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Abstract—We introduce a new method that extracts knowledge
from a large language model (LLM) to produce object-level plans,
which describe high-level changes to object state, and uses them
to bootstrap task and motion planning (TAMP). Existing work
uses LLMs to directly output task plans or generate goals in
representations like PDDL. However, these methods fall short
because they rely on the LLM to do the actual planning or output
a hard-to-satisfy goal. Our approach instead extracts knowledge
from an LLM in the form of plan schemas as an object-level rep-
resentation called functional object-oriented networks (FOON),
from which we automatically generate PDDL subgoals. Our
method markedly outperforms alternative planning strategies in
completing several pick-and-place tasks in simulation.†

I. INTRODUCTION

The advent of large language models (LLMs) has led
to a plethora of work that exploits their capabilities for a
variety of tasks, including planning for robotics [1, 2] and
embodied agents [3, 4]. These approaches use LLMs as either
a planner [1, 5, 2], or a goal generator [6, 7, 8, 9]. As a task
planner, an LLM is informed of the task and scene and directly
outputs a complete plan, thus forgoing automated planning
with off-the-shelf planners [10]. Plan actions generated by an
LLM are then grounded to action policies or primitives. As a
task goal generator, an LLM generates planning definitions in
the form of representations like PDDL [11] (short for Planning
Domain Definition Language); this type of approach is often
associated with task and motion planning (TAMP) [12].

However, existing work in these categories fails to handle
complex, goal-oriented tasks in several key aspects. On the
one hand, positing the LLM as a task planner deprives such
methods of guarantees promised by classical planning (viz.
optimality and completeness). Recent work has also called to
question whether LLMs can effectively plan [13]. On the other
hand, using the LLM as a task description generator will fail to
generate plan specifications that are guaranteed to work due
to the LLM’s lack of embodiment. For instance, it may be
difficult for the LLM to generate accurate PDDL definitions
simply from a language description of the robot’s environment.

It is natural to exploit language models for planning as
they contain useful domain knowledge and often output useful
steps. Similarly, they are useful as goal generators because one
can still rely on off-the-shelf planners. This work uses an LLM
to generate partial goal schemas at the object level, which
can then form PDDL subgoals. Such an approach inherits the
desirable commonsense planning knowledge of the LLM while
supporting sound and complete task-level planning. The object
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Fig. 1. Our approach prompts an LLM for object-level information with
which we construct an object-level plan (as a FOON). This plan schema
bootstraps task- and motion-level planning (TAMP) via PDDL subgoals.

(as opposed to task) level is the level at which natural language
is most appropriate and at which most knowledge is captured
and expressed [14, 15]. While task-level planning focuses
on action or motion constraints for execution, object-level
planning focuses on object interactions without committing
to how these effects will be resolved until runtime.

We propose a modular approach that distills domain knowl-
edge from an LLM to generate object-level plans [15], which
then bootstrap hierarchical planning. We situate object-level
planning as an interface between human language and TAMP
and exploit an object-level representation (OLR) called the
functional object-oriented network (FOON) [16]. Recent work
has shown how object-level knowledge in FOON can automat-
ically generate PDDL subgoals [17]; however, this assumes
that partial plan specifications already exist as a FOON. We
exploit the capabilities of LLMs for object-level planning,
overcoming the inability of LLMs to directly output feasible
task plans while exploiting the higher, object-level nature of
LLM output and language as a whole.

The contributions of our work are as follows: first, we intro-
duce a modular planning approach (Figure 1) that interfaces
with an LLM to generate natural language instructions, from
which we transform into an OLR (e.g., FOON) for hierarchical
planning. Second, we show how object-level information can
be distilled directly from an LLM and then used to generate
planning definitions as PDDL, improving the feasibility of
generated plans. Finally, we showcase markedly better per-
formance than alternative LLM-based methods.

