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Abstract
We formalize the problem of selecting the optimal
set of options for planning as that of computing
the smallest set of options so that planning con-
verges in less than a given maximum of value-
iteration passes. We first show that the problem
is NP-hard, even if the task is constrained to be
deterministic—the first such complexity result
for option discovery. We then present the first
polynomial-time boundedly suboptimal approxi-
mation algorithm for this setting, and empirically
evaluate it against both the optimal options and a
representative collection of heuristic approaches
in simple grid-based domains.

1. Introduction
Markov Decision Processes or MDPs (Puterman, 1994)
are a widely used expressive model of sequential decision-
making. However, MDPs are computationally expensive
to solve (Papadimitriou & Tsitsiklis, 1987; Littman, 1997;
Goldsmith et al., 1997). One approach to solving such
problems is to add high-level, temporally extended actions—
often formalized as options (Sutton et al., 1999)—to the set
of actions available to the agent. The right set of options
allows planning to probe more deeply into the search space
with a single computation. Thus, if options are chosen ap-
propriately, planning algorithms can find good plans with
less computation.

Indeed, previous work has offered substantial support that
abstract actions can accelerate planning (Mann & Mannor,
2014; Silver & Ciosek, 2012). However, little is known
about how to find the right set of options for planning. Prior
work often seeks to codify an intuitive notion of what under-
lies an effective option, such as identifying relatively novel
states (Şimşek & Barto, 2004), identifying bottleneck states
or high-betweenness states (Şimşek et al., 2005; Şimşek &
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Barto, 2009; Bacon, 2013; Moradi et al., 2012), finding re-
peated policy fragments (Pickett & Barto, 2002), or finding
states that often occur on successful trajectories (McGov-
ern & Barto, 2001; Bakker & Schmidhuber, 2004). While
such intuitions often capture important aspects of the role of
options in planning, the resulting algorithms are somewhat
heuristic in that they are not based on optimizing any pre-
cise performance-related metric; consequently, their relative
performance can only be evaluated empirically.

We aim to formalize what it means to find the set of op-
tions that is optimal for planning, and to use the resulting
formalization to develop an algorithm with performance
guarantees and a principled theoretical foundation. Specifi-
cally, we consider the problem of finding the smallest set of
options so that planning converges in fewer than ` value iter-
ations (VI). Our main result is that this problem is NP-hard.
More precisely, the problem:

1. is 2log
1−ε n-hard to approximate for any ε > 0 unless

NP ⊆ DTIME(npoly logn),1 where n is the input size;

2. is Ω(log n)-hard to approximate even for deterministic
MDPs unless P = NP;

3. has an O(n)-approximation algorithm;

4. has an O(log n)-approximation algorithm for deter-
ministic MDPs.

In Section 4, we introduce A-MOMI, a polynomial-time
approximation algorithm that has O(n) suboptimality in
general andO(log n) suboptimality for deterministic MDPs.
The expression 2log

1−ε n is only slightly smaller than n: if
ε = 0 then Ω(2logn) = Ω(n). Thus, the inapproximability
results claim that A-MOMI is close to the best possible
approximation factor.

In addition, we consider the complementary problem of
finding a set of k options that minimize the number of VI
iterations until convergence. We show that this problem is
also NP-hard, even for a deterministic MDP and introduce
A-MIMO, a polynomial time approximation algorithm.

1This is a standard complexity assumption: See, for example,
Dinitz et al. (2012).
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Finally, we empirically evaluate the performance of two
heuristic approaches for option discovery, betweenness op-
tions (Şimşek & Barto, 2009) and Eigenoptions (Machado
et al., 2017), against the proposed approximation algorithms
and the optimal options in standard grid domains.

2. Background
We first provide background on Markov Decision Processes
(MDPs), planning, and options.

2.1. Markov Decision Processes and Planning

An MDP is a five tuple: 〈S,A, R, T, γ〉, where S is a finite
set of states; A is a finite set of actions; R : S × A →
[0,RMAX] is a reward function; T : S × A → Pr(S) is a
transition function, denoting the probability of arriving in
state s′ ∈ S after executing action a ∈ A in state s ∈ S;
and γ ∈ [0, 1] is a discount factor, expressing the agent’s
preference for immediate over delayed rewards.

An action-selection strategy is modeled by a policy, π :
S → Pr(A), mapping states to a distribution over actions.
Typically, the goal of planning in an MDP is to solve the
MDP—that is, to compute an optimal policy. A policy π is
evaluated according to the Bellman equation, denoting the
long term expected reward received by executing π:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′). (1)

We denote π∗(s) = arg maxπ V
π(s) and V ∗(s) =

maxπ V
π(s) as the optimal policy and value function, re-

spectively.

The core problem we study is planning, namely, computing
a near optimal policy for a given MDP. The main variant
of the planning problem we study is the value-planning
problem:

Definition 1 (Value-Planning Problem): Given an
MDP M = 〈S,A, R, T, γ〉 and a non-negative real-
value ε, return a value function, V such that |V (s)−
V ∗(s)| < ε for all s ∈ S.

The value-planning problem can be solved in time polyno-
mial in the size of the state space (Littman et al., 1995).

2.2. Options and Value Iteration

Temporally extended actions offer great potential for mitigat-
ing the difficulty of solving complex MDPs, either through
planning or reinforcement learning (Sutton et al., 1999).
However, it is possible that options that are useful for learn-
ing are not necessarily useful for planning, and vice versa.
In fact, we don’t have an explicit metric for measuring the

quality of an option set for planning. Therefore, identifying
techniques that produce good options in these scenarios is
an important open problem in the literature.

We use the standard definition of options (Sutton et al.,
1999):

Definition 2 (option): An option o is defined by a
triple: (I, π, β) where:

• I ⊆ S is a set of states where the option can
initiate,

• π : S → Pr(A) is a policy,
• β : S → [0, 1], is a termination condition.

We let Oall denote the set containing all options.

In planning, options have a well defined transition and re-
ward model for each state named the multi-time model,
introduced by Precup & Sutton (1998):

Tγ(s, o, s′) =

∞∑
t=0

γt Pr(st = s′, β(st) | s, o). (2)

Rγ(s, o) = E
oπ

[
r1 + γr2 + . . .+ γk−1rk

∣∣∣ s, o] . (3)

We use the multi-time model for value iteration. The algo-
rithm computes a sequence of functions V0, V1, ..., Vb using
the Bellman optimality operator on the multi-time model:

Vi+1(s) = max
o∈A∪O

(
Rγ(s, o) +

∑
s′∈S

Tγ(s, o, s′)Vi(s
′)

)
.

