion,
whereas the globe of the eye can move during surgery. A more
realistic ex vivo model would allow for eyeball rotation and
reproduce the physical constraints of surrounding anatomy (e.g.,
nose, eye socket). While an improved ex vivo model could never
fully replicate in vivo surgery, the model free nature of DDPGfD
removes the explicit assumption that the in vivo and ex vivo
environments are identical, thus increasing the likelihood of an
ex vivo trained agent succeeding in vivo. Improved and more
complex eye models combined with RL/LfD could potentially
be used to learn other ophthalmic microsurgical procedures such
as retinal peels.

We envision that an autonomous DALK needle insertion
system could be overseen by surgeons who understand the
procedure and its benefits but have not accumulated the years
of experience required to perform the procedures themselves.
However, using an autonomous robot in the operating room
would require careful planning to ensure the safety of not only
the patient, but of the surgeon and assistants as well. Additional
safety features in conjunction with constraints on where the
robot is allowed to move and how fast it can move may be
necessary for use in human surgery. One such safety feature,
utilized by Edwards et al. [33] was the ability to quickly retract
an instrument away from the patient. If the robot is unable to
complete the procedure or otherwise fails, the surgeon could
intervene and revert the procedure to conventional full-thickness
corneal transplantation.
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