II. BACKGROUND

Large Language Models: A large language model (LLM)
is a complex neural network model trained via self-supervised
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Fig. 2. Our approach interfaces with a language model to generate object-level plans (as FOON graphs) for bootstrapping task and motion planning. We
generate task-level subgoals as PDDL subgoals by grounding object-level subgoals to the robot’s environment; with these task-level definitions, task planning
to obtains task plan segments per object-level action, which are executed using motion-level planning, improving prior work [17].

learning and self-attention [18]. LLMs have shown remarkable
performance in natural language processing (NLP) and text
generation tasks. Variants such as GPT [19] and LLaMA [20]
are trained on large corpora of text collected from the Internet
and fine-tuned using RLHF (reinforcement learning from
human feedback). For this reason, an LLM can be thought of
as a “compressed” representation of domain knowledge from
the web [21], which is why we aim to exploit these models to
inform planning. This work uses OpenAI’s Chat-GPT [22].

Task and Motion Planning: The aim of task and motion
planning (TAMP) is to integrate higher-level symbolic task
planning with lower-level motion planning to enable robots to
solve complex long-horizon tasks [12]. At the lower level, mo-
tion planning finds collision-free robot motion or trajectories
that are typically used to achieve a task. However, typical robot
tasks are too complex for motion-level planning alone. For this
reason, task planning is necessary as an added layer to reason
over an abstraction of the robot’s actions and environment.
Task planning assumes a state description S using logical
predicates, which are true or false depending on whether
or not the robot observes them. Starting from an initial state
s0 ∈ S, task planning finds an action sequence a ∈ A that
achieves a goal g as a task plan P = {a1, ..., an} [10]. An
action a refers to a robot-executable skill or policy; our work
assumes access to a repertoire of skills, which we denote by A,
which are defined as planning operators in PDDL [11]. Finally,
given the task plan P , motion planning finds collision-free
trajectories that reproduce the intended effects of each action;
our work uses OMPL [23] for motion planning.

A. Related Work
Language Models for Planning: Many researchers have

explored the use of language models for robotics applications,
having been inspired by their remarkable performance in
language-related tasks. Prior works have investigated the plan-
ning capabilities of LLMs [24, 13]. Other works supplement
task planning with language models [6, 25, 5, 26, 8, 27].
LLM+P [6] generates PDDL problem file via LLM prompting.
Much like our work, existing works use LLMs as an informer
of subgoals for classical planning [26, 8, 27, 9]. In particular,
DELTA [8] resembles our method in that it decomposes a task
into a series of PDDL subgoal definitions directly output by an
LLM. Our approach uses an LLM at the object level and not
task level (i.e., PDDL). Recent work also iteratively prompts

an LLM for FOON generation [28]. Similar to DELTA, they do
not focus on generating nor executing physically valid plans.

Language Models as Planners: Several works treat lan-
guage models as robotic task planners. SayCan [1] combines
a language model and affordance detectors for driving robotic
execution given a task prompt. PaLM-E [2] is an embodied
language model that directly incorporates continuous observa-
tions (like images, state estimates, or other sensor modalities)
into the language embedding space. These works have shown
that language models are capable of performing some degree
of embodied reasoning. However, one major drawback of these
works is that they require a large amount of engineering effort,
particularly to enable them to operate in novel environments
and solve long-horizon tasks. Previous works also exploited
the reasoning capabilities of an LLM to solve a wide range of
tasks both in simulation [3, 29, 4] and with a real robot [4].

III. OBJECT-LEVEL PLANNING WITH LANGUAGE MODELS

There exists a disconnect between language and the task
level, which makes TAMP unsuitable for generalization across
tasks and settings. Yet, existing works use LLMs either as
planners or task description generators for task execution;
these approaches fall short because of the inability of LLMs to
correctly reason about task- and motion-level constraints. It is
impractical to provide the entire context of a task setting to an
LLM and expect it to handle all the reasoning about a robot’s
embodiment (e.g., where objects are located, in what poses
they are, what type of gripper the robot has, etc.) in order to
generate adequate planning definitions or feasible task plans.

Instead, the strength of language models lies in their ability
to provide approximate subgoals that are useful to decision
making at both task and motion levels. This is because
language models can express task-relevant knowledge in a
generic yet informative way. Imagine your typical cooking
recipe, for instance: a recipe provides a sketch of object
interactions and is agnostic to the state of the reader’s kitchen
or the recipe writer’s kitchen. It also does not provide details
on how actions should be executed (e.g., which hand should
be used, how should an object be grasped, etc.). What a recipe
expressed in natural language may provide, however, is an idea
of the types of actions and inter-object interactions necessary
to complete a task. Rather, the exact details of execution at
both task and motion levels are resolved at run time.