(4)
The problem we consider is to find a set of options to add
to the set of primitive actions that minimize the number of
iterations required for VI to converge:2

Definition 3 (Lε,V0(O)): The number of iterations
Lε,V0(O) of VI using the joint action set A ∪O, with
O a non-empty set of options, is the smallest b at which
|Vb′(s)− V ∗(s)| < ε for all s ∈ S, b′ ≥ b.

2.2.1. POINT OPTIONS

The options formalism is immensely general. Due to its
generality, a single option can actually encode several com-
pletely unrelated sets of different behaviors. Consider the
nine-state example MDP pictured in Figure 1; a single op-
tion can in fact initiate, make decisions in, and terminate
along entirely independent trajectories. As we consider
more complex MDPs (which, as discussed earlier, is often
a motivation for introducing options), the number of inde-

2We can ensure |V ∗(s) − Vi(s)| < ε by running VI until
|Vi+1(s) − Vi(s)| < ε(1 − γ)/2γ for all s ∈ S (Williams &
Baird, 1993).
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Figure 1: A single option can encode multiple unrelated
behaviors. The dark circles indicate where the option can
be initiated (s1 & s6) and terminated (s2 & s9), whereas the
lighter circles denote the states visited by the option policy
when applied in the respective initiating state.

pendent behaviors that can be encoded by a single option
increases further still.

As a result, it can be difficult to reason about the impact of
adding a single option, in the traditional sense. As the MDP
grows larger, a combinatorial number of different behaviors
can emerge from “one” option. Consequently, it is difficult
to address the question: which single option helps planning
the most? As MDPs grow large, one option can encode
a large number of possible, independent behaviors. Thus,
we instead introduce and study “point options”, which only
allow for a single continuous stream of behavior:

Definition 4 (Point option): A point option is any
option whose initiation set and termination set are
each true for exactly one state each:

|{s ∈ S : I(s) = 1}| = 1, (5)
|{s ∈ S : β(s) > 0}| = 1, (6)
|{s ∈ S : β(s) = 1}| = 1. (7)

We let Op denote the set containing all point options.

For simplicity, we denote the initiation state as Io and the
termination state as βo for a point option o.

To plan with a point option from state s, the agent runs value
iteration using a model (Eq. 2, 3) in addition to the backup
operations by primitive actions where k is the duration of
the option. We assume that the model of each option is given
to the agent and ignore the computation cost for computing
the model for the options.

Point options are a useful subclass to consider for several
reasons. First, a point option is a simple model for a tempo-
rally extended action. Second, the policy of the point option
can be calculated as a path-planning problem for determinis-
tic MDPs. Third, any other options with a single termination
state with termination probability 1 can be represented as

a collection of point options. Fourth, a point option has
constant computational overhead per iteration.

3. Complexity Results
Our main results focus on two computational problems:

1. MINOPTIONMAXITER (MOMI): Which set of options
lets value iteration converge in at most ` iterations?

2. MINITERMAXOPTION (MIMO): Which set of k or
fewer options minimizes the number of iterations to
convergence?

More formally, MOMI is defined as follows.

Definition 5 (MOMI): The MINOPTIONMAXITER
problem:
Given an MDP M , a non-negative real-value ε, an ini-
tial value function V0, and an integer ` return O that
minimizes |O| subject toO ⊆ Op and Lε,V0

(O) ≤ `.

We then consider the complementary optimization problem
MINITERMAXOPTION (MIMO): compute a set of k options
which minimizes the number of iterations:

Definition 6 (MIMO): The MINITERMAXOPTION
problem:
Given an MDP M , a non-negative real-value ε, an
initial value function V0, and an integer k return O
that minimizes Lε,V0

(O), subject to O ⊆ Op and
|O| ≤ k.

We now introduce our main result, which shows that both
MOMI and MIMO are NP-hard.

Theorem 1. MOMI and MIMO are NP-hard.

Proof. We consider a problem OI-DEC which is a decision
version of MOMI and MIMO. The problem asks if we can
solve the MDP within ` iterations using at most k point
options.

Definition 7 (OI-DEC):
Given an MDP M , a non-negative real-value ε, an
initial value function V0, and integers k and `, return

‘Yes’ if the there exists an option set O such that O ⊆
Op, |O| ≤ k and Lε,V0

(O) ≤ `. ‘No’ otherwise.

We prove the theorem by reduction from the decision version
of the set-cover problem—known to be NP-complete—to
OI-DEC. The set-cover problem is defined as follows.

Definition 8 (SetCover-DEC):
Given a set of elements U , a set of subsets X = {X ⊆
U}, and an integer k, return ‘Yes’ if there exists a
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Figure 2: Reduction from SetCover-DEC to OI-DEC. The
example shows the reduction from an instance of SetCover-
DEC which asks if we can pick two subsets from X =
{X1, X2} where X1 = {1, 2, 3}, X2 = {3, 4, 5} to cover
all elements U = {1, 2, 3, 4, 5}. The SetCover-DEC can
be reduced to an instance of OI-DEC where the question is
whether the MDP can be solved with 2 iterations of VI by
adding at most two point options. The answer of OI-DEC is
‘Yes’ (adding point options from X1 and X2 to g will solve
the problem), thus the answer of the SetCover-DEC is ‘Yes’.
Here the set of initial states corresponds to the cover for the
SetCover-DEC.

cover C ⊆ X such that
⋃
X∈C X = U and |C| ≤ k.

‘No’ otherwise.

If there is some u ∈ U that is not included in at least one of
the subsetsX , then the answer is ‘No’. Assuming otherwise,
we construct an instance of a shortest path problem (a special
case of an MDP problem) as follows (Figure 2). There are
four types of states in the MDP: (1) ui ∈ U represents one
of the elements in U , (2) Xi ∈ X represents one of the
subsets in X , (3) X ′i ∈ X ′: we make a copy for every state
Xi ∈ X and call them X ′i , (4) a goal state g. Thus, the state
set is U ∪ X ∪ X ′ ∪ {g}. We build edges between states
as follows: (1) e(u,X) ∈ E iff u ∈ X: For u ∈ U and
X ∈ X , there is an edge between u and X . (2) ∀Xi ∈ X ,
e(Xi, X

′
i) ∈ E: For every Xi ∈ X , we have an edge from

Xi to X ′i. (3) ∀e(X ′, g) ∈ E: for every X ′ ∈ X ′i we have
an edge from Xi to the goal g. This construction can be
done in polynomial time.

Let M be the MDP constructed in this way. We show that
SetCover(U ,X , k) = OI-DEC(M,V0 = 0, k, 2). Note that
by construction every state Xi, X ′i, and g converges to its
optimal value within 2 iterations as it reaches the goal state
g within 2 steps. A state u ∈ U converges within 2 steps if
and only if there exists a point option (a) from X to g where
u ∈ X , (b) from u to X ′ where u ∈ X , or (c) from u to
g. For options of type (b) and (c), we can find an option
of type (a) that makes u converge within 2 steps by setting
the initial state of the option to Io = X , where u ∈ X , and
the termination state to βo = g. Let O be the solution of
OI-DEC(M,k, 2). If there exists an option of type (b) or

(c), we can swap them with an option of type (a) and still
maintain a solution. Thus, it is sufficient to consifer that
every option is type (a). Let C be a set of initial states of
each option in O (C = {Io|o ∈ O}). This construction
exactly matches the solution of the SetCover-DEC.

3.1. Generalizations of MOMI and MIMO

A natural question is whether Theorem 1 extends to more
general option-construction settings. We consider two possi-
ble extensions, which we believe offer significant coverage
of finding optimal options for planning in general.

We first consider the case where the options are not nec-
essarily point options. There is little sense in considering
MOMI where one can choose any option since clearly the
best option is the option whose policy is the optimal pol-
icy. Thus, using the space of all options Oall we generalize
MOMI as follows (MIMOgen are defined analogously):

Definition 9 (MOMIgen):
Given an MDP M , a non-negative real-value ε, an
initial value function V0, O′ ⊆ Oall, and an integer
`, return O minimizing |O| subject to Lε,V0(O) ≤ `
and O ⊆ O′.

Theorem 2. MOMIgen and MIMOgen are NP-hard.

The proof follows from the fact that MOMIgen is a superset
of MOMI and MIMOgen is a superset of MIMO.

We next consider the multi-task generalization, where we
aim to find a smallest number of options which the expected
number of iterations to solve a problem M sampled from a
distribution of MDPs, D, is bounded:

Definition 10 (MOMImulti):
Given A distribution of MDPs D, O′ ⊆ Oall, a non-
negative real-value ε, an initial value function V0, and
an integer `, return O that minimizes |O| such that
EM∼D[LM (O)] ≤ ` and O ⊆ O′.

Theorem 3. MOMImulti and MIMOmulti are NP-hard.

The proof follows from the fact that MOMImulti is a super-
set of MOMIgen and MIMOmulti is a superset of MIMOgen.

In light of the computational difficulty of both problems,
the appropriate approach is to find tractable approximation
algorithms. However, even approximately solving MOMI is
hard. More precisely:
Theorem 4.

1. MOMI is Ω(log n) hard to approximate even for deter-
ministic MDPs unless P = NP.

2. MOMIgen is 2log
1−ε n-hard to approximate for any

ε > 0 even for deterministic MDPs unless NP ⊆
DTIME(npoly logn).
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3. MOMI is 2log
1−ε n-hard to approximate for any ε > 0

unless NP ⊆ DTIME(npoly logn).

Proof. See appendix.

Note that anO(n)-approximation is achievable by the trivial
algorithm that returns a set of all candidate options. Thus,
Theorem 4 roughly states that there is no polynomial time
approximation algorithms other than the trivial algorithm
for MOMI.

In the next section we show that anO(log n)-approximation
is achievable for MOMI if the MDP is deterministic and the
agent is given a set of all point options. Thus, together, these
two results give a formal separation between the hardness
of abstraction in MDPs with and without stochasticity.

In summary, the problem of computing optimal behavioral
abstractions for planning is computationally intractable.

4. Approximation Algorithms
We now provide polynomial-time approximation algorithms,
A-MIMO and A-MOMI, to solve MOMI and MIMO, re-
spectively. Both algorithms have bounded suboptimality
slightly worse than a constant factor for deterministic MDPs.

We assume that (1) there is exactly one absorbing state
g ∈ S with T (g, a, g) = 1 and R(g, a) = 0, and ev-
ery optimal policy eventually reaches g with probability
1, (2) there is no cycle with a positive reward involved
in the optimal policy’s trajectory. That is, V π+ (s) :=
E[
∑∞
t=0 max{0, R(st, at)}] < ∞ for all policies π. Note

that we can convert a problem with multiple goals to a prob-
lem with a single goal by adding a new absorbing state g to
the MDP and adding a transition from each of the original
goals to g.

Unfortunately, these algorithms are computationally harder
than solving the MDP itself, and are thus not practical for
planning. Instead, they are useful for analyzing and eval-
uating heuristically generated options. If the option set
generated by the heuristic methods outperforms the option
set found by the following algorithms, then one can claim
that the option set found by the heuristic is close to the
optimal option set (for that MDP). Our algorithms have a
formal guarantee on bounded suboptimality if the MDP is
deterministic, so any heuristic method that provably exceeds
our algorithm’s performance will also guarantee bounded
suboptimality. We also believe these algorithms may be a
useful foundation for future option discovery methods.

4.1. A-MOMI

We now describe a polynomial-time approximation algo-
rithm, A-MOMI, based on using set cover to solve MOMI.

The overview of the procedure is as follows.

1. Compute an asymmetric distance function dε(s, s′) :
S × S → N representing the number of iterations for
a state s to reach its ε-optimal value if we add a point
option from a state s′ to a goal state g.

2. For every state si, compute a set of states Xsi within
`− 1 distance of reaching si. The set Xsi represents
the states that converge within ` steps if we add a point
option from si to g.

3. Let X be a set of Xsi for every si ∈ S \X+
g , where

X+
g is a set of states that converges within ` without

any options (thus can be ignored).
4. Solve the set-cover optimization problem to find a set

of subsets that covers the entire state set using the ap-
proximation algorithm by Chvatal (1979). This process
corresponds to finding a minimum set of subsets {Xsi}
that makes every state in S converge within ` steps.

5. Generate a set of point options with initiation states
set to one of the center states in the solution of the
set-cover, and termination states set to the goal.

We compute a distance function dε : S × S → N3, defined
as follows:

Definition 11 (Distance dε(si, sj)): dε(si, sj) is the
smallest number b such that for all b′ ≥ b, V ′b (si) is
ε-optimal if we add a point option from sj to g, minus
one.