For these reasons, we adopt an object-level planning ap-
proach to bootstrap task and motion planning [17]. We gen-
erate object-level plan sketches, which provide task-level sub-
goals that naturally interface language and decision making,
using an LLM. Briefly, given a language command to a robot,
our approach (Figure 2) uses an LLM to generate a sequence of
natural language instructions, which is then transformed into
an object-level plan (OLP) represented as a FOON. It is then
through task planning where properties relevant to the robot
(e.g., robot’s end-effector and object poses) are used to find a
task-aware plan which is then executed via TAMP. Task-level
planning is achieved by transforming each OLP action into
PDDL definitions to find task plan segments.

A. Object-Level Planning

We adopt another layer of planning above TAMP called
object-level planning, which considers changes to object
state [15]. We use an object-level representation in the form
of a knowledge graph called the functional object-oriented
network (FOON) [16, 30]. Formally, a FOON G = {O,M, E}
is a bipartite graph with object nodes (o ∈ O) and motion
nodes (m ∈ M) connected via directed edges (e ∈ E), which
reflect the change of an object’s state as it is manipulated via a
corresponding action. An object o = (ot, os, oI) is defined as
a tuple with the following attributes: its object type or name
(ot), its state (os), and, if applicable, its object composition
(oI = {ot1 , ot2 , ..., otn}, where n = |I|). A motion node
m = (mt) is defined by an action verb or type (mt). A
FOON describes object-state transitions via functional units
(FU = {Oin,Oout, m̃}) at a level close to human language. A
functional unit defines preconditions and effects of executing
an action (m̃), where a set of input nodes (Oin) are required to
produce a new set of output object nodes (Oout). We illustrate
an example of a functional unit in Figure 3, which describes
an action for a block stacking task. We argue that foundation
models naturally interface with object-level representations
due to their similarity to human language, which in turn
allows them to interface with tools that combine vision and
language [19, 31].

B. Generating Object-level Plans with LLMs

Our goal is to extract attributes for object-state transitions
before and after each action is performed (i.e., preconditions
and effects) to construct an OLP describing task subgoals. We
instantiate object-level planning with FOONs. Our approach
constructs a FOON GT , where T is a task given in natural
language (such as “Make a tower of two red blocks”—see
Figure 3) via a two-stage process. In addition to the task
instruction T , we include a language description of objects
in the scene (from which the LLM will determine those that
are relevant to the task) as well as a set of example object-level
plans (as FOONs) XG = {G1,G2, ...,Gn} for reference.

The first stage prompts an LLM for a plan sketch com-
prised of natural language instructions denoted by PL =
{ξ1, ξ2, ..., ξn}, where ξi refers to an instruction as text. As
an example in Figure 3, given a task and available objects

User Task: "Make a tower of 2 red blocks."

LLM-to-OLP Stage 1: Language Plan
1. Pick the f�rst red block and place it on the second red block.

LLM-to-OLP Stage 2: Plan Sketch Generation

Codified Plan Sketch (GT  )~

f�rst red block: {
    "precondition"': [
        "on table", 
        "under nothing"],
    "effect": [
        "on second red block", 
        "under nothing"]
}

second red block: {
    "precondition": [
        "on table", 
        "under nothing"],
    "effect": [
        "on table",
        "under f�rst red block"]
}

FOON Object-level Plan (GT  )

second red block
states:
<on [table]>
<under [nothing]>

first red block
states:
<on [table]>
<under [nothing]>

second red block
states:
<on [table]>
<under [first red block]>

first red block
states:
<on [second red block]>
<under [nothing]>

pick and place

Fig. 3. Illustration of how a user task specified in natural language is
transformed into an object-level plan (OLP) as a FOON via LLM prompting.