More formally, let d′ε(si) denote the number of itera-
tions needed for the value of state si to satisfy |V (si) −
V ∗(si)| < ε, and let d′ε(si, sj) be an upper bound of
the number of iterations needed for the value of si to
satisfy |V (si) − V ∗(si)| < ε, if the value of sj is ini-
tialized such that |V (sj) − V ∗(sj)| < ε. We define
dε(si, sj) := min(d′ε(si) − 1, d′ε(si, sj)). For simplicity,
we use d to denote the function dε. Consider the following
example.

Example. Table 3b is a distance function for the MDP
shown in Figure 3a. For a deterministic MDP, d0(s) cor-
responds to the number of edge traversals from state s to
g, where we have edges only for those that corresponds
to the state transition by the optimal actions. The quantity
d0(s, s′) − 1 is the minimum of d0(s) and one plus the
number of edge traversals from s to s′. �

Note that we only need to solve the MDP once to com-
pute d. d(s, s′) can be computed once you solved the
MDP without any options and store all value functions
Vi (i = 1, ...b) until convergence as a function of V1:
Vi(s) = f(V1(s0), V1(s1), ...). If we add a point option

3Formally, d satisfies the triangle inequality, but does not satisfy
the symmetry and the indiscernibles.
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s1

s2

s3

s4

s5

s6 g

(a) Options discovered by A-
MIMO

s \ s′ s1 s2 s3 s4 s5 s6
s1 0 1 3 3 2 3
s2 2 0 2 2 1 2
s3 3 3 0 1 2 3
s4 2 2 2 0 1 2
s5 1 1 1 1 0 1
s6 0 0 0 0 0 0

(b) d0(s, s′)

Figure 3: (a) Options discovered by A-MIMO with k = 2
are denoted by the dashed lines. (b) d0(s, s′) for Figure 3a

from s′ to g, then V1(s′) = V ∗(s′). Thus, d(s, s′) is
the smallest i where Vi(s) reaches ε-optimal if we replace
V1(s′) with V ∗(s′) when computing Vi(s) as a function of
V1.

Example. We use the MDP shown in Figure 3a as an ex-
ample. Consider the problem of finding a set of options
so that the MDP can be solved within 2 iterations. We
generate an instance of a set-cover optimization problem.
The set of elements for the set cover is the set of states
of the MDP that do not reach their optimal value within
` steps without any options S \ X+

g . Here, we denote a
set of nodes that can be solved within ` steps by X+

g . In
the example, U = S \ X+

g = {s1, s2, s3, s4}. A state s
is included in a subset Xs′ iff d(s, s′) ≤ ` − 1. For ex-
ample, Xs1 = {s1}, Xs2 = {s1, s2}. Thus, the set of
subsets are given as: Xs1 = {s1}, Xs2 = {s1, s2}, Xs3 =
{s3}, Xs4 = {s3, s4}. In this case, the approximation al-
gorithm finds the optimal solution C = {Xs2 , Xs4} for the
set-cover optimization problem (U ,X ). We generate a point
option for each state in C. Thus, the output of the algorithm
is a set of two point options from s2 and s4 to g. �

Theorem 5. A-MOMI has the following properties:

1. A-MOMI runs in polynomial time.
2. It guarantees that the MDP is solved within ` iterations

using the option set acquired by A-MOMI O.
3. If the MDP is deterministic, the option set is at most
O(log n) times larger than the smallest option set pos-

sible to solve the MDP within ` iterations.

Proof. See the supplementary material.

Note that the approximation bound for a deterministic MDP
will inherent any improvements to the approximation al-
gorithm for set cover. Set cover is known to be NP-hard
to approximate up to a factor of (1− o(1)) log n (Dinur &
Steurer, 2014), thus there may be an improvement on the
approximation ratio for the set cover problem, which will
also improve the approximation ratio of A-MOMI.

4.2. A-MIMO

The outline of the approximation algorithm for MIMO (A-
MIMO) is as follows.

1. Compute dε(s, s′) : S ×S → N for each pair of states.
2. Using this distance function, solve an asymmetric k-

center problem, which finds a set of center states that
minimizes the maximum number of iterations for every
state to converge.

3. Generate point options with initiation states set to the
center states in the solution of the asymmetric k-center,
and termination states set to the goal.

As in A-MOMI, we first compute the function d. Then,
we exploit this characteristic of d and solve the asymmet-
ric k-center problem (Panigrahy & Vishwanathan, 1998)
on (U , d, k) to get a set of centers, which we use as ini-
tiation states for point options. The asymmetric k-center
problem is a generalization of the metric k-center problem
where the function d obeys the triangle inequality, but is not
necessarily symmetric:

Definition 12 (AsymKCenter):
Given a set of elements U , a function d : U × U → N,
and an integer k, return C that minimizes P (C) =
maxs∈U minc∈C d(s, c) subject to |C| ≤ k.

We solve the problem using a polynomial-time approxima-
tion algorithm proposed by Archer (2001). The algorithm
has a suboptimality bound of O(log∗ k)4 where k < |U|. It
is known that the problem cannot be solved within a factor
of log∗ |U| − θ(1) unless P = NP (Chuzhoy et al., 2005).
As the procedure by Archer (2001) often finds a set of op-
tions smaller than k, we generate the rest of the options by
greedily adding blog kc options at once. See the supplemen-
tary material for details. Finally, we generate a set of point
options with initiation-states set to one of the centers and
the termination state set to the goal state of the MDP. That
is, for every c in C, we generate a point option starting from
c to the goal state g.

4log∗ is the number of times the logarithm function must be
iteratively applied before the result is less than or equal to 1.
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Example. Consider an MDP shown in Figure 3a. The dis-
tance d0 for the MDP is shown in Table 3b. Note that
d(s, s′) ≤ d(s, g) holds for every s, s′ pair. Let us first con-
sider finding one option (k = 1). This process corresponds
to finding a column with the smallest maximum value in
the Table 3b. The optimal point option is from s5 to g as it
has the smallest maximum value in the column. If k = 2,
an optimal set of options is from s2 and s4 to g. Note that
the optimal option for k = 1 is not in the optimal option set
of size 2. This example shows that the strategy of greedily
adding options does not find the optimal set. In fact, the
improvement Lε,V0

(∅) − Lε,V0
(O) on by the greedy algo-

rithm can be arbitrary small (i.e. 0) compared to the optimal
option (see Proposition 1 in the supplementary material for
a proof). �

Theorem 6. A-MIMO has the following properties:

1. A-MIMO runs in polynomial time.
2. If the MDP is deterministic, it has a bounded subopti-

mality of O(log∗ k).
3. The number of iterations to solve the MDP using the

option set acquired is upper bounded by P (C).

Proof. See the supplementary material.

5. Experiments
We evaluate the performance of the value-iteration algorithm
using options generated by the approximation algorithms
on several grid-based simple domains.

We ran the experiments on an 11 × 11 four-room domain
and a 9× 9 grid world with no walls. In both domains, the
agent’s goal is to reach a specific square. The agent can
move in the usual four directions but cannot cross walls.

Visualizations: First, we visualize a variety of option types,
including the optimal point options, those found by our
approximation algorithms, and several option types pro-
posed in the literature. We computed the optimal set of
point options by enumerating every possible set of point
options and picking the best. As an optimal set of options is
not unique, we picked one arbitrarily. We are only able to
find optimal solutions up to four options within 10 minutes,
while the approximation algorithm could find any number
of options within a few minutes. For eigenoptions, we
ignored the eigenvector corresponding to the smallest eigen-
value (λ0 = 0) in the graph Laplacian because it has a
constant value for every state. Both betweenness options
and eigenoptions are polynomial time algorithm, thus run
in a few minutes. Figure 4 shows the optimal and bounded
suboptimal set of options computed by A-MIMO. See the
supplementary material for visualizations for the 9× 9 grid
domain.

Figure 4e shows the four bottleneck states with highest
shortest-path betweenness centrality in the state-transition
graph (Şimşek & Barto, 2009). Interestingly, the optimal
options are quite close to the bottleneck states in the four-
room domain, suggesting that bottleneck states are also
useful for planning as a heuristic to find important subgoals.

Figure 4f shows the set of subgoals discovered by graph
Laplacian analysis following Machado et al. (2017). While
they proposed to generate options to travel between sub-
goals for reinforcement learning, we generate a set of point
options from each subgoal to the goal state as that is a better
in the planning setting.

Quantitative Evaluation: Next, we run value iteration us-
ing the set of options generated by A-MIMO and A-MOMI.
Figures 5a and 5b show the number of iterations on the four-
room and the 9× 9 grids using k options. The experimental
results suggest that the suboptimal algorithm finds set of
options similar to, but not quite as good as, the optimal ones.
For betweenness options and eigenoptions, we evaluated
every subset of options among the four and present results
for the best subset found. Because betweenness options are
placed close to the optimal options, the performance is close
to optimal especially when the number of options is small.

In addition, we used A-MOMI to find a minimum option
set to solve the MDP within the given number of iterations.
Figures 5c and 5d show the number of options generated by
A-MOMI compared to the minimum number of options.

6. Related Work
Many heuristic algorithms have proposed to discover op-
tions (Iba, 1989; McGovern & Barto, 2001; Menache et al.,
2002; Stolle & Precup, 2002; Şimşek & Barto, 2004; Şimşek
& Barto, 2009; Konidaris & Barto, 2009; Machado et al.,
2017; Eysenbach et al., 2019). For example, some investi-
gate the use of bottleneck states (Stolle & Precup, 2002;
Şimşek & Barto, 2009; Menache et al., 2002; Lehnert
et al., 2018). Stolle & Precup (2002) proposed to set states
with high visitation counts as subgoal states, which iden-
tifies bottleneck states in the four-room domain. Şimşek
& Barto (2009) generalized the concept of a bottleneck to
(shortest-path) betweenness of the graph to capture how piv-
otal the state is. Menache et al. (2002) used a learned model
of the environment to run a Max-Flow/Min-Cut algorithm
to the state-space graph to identify bottleneck states. These
methods generate options that leverage the idea that sub-
goals are states visited most frequently. On the other hand,
Şimşek & Barto (2004) proposed to generate options to en-
courage exploration by generating options to relatively novel
states. Eysenbach et al. (2019) instead proposed learning
a policy for each option so that the diversity of the trajec-
tories by the set of options are maximized. These methods
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2opt (a) optimal k = 2 2subopt (b) approx. k = 2 4opt (c) optimal k = 4
4sub_opt

(d) approx. k = 4
4betweenness

(e) Betweenness
4eigen

(f) Eigenoptions

Figure 4: Comparison of the optimal point options with options generated by the approximation algorithm A-MIMO. The
green square represents the termination state and the blue squares the initiation states. Observe that the approximation
algorithm is similar to that of optimal options. Note that the optimal option set is not unique: there can be multiple optimal
option sets, and we visualize the one returned by the solver.
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Figure 5: MIMO and MOMI evaluations. Parts (a)–(b) show the number of iterations for VI using options generated by
A-MIMO. Parts (c)–(d) show the number of options generated by A-MOMI to ensure the MDP is solved within a given
number of iterations. OPT: optimal set of options. APPROX: a bounded suboptimal set of options generated by A-MIMO
an A-MOMI. BET: betweenness options. EIG: eigenoptions.

generate options to explore infrequently visited states.

While empirical results show that these algorithms are useful
in some scenarios, the conditions under which the methods
are effective is often unclear because the relationship be-
tween the objective of the skill discovery algorithm and
that of the agent is often not established. In fact, Jong
et al. (2008) sought to investigate the utility of skills empiri-
cally and pointed out that introducing skills might worsen
the learning performance. Harb et al. (2017) proposed to
formulate good options to be options which minimize the
deliberation costs in the bounded rationality framework (Si-
mon, 1957). Brunskill & Li (2014) targeted the lifelong
reinforcement learning setting and proposed an option gen-
eration method for lifelong reinforcement learning. They
analyzed the sample complexity of RMAX using options
and proposed an option discovery targeting to minimize the
sample complexity. Solway et al. (2014) formalized an opti-
mal behavioral hierarchy as a model which fits the behavior
of the agent in tasks the best.

For planning, several works have shown empirically that
adding a particular set of options or macro-operators can
speed up planning algorithms (Francis & Ram, 1993; Sutton
& Barto, 1998; Silver & Ciosek, 2012; Konidaris, 2016).
Mann et al. (2015) analyzed the convergence rate of approx-

imate value iteration with and without options, and showed
that options lead to faster convergence if their durations are
longer and the value function is initialized pessimistically.