(without any context about their present configuration), we
expect text instructions PL that solely mention red blocks for
the task “Make a tower of 2 red blocks.” During this step, we
transform the top-k most similar FOONs in XG into example
plan sketches, from which the LLM selects the one closest to
the new task to use as reference (denoted by Ĝ). We identify
the top k candidates using cosine similarity between text
embeddings of the task prompt T and the set of instructions for
a given reference Ĝ ∈ XG . An example sketch may describe
how three generic blocks (regardless of type) can be stacked
into a tower. In the second stage, the LLM must reason about
each instruction ξi ∈ PL to generate an OLP for the novel
task. We prompt the LLM to reason about state changes of
task-relevant objects, specifically geometric relations for task-
level planning (Section IV-A). In the previous example, we
expect output with state descriptions such as “first red block
on second red block,” “first red block under nothing,” “second
red block under first red block,” and “second red block on
table” (Figure 3). We assist the LLM by providing Ĝ in the
prompt, with which it must generate a new FOON GT for
the novel task. Inspired by previous work on code writing for
robots [32], we codify Ĝ as a JSON. The LLM then outputs
a codified OLP G̃T , which captures each instruction ξi ∈ PL.
Finally, each action in G̃T forms a functional unit FU i ∈ GT .

IV. BRIDGING TO TASK AND MOTION PLANNING

We generate a plan schema GT , with which we can solve
a task T given in natural language. However, this schema is
too abstract to be executed in its present form, and it must
be grounded to the robot’s embodiment and environment [17].
Therefore, we use GT to bootstrap TAMP via PDDL subgoals.
This is done through a hierarchical approach that automatically
transforms each object-level action in GT into PDDL problem
definitions and searches for a robot-executable plan given a
predefined set of robot skills or operators [17].

A. Object-Level to Task-Level Planning

The aim of task-level planning is to find a robot-executable
task plan Pµ that solves task T . A task plan is composed
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Fig. 4. Example of task-level grounding for an object-level plan (Figure 3),
which is compatible by design with the planning operators in Figure 5.

of a sequence of smaller plan segments for each func-
tional unit, i.e., Pµ = {P̃µ1 , P̃µ2 , ..., P̃µn}, where P̃µi =
{aµ1

, aµ2
, ..., aµm

} denotes a plan segment achieving the
subgoals described by a functional unit FU i and aµi

refers
to the i-th step corresponding to a parameterized skill in A.

PDDL solvers require two components: a domain definition
and a problem definition [11]. A domain definition provides
details on what actions can be taken by a robot as well as possi-
ble object types, while a problem definition captures the initial
state of the robot and its environment (sµ) as well as the target
goal state (gµ) as logical predicates. We assume a predefined
domain definition with planning operators corresponding to a
repertoire of parameterized, robot-executable skills A. For the
generation of problem definitions, both sµ and gµ are adapted
from a functional unit FU ∈ GT : predicates are constructed
based on the object-state pairs in FU [17]. In other words,
transforming a FOON into PDDL requires mapping attributes
of each object o to predicates (where o ∈ Oin ∪ Oout).

Object-centered Predicates: We use object-centered pred-
icates [33, 17] that describe constraints for collision-free
motion. They are written as (〈rel〉 〈?obj 1〉 〈?obj 2〉),
where 〈rel〉 refers to a geometric relation using the spatial
adpositions in, on, or under, while 〈?obj 1〉 and 〈?obj 2〉
refer to objects described by a given predicate. These relations
are described from the reference frame of each object, which
permits propagating motion constraints at task planning for the
generation of feasible plans [34]. For example, the predicate
(on block 1 block 2) denotes that block 2 lies on top
of block 1. We also use a virtual object air to describe free
space in or on objects, which is important for collision-free
picking, i.e., (on block 1 air)—nothing is on a block,
which makes it free for grasping).

Grounding: Each subgoal in an OLP (i.e., functional unit
in FOON) must be grounded to the robot’s environment for
effective task-level planning. For starters, object-level aliases
must be linked to object references at the task level. This can
be likened to how we as humans use recipes: a recipe refers to
ingredients with words, but we must resolve their references
to object instances around us when completing a recipe. This
work assumes that there exists an exact mapping of objects de-
scribed in an OLP to those existing in the environment, and we
prompt the LLM to map each alias to an instance. For example,
if we have two red blocks as objects in an OLP (Figure 3),
an LLM will map them to object instances red block 1
and red block 2 (Figure 4). Once completed, we obtain
a mapping of object-state pairs to task-level predicates: we
use object poses (both position and orientation) and bounding