7. Conclusions
We considered two fundamental theoretical questions con-
cerning the use of behavioral abstractions to solve MDPs:
(1) minimize the size of option set given a maximum num-
ber of iterations (MOMI) and (2) minimize the number of
iterations given a maximum size of option set (MIMO). We
showed that both problems are computationally intractable,
even for deterministic MDPs. For each problem, we pro-
duced a polynomial-time algorithm for MDPs with bounded
reward and goal states, and with bounded optimality for
deterministic MDPs. Although these algorithms are not
practical for a single-task planning, we believe they may be
a useful foundation for future option discovery methods. In
the future, we are interested in using the insights established
here to develop principled option-discovery algorithms for
model-based reinforcement learning. Since we now know
which options minimize planning time, we can better guide
model-based agents toward learning them and potentially
reduce sample complexity considerably.
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A. Appendix: Inapproximability of MOMI
In this section we prove Theorem 4:

Theorem 4.

1. MOMI is Ω(log n) hard to approximate even for deter-
ministic MDPs unless P = NP .

2. MOMIgen is 2log1−ε n-hard to approximate for any
ε > 0 even for deterministic MDPs unless NP ⊆
DTIME(npoly logn).

3. MOMI is 2log1−ε n-hard to approximate for any ε > 0
unless NP ⊆ DTIME(npoly logn).

For Theorems 4.2 and 4.3 we reduce our problem to the Min-
Rep, problem, originally defined by (Kortsarz, 2001). Min-
Rep is a variant of the better studied label cover problem
(Dinur & Safra, 2004) and has been integral to recent hard-
ness of approximation results in network design problems
(Dinitz et al., 2012; Bhattacharyya et al., 2012). Roughly,
Min-Rep asks how to assign as few labels as possible to
nodes in a bipartite graph such that every edge is “satisfied.”

Definition 1 (Min-Rep):
Given a bipartite graph G = (A ∪ B,E) and al-
phabets ΣA and ΣB for the left and right sides of
G respectively. Each e ∈ E has associated with
it a set of pairs πe ⊆ ΣA × ΣB which satisfy it.
Return a pair of assignments γA : A → P(ΣA)
and γB : B → P(ΣB) such that for every e =
(Ai, Bj) ∈ E there exists an (a, b) ∈ πe such that
a ∈ γA(Ai) and b ∈ γB(Bj). The objective is to
minimize

∑
Ai∈A |γA(Ai)|+

∑
Bj∈B |γB(Bj)|.

We illustrate a feasible solution to an instance of Min-Rep
in Figure 1.

The crucial property of Min-Rep we use is that no
polynomial-time algorithm can approximate Min-Rep well.
Let ñ = |A|+ |B|.
Lemma 1 (Kortsarz 2001). Unless NP ⊆
DTIME(npoly logn), Min-Rep admits no 2log1−ε ñ

polynomial-time approximation algorithm for any
ε > 0.

As a technical note, we emphasize that all relevant quantities
in Min-Rep are polynomially-bounded. In Min-Rep we have
|ΣA|, |ΣB | ≤ ñc

′
for constant c′. It immediately follows

that
∑
e |πe| ≤ nc for constant c.

A.1. Hardness of Approximation of MOMI with
Deterministic MDP

Theorem 4.1 Proof. The optimization version of the set-
cover problem cannot be approximated within a factor of
c · lnn by a polynomial-time algorithm unless P = NP (Raz
& Safra, 1997). The set-cover optimization problem can be
reduced to MOMI with a similar construction for a reduction
from SetCover-DEC to OI-DEC. Here, the targeted mini-
mization values of the two problems are equal: P (C) = |O|,
and the number of states in OI-DEC is equal to the number
of elements in the set cover on transformation. Assume there
is a polynomial-time algorithm within a factor of c · lnn
approximation for MOMI where n is the number of states
in the MDP. Let SetCover(U ,X ) be an instance of the set-
cover problem. We can convert the instance into an instance
of MOMI(M, 0, 2). Using the approximation algorithm,
we get a solution O where |O| ≤ c lnn|O∗|, where O∗ is
the optimal solution. We construct a solution for the set
cover C from the solution to the MOMI O (see the construc-
tion in the proof of Theorem 1). Because |C| = |O| and
|C∗| = |O∗|, where C∗ is the optimal solution for the set
cover, we get |C| = |O| ≤ c lnn|O∗| = c lnn|C∗|. Thus,
we acquire a c · lnn approximation solution for the set-cover
problem within polynomial time, something only possible if
P=NP. Thus, there is no polynomial-time algorithm with a
factor of c·lnn approximation for MOMI, unless P=NP.

A.2. Hardness of Approximation of MOMIgen

We now show our hardness of approximation of 2log1−ε n

for MOMIgen, Theorem 4.2.1

We start by describing our reduction from an instance of
Min-Rep to an instance of MOMIgen. The intuition behind
our reduction is that we can encode choosing a label for a

1We assume that O′ is a “good” set of options in the sense that
there exists some set O∗ ⊆ O′ such that Lε,V0(O∗) ≤ `. We
also assume, without loss of generality, that ε < 1 throughout this
section; other values of ε can be handled by re-scaling rewards in
our reduction.
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vertex in Min-Rep as choosing an option in our MOMIgen
instance. In particular, we will have a state for each edge
in our Min-Rep instance and reward will propagate quickly
to that state when value iteration is run only if the options
corresponding to a satisfying assignment for that edge are
chosen.

More formally, our reduction is as follows. Consider an
instance of Min-Rep, MR, given by G = (A ∪B,E), ΣA,
ΣB and {πe}. Our instance of MOMIgen is as follows
where γ = 1 and l = 3.2

• State space We have a single goal state Sg along with
states S′g and S′′g . For each edge e we create a state
Se. Let SatA(e) consist of all a ∈ ΣA such that a is in
some assignment in πe. Define SatB(e) symmetrically.
For each edge e ∈ E we create a set of 2 · |SatA(e)|
states, namely Sea and S′ea for every a ∈ SatA(e). We
do the same for b ∈ SatB(e).

• Actions and Transitions We have a single action from
S′g to Sg, a single action from S′′g to S′g. For each
edge e we have the following deterministic actions:
Every S′ea has a single outgoing action to Sea for a ∈
SatA(e); Every Seb has a single outgoing action to Seb′
for b ∈ SatB(e); Every Sea has an outgoing action to
Seb if (a, b) ∈ πe and every S′eb has a single outgoing
action to Sg; Lastly, we have a single action from S′ea
to S′′g for every a ∈ SatA(e).

• Reward The reward of arriving in Sg is 1. The reward
of arriving in every other state is 0.

• Option Set Our option set O′ is as follows. For each
vertex Ai ∈ A and each a ∈ ΣA we have an option
O(Ai, a): The initiation set of this option is every Se
where e is incident to Ai; The termination set of this

2It is easy to generalize these results to l ≥ 4 by replacing
certain edges with paths.
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(a1, b2)

(a
2 , b

3 ), (a
3 , b

1 )

(a3, b1)

a1, a2

a3

b2

b1, b3

Figure 1: An instance of Min-Rep with ΣA = {a1, a2, a3}
and ΣB = {b1, b2, b3}. Edge e is labeled with pairs in
πe. Feasible solution (γA, γb) illustrated where γA(Ai) and
γB(Bj) below Ai and Bj in blue. Constraints colored to
coincide with stochastic action colors in Figure 3.

Sg

S′g

S′′g

Se1 S′e1a1 Se1a1 Se1b2 S′e1b2

Se2

S′e2a2 Se2a2

S′e2a3 Se2a3

S′e2b1Se2b1

S′e2b3Se2b3

Se3 S′e3a3 Se3a3 Se3b1 S′e3b1

Figure 2: Our MOMIgen reduction applied to the Min-
Rep problem in Figure 1. e1 = (A1, B1), e2 = (A1, B2),
e3 = (A2, B2). Actions given in solid lines and each option
in O′ represented in its own color as a dashed line from
initiation to termination states. Notice that a single option
goes from Se3b1 and Se2b1 to Sg .

option is every Sea where Ai is incident to e; The
policy of this option takes the action from S′ea to Sea
when in S′ea and the action from Se to S′ea when in Se.

Symmetrically, for every vertex Bj ∈ B and each
b ∈ ΣB we have an option O(Bj , b): The initiation set
of this option is every Seb where e is incident to Bj ;
The termination set of this option is Sg; The policy of
this option takes the action from Seb to S′eb when in
Seb and from S′eb to Sg when in S′eb.

One should think of choosing option O(v, x) as correspond-
ing to choosing label x for vertex v in the input Min-Rep
instance. Let MOMIgen(MR) be the MDP output given
instance MR of Min-Rep and see Figure 3 for an illustration
of our reduction.

Let OPTMOMIgen be the value of the optimal solution to
MOMIgen(MR) and let OPTMR be the value of the optimal
Min-Rep solution to MR. The following lemmas demon-
strates the correspondence between a MOMIgen and Min-
Rep solution.
Lemma 2. OPTMOMIgen ≤ OPTMR

Proof. Given a solution (γA, γB) to MR, defineOγA,γB :=
{O(v, x) : v ∈ V (G) ∧ (γA(v) = x ∨ γB(v) = x)} as the
corresponding set of options. Let γ∗A and γ∗B be the optimal
solutions to MR which is of cost OPTMR.

We now argue that Oγ∗A,γ∗B is a feasible solution to
MOMIgen(MR) of cost OPTMR, demonstrating that the op-
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timal solution to MOMIgen(MR) has cost at most OPTMR.
To see this notice that by construction the MOMIgen cost
of Oγ∗A,γ∗B is exactly the Min-Rep cost of (γ∗A, γ

∗
B).

We need only argue, then, that Oγ∗A,γ∗B is feasible for
MOMIgen(MR) and do so now. The value of every state
in MOMIgen(MR) is 1. Thus, we must guarantee that
after 3 iterations of value iteration, every state has value
1. However, without any options every state except each
Se has value 1 after 3 iterations of value iteration. Thus,
it suffices to argue that Oγ∗A,γ∗B guarantees that every Se
will have value 1 after 3 iterations of value iteration. Since
(γ∗A, γ

∗
B) is a feasible solution to MR we know that for every

e = (Ai, Bj) there exists an ā ∈ γ∗A(Ai) and b̄ ∈ γ∗B(Bj)
such that (ā, b̄) ∈ πe; correspondingly there are options
O(Ai, ā), O(Bj , b̄) ∈ Oγ∗A,γ∗B . It follows that, given op-
tions Oγ∗A,γ∗B from, Se one can take option O(Ai, ā) then
the action from Seā to Seb̄ and then option O(Bj , b̄) to ar-
rive in Sg; thus, after 3 iterations of value iteration the value
of Se is 1. Thus, we conclude that after 3 iterations of value
iteration every state has converged on its value.

We now show that a solution to MOMIgen(MR) corre-
sponds to a solution to MR. For the remainder of this sec-
tion γOA (Ai) := {a : O(Ai, a) ∈ O} and γOB (Bj) := {b :
O(Bj , b) ∈ O} is the Min-Rep solution corresponding to
option set O.

Lemma 3. For a feasible solution to MOMIgen(MR), O,
we have (γOA , γ

O
B ) is a feasible solution to MR of cost |O|.

Proof. Notice that by construction the Min-Rep cost of
(γOA , γ

O
B ) is exactly |O|. Thus, we need only prove that

(γOA , γ
O
B ) is a feasible solution for MR.

We do so now. Consider an arbitrary edge e = (Ai, Bj) ∈
E; we wish to show that (γOA , γ

O
B ) satisfies e. Since O is

a feasible solution to MOMIgen(MR) we know that after
3 iterations of value iteration every state must converge on
its value. Moreover, notice that the value of every state
in MOMIgen(MR) is 1. Thus, it must be the case that for
every Se there exists a path of length 3 from Se to Sg using
either options or actions. The only such paths are those
that take an option O(Ai, a), then an action from Sea to
Seb then option O(Bj , b) where (a, b) ∈ πe. It follows that
a ∈ γOA (Ai) and b ∈ γOB (Bj). But since (a, b) ∈ πe, we
then know that e is satisfied. Thus, every edge is satisfied
and so (γOA , γ

O
B ) is a feasible solution to MR.

Theorem 4.2 Proof. Assume NP 6⊆ DTIME(npoly logn) and
for the sake of contradiction that there exists an ε > 0 for
which polynomial-time algorithm AMOMIgen can 2log1−ε n-

approximate MOMIgen. We use AMOMIgen to 2log1−ε′ ñ

approximate Min-Rep for a fixed constant ε′ > 0 in
polynomial-time, thereby contradicting Lemma 1. Again,

ñ is the number of vertices in the graph of the Min-Rep
instance.

We begin by noting that the relevant quantities in
MOMIgen(MR) are polynomially-bounded. Notice that
the number of states n in the MDP in MOMIgen(MR) is
at most O(ñ2|ΣA||ΣB |) = ñc for some fixed constant c
by the aforementioned assumption that ΣA and ΣB are
polynomially-bounded in ñ.3

Our polynomial-time approximation algorithm to approxi-
mate instance MR of Min-Rep is as follows: RunAMOMIgen
on MOMIgen(MR) to get back option set O. Return
(γOA , γ

O
B ) as defined above as our solution to MR.

We first argue that our algorithm is polynomial-time in
ñ. However, notice that for each vertex, we create a
polynomial number of states. Thus, the number of states
in MOMIgen(MR) is polynomially-bounded in ñ and so
AMOMIgen runs in time polynomial in ñ. A polynomial
runtime of our algorithm immediately follows.

We now argue that our algorithm is a 2log1−ε′ ñ-
approximation for Min-Rep for some ε′ > 0. Apply-
ing Lemma 3, the approximation of AMOMIgen and then
Lemma 2, we have that (γOA , γ

O
B ) is a feasible solution for

MR with cost

costMin-Rep(γOA , γ
O
B ) = |O|

≤ 2log1−ε nOPTMOMIgen

≤ 2log1−ε nOPTMR

Thus, (γOA , γ
O
B ) is a 2log1−ε n approximation for the opti-

mal Min-Rep solution where n is the number of states in
the MDP of MOMIgen(MR). Now recalling that n ≤ ñc

for fixed constant c. We therefore have that (γOA , γ
O
B ) is a

2log1−ε ñc = 2c
1−ε log1−ε ñ ≤ c′ · 2log1−ε ñ approximation

for a constant c′. Choosing ε sufficiently small, we have
that c′ · 2log1−ε ñ ≤ 2log1−ε′ ñ for sufficiently large ñ.

Thus, our polynomial-time algorithm is a 2log1−ε′ ñ-
approximation for Min-Rep for ε′ > 0, thereby contra-
dicting Lemma 1. We conclude that MOMIgen cannot be
2log1−ε n-approximated.

A.3. Hardness of Approximation of MOMI with
Stochastic MDP

We now show our hardness of approximation of 2log1−ε n for
MOMI, Theorem 4.3. We will notably use the stochasticity

3It is also worth noticing that since we create at most
O(ñ|ΣA| + ñ|ΣB |) options, the total number of options in O′
is at most polynomial in ñ.



Finding Options that Minimize Planning Time (Appendix)

of the input MDP to show this result.4

We begin by describing our reduction from an instance of
Min-Rep to an instance of MOMI. The intuition behind our
reduction is as follows. As in our reduction for MOMIgen
we will have vertex for each edge in our Min-Rep instance
and reward will propagate quickly to that vertex when value
iteration is run only if the options corresponding to a satis-
fying assignment for that edge are chosen. The challenge,
however, is that since our options are now only point options
(whereas in MOMIgen they were arbitrary options) it seems
that we can no longer constrain a solution to choose options
exactly corresponding to a feasible Min-Rep solution.

To solve this issue we critically use stochasticity. Whether
or not a given edge in a Min-Rep is satisfied is an or of
ands: A fixed edge is satisfied when one of its satisfying
assignments is met (an or) and a given satisfying assignment
is met when both endpoints have the right labels (an and).
We will exploit the fact that the value of a state in an MDP
is a max over actions to encode the “or” in Min-Rep and
we will use the fact that in a stochastic MDP the value of a
(state, action) pair is the sum over states to encode the “and”
in Min-Rep.

More formally, our reduction is as follows. Consider in-
stance MR of Min-Rep given by G = (A ∪B,E), ΣA, ΣB
and {πe}. Our instance of MOMI is as follows where γ = 1
and l = 2.5

• State space We have a goal state Si for each Ai ∈ A.
Again, let SatA(e) consist of all a ∈ ΣA such that a
is in some assignment in πe. For each Ai ∈ A and
a ∈ SatA(e) we will we add to our MDP states Sia
and S′ia. We symmetrically do the same for all states
in ΣB . For each e ∈ E we will also add a state Se.6

• Actions and Transitions Every Sia state has a sin-
gle action to S′ia and every Sia state has a single ac-
tion to Si. The same symmetrically holds for states
from a Bj ∈ B. Every Se for e = (Ai, Bj) has
|π(Ai,Bj)| actions associated with it, namely {α(a,b)}
where (a, b) ∈ π(Ai,Bj). Action α(a,b) has a probabil-
ity .5 of transitioning to state Sia and a probability .5
of transitioning to state Sjb.

• Reward The reward of arriving in any Si or Sj for
Ai ∈ A or Bj ∈ B is 1 and 0 for every other state.

4We may assume without loss of generality ε < .5 throughout
this section; rewards in our reduction can be re-scaled to handle
larger ε.

5It is easy to generalize these results to l ≥ 3 by replacing
edges with paths.

6It is not hard to see that this construction can be modified so
that we have only a single goal state if need be; we need only set
every Si and Sj to be the same state. We assume multiple goal
states for ease of exposition.

SA1

S′A1a1 SA1a1

S′A1a2 SA1a2

S′A1a3 SA1a3

SA2
S′A2a3 SA2a3

SB1b2 S′B1b2
SB1

SB2b1 S′B2b1

SB2b3 S′B2b3
SB2

Se1

Se2

Se3

Figure 3: Our MOMI reduction applied to the Min-Rep
problem in Figure 1. e1 = (A1, B1), e2 = (A1, B2), e3 =
(A2, B2). Stochastic options colored according to the pair in
πe to which they correspond, branching into the two states
in which they arrive with equal probability. Deterministic
action given as solid black arcs. Possible point options given
as dashed arcs.

Notice that no point options have Se as an initialization
state since any such option would have a .5 probability
of never terminating (and we assume our options always
terminate). See Figure 3 for an illustration of our reduction.
One should think of choosing a point option from Sia to
Si as corresponding to choosing label a for Ai in the input
Min-Rep instance. The same holds for label b for Bj and
choosing a point option from Sjb to Sj . Let MOMI(MR) be
the MOMI instance output by our reduction given instance
MR of Min-Rep.

We now demonstrate that our reduction allows us to show
that MOMI cannot be 2log1−ε n-approximated for any ε > 0.
Let OPTMOMI be the value of the optimal solution to
MOMI(MR) and let