(:action pick
:parameters (
?obj - object
?surface - object)
:precondition (and
; collision-free constraints:
(in hand air) (on ?obj air)
; object is on a surface:
(on ?surface ?obj)
(under ?obj ?surface) )
:effect (and
; hand contains target object:
(in hand ?obj) (not (in hand air))
; object has been grasped:
(on ?obj hand)
(under ?obj air)
(not (on ?obj air))
; nothing is on surface:
(not (on ?surface ?obj))
(not (under ?obj ?surface))
(on ?surface air) )

)

(a) Pick Action

(:action place
:parameters (
?obj - object
?surface - object)

:precondition (and
; collision-free constraints:
(on ?surface air)
(under ?obj air)
; hand contains object:
(in hand ?obj) (on ?obj hand) )

:effect (and
; hand no longer contains object:
(in hand air) (not (in hand ?obj))
; object is on surface:
(on ?surface ?obj)
(not (on ?surface air))
(under ?obj ?surface)
(not (under ?obj air))
; nothing is on object:
(not (on ?obj hand))
(on ?obj air) )

)

(b) Place Action

Fig. 5. Planning operators for pick and place actions using object-centered
predicates [33] and executable via motion-level planning (Section IV-B).

boxes to derive object-centered predicates for each object o in
GT using the mechanism from previous work [34].

B. Task-Level to Motion-Level Planning

With each plan segment P̃µ ∈ Pµ, a robot can then execute
a sequence of actions that resolve object-level subgoals. We
use motion-level planning to find collision-free robot move-
ments that will achieve the effects of a robot’s skills. This
work considers picking and placing actions (Figure 5). For the
pick action (Figure 5a), we generate a trajectory that moves the
robot’s end-effector from its initial position to a target object,
while the place action (Figure 5b) moves the robot’s end-
effector grasping an object from its initial pose to a position
above a target surface or object. The initial and final poses of
the hand for these actions can be obtained directly from object-
centered hand-object relations encoded in the preconditions
and effects of their corresponding planning operators using
geometric rotation and translation transformations [34].

V. EVALUATION

We evaluate the flexibility of our approach (denoted as
OLP in Table I) with alternative methods on several tasks in
simulated experiments. Our results show that an LLM cannot
reliably produce PDDL definitions and is unable to reliably
task plan due to its lack of spatial understanding; however,
we can prompt an LLM for object-level subgoals compatible
with our modular approach from previous work [17].

A. Experimental Setup

We perform experiments in a simulated table-top environ-
ment in CoppeliaSim [35] with a Franka Emika Panda robot
affixed to a table upon which blocks are randomly initialized.
Given a task specified in natural language, the robot must
perform a sequence of pick and place actions (defined in
Figure 5) fulfilling the task. We assume that the state of the
environment is fully observable—object poses and bounding
boxes are known via perception. This information is used in
motion-level planning to generate collision-free trajectories.
In addition to Chat-GPT3 [22] as our LLM of choice, we

3We tested gpt-4, gpt-4o, and chatgpt-4o-latest, but found
chatgpt-4o-latest to produce the best plans, adhering to instructions.



TABLE I
EXPERIMENTAL RESULTS FOR SEVERAL BLOCK STACKING TASKS ACROSS 10 TRIALS PER SETTING AND BLOCK COUNTS

Task
Setting

Planning
Approach % Plan Complete ↑ % Success ↑ Avg. Plan Time (s) ↓ Avg. Tokens ↓ Avg. Plan Length ↓

Tower

OLP 86.00% 76.00% 0.0043± 0.0021 2406.38± 335.0091 10.2791± 4.5687
LLM-Planner 44.00% 34.00% 12.0486± 6.3784 744.94± 120.9533 10.2791± 4.5687

LLM+P 18.00% 34.00% 0.0346± 0.0312 1656.42± 170.2912 8.5556± 3.9291
DELTA 86.00% 60.00% 0.0067± 0.01206 4871.88438.2610 9.0233± 4.7883

Spelling

OLP 80.00% 62.00% 0.02715± 0.0828 2588.66± 379.1376 8.45± 3.4932
LLM-Planner 22.00% 16.00% 7.5734± 2.4650 754.06± 102.7516 9.7778± 3.3529

LLM+P 30.00% 46.00% 0.0268± 0.0266 1671.26± 189.9115 9.0435± 4.0393
DELTA 78.00% 50.00% 0.0075± 0.0061 4836.72± 475.0059 10.5641± 5.5998

Organize

OLP 81.43% 77.14% 0.0080± 0.0053 3051.5± 499.4818 15.3684± 7.1630
LLM-Planner 35.71% 22.86% 24.1510± 15.9711 885.0571± 126.3086 8.40± 2.2361

LLM+P 37.14% 37.14% 0.0538± 0.1139 1891.3286± 212.4083 11.3077± 4.1547
DELTA 67.14% 54.29% 0.0139± 0.0312 5329.9571± 470.9973 13.8298± 6.4042

use Fast Downward [36], an off-the-shelf PDDL solver, for
task-level planning in our method and baselines (discussed in
Section V-B). When planning with Fast Downward, we use
the A* algorithm with the landmark cut (LMCUT) heuristic
for plan optimality. For motion-level planning, we use RRT-
Connect [37] as provided by OMPL [23].

Task Settings: We design scenarios in which the robot
has to complete several tasks for three tasks of increasing
difficulty: 1) tower building, 2) spelling, and 3) organizing
a table (Figure 6). The tower building task involves the robot
assembling a tower of blocks of a given height n, where
3 ≤ n ≤ 7, with n + 1 blocks provided on the table. The
spelling task also involves robot constructing a tower of blocks
of some height n, but with the added constraint that the blocks
correctly spell a given word of length n. This requires correct
placement of lettered blocks, thus heavily depending on the
LLM’s ability to generate the correct sequence of pick and
place actions. Finally, the organizing task involves a robot
making piles of matching blocks: here, we initialize a scene of
3 block types, each with n block instances (where 2 ≤ m ≤ 4).
This can be seen as a mix of the two prior tasks, where alike
but varying numbers of blocks must be placed into piles.

Metrics: We report the following metrics: 1) plan com-
pletion, which measures the percentage of all plans that
were executed from start to finish regardless of whether the
task objective was achieved; 2) success, which measures the
percentage of successfully executed plans that achieve the task
objective; 3) average plan computation time (in seconds); 4)
average number of tokens for LLM prompting; and 5) average
plan length across all successful executions.

B. Baseline Methods

We compare our OLP-based method to several baseline
methods, for which we provide details below. These baseline
methods also rely upon Chat-GPT to either directly output a
task plan or PDDL definitions, following the tracks of LLM-
based planning work previously introduced.

1) LLM-Planner: This baseline serves as a proxy for meth-
ods that directly plan with LLMs [1, 2]. We directly provide
a textual description of the state of the robot’s environment
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Fig. 6. Example of initial and final states for the spelling and organizing table
tasks. The tower building task is akin to spelling without ordering constraints.

(denoted by s̃) and the robot’s executable skills (A) as input
and retrieve a task plan Pµ as output. We then parse each
action to identify target objects and surfaces needed for pick
and place actions while performing the necessary motion-level
planning to successfully resolve each action. This baseline
approach evaluates the LLM’s ability to reason about the
robot’s embodiment and produce a correct task plan.

2) LLM+P: LLM+P [6] uses an LLM to generate a PDDL
problem definition given a text description of a task planning
domain and the initial state of the scene. As input to the LLM,
we provide a description of the robot’s environment (s̃) and an
example of a problem definition task, and we obtain a problem
definition for task T as output. We then use this output with
our domain definition of predefined skills to acquire a task plan
using Fast Downward [36], and this task plan is executed and
resolved with motion-level planning. This baseline approach
evaluates the LLM’s ability to accurately generate a PDDL
problem file, compatible with a predefined set of skills, without
explicitly performing object-level planning and reasoning.



3) DELTA: DELTA [8] is a task planning method that auto-
regressively prompts an LLM to derive PDDL domain and
problem definitions. Similar to our approach, a task T is
broken down into subgoals, each of which is formulated as
their own subgoal PDDL problem file. We prompt the LLM
with details about robot actions (A) as well as the objects
available to the robot, after which a domain file is generated.
The LLM is then provided with a state description s̃ and a task
prompt T to generate a problem file that contains all goals
(similar to the output of LLM+P [6]). This problem file is
then broken down into subgoal problem files based on PDDL
subgoals auto-regressively suggested by the LLM; this scopes
the problem into subgoal actions that are akin to functional
units. We hypothesize that although this method will create
simpler and smaller problem definitions, it heavily relies on
the LLM’s ability to generate syntactically and semantically
correct definitions, which may not be as reliable as our method.

C. Results and Discussion

Our experimental results show that our OLP-based method
performs better than baselines that either directly generate
a task plan or PDDL files (Table I). Across all tasks and
evaluated approaches, we found that some plans were not fully
executable due to motion-level planning failures, where the
plans were not found in reasonable time. Despite this phe-
nomenon, our approach produces the most plan completions in
all task settings on average (Figure 7). Although OLP was not
always successful in execution, our approach generates plans
that exhibit the highest success rates, matching the intention
of the given instruction. Interestingly, the spelling task showed
the lowest success rate in all approaches. We attribute this to
incorrect reasoning performed by the LLM at both the object
and task levels, where the LLM may generate a plan sketch
to stack the blocks in an incorrect or reversed order.

Although LLM-Planner generates plans without a solver, it
does not complete a majority of tasks because the LLM poorly
understands the configuration of the robot’s environment for
collision-free motion. As a result, it incorrectly proposes
actions that attempt to pick up an object blocked by another
object or place an object in an occupied spot. LLM+P also
exhibits poor performance: although the LLM is capable of
directly outputting PDDL, failures were mainly attributed to
inaccurate problem definitions. This may be due to the fact
that LLM+P uses fewer prompts than OLP and DELTA; also,
unlike DELTA, LLM+P does not provide definitions of PDDL
planning operators, thus providing less context to the LLM. We
also observed that the PDDL problems generated by LLM+P
and DELTA were susceptible to incorrect syntax, which is a
drawback of LLM-based PDDL generation. DELTA, whose
approach closely resembles our method, performs better than
LLM+P and LLM-Planner baselines, but it does not perform as
well as our method while also generally requiring more tokens
on average to generate planning definitions. Similar to DELTA,
OLP also demonstrates the advantage of bootstrapping task-
level planning with PDDL subgoal definitions (reflected by
low average planning times) but without relying upon the
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Fig. 7. Graph showing percentage of plans completely executed using all
approaches for different number of blocks across tasks (best viewed in colour).

LLM to correctly generate PDDL definitions. Our approach
also requires less interaction with the LLM than DELTA as
reflected by the average number of tokens.

Limitations: Much like how we humans plan, object-level
planning serves as a critical interface between language and
TAMP. Our approach requires robot skill definitions specified
as PDDL, which may not always transfer across robot systems.
However, we assume a set of FOON samples for few-shot
learning. Further, we did not consider plan recovery if objects
were knocked down during execution, thus lowering the suc-
cess rate of completely executed plans. Most importantly, as
with baselines, this approach depends on a correctly generated
object-level plan compatible with task-level planning for sub-
goal definitions. In addition, our evaluations are performed
solely on pick-and-place tasks, which do not highlight the
benefits of the semantic richness of object-level plans. In future
work, we will explore broader task diversity and examine how
we can use an LLM to adapt existing object-level plans to
novel scenarios similar to prior work [38, 39]. Like recent
work [27], we can also integrate human feedback to correct
LLM-generated errors at the object level. We will also explore
learning from demonstration to acquire task-level domain
definitions to address our assumption of predefined skills.

VI. CONCLUSION

We introduce a hierarchical planning approach that capital-
izes on the power of large language models (LLMs) to boot-
strap task and motion planning (TAMP). Through an added
layer of planning situated above TAMP known as object-
level planning [15], we enable robots to flexibly find planning
solutions from plan sketches extracted via LLM prompting.
Compared to alternative LLM-based planning approaches that
either use an LLM as a planner or as a generator of planning
definitions like PDDL [11], our method flexibly enables a
robot to solve a wide range of tasks that greatly benefit from
the expressiveness of natural language.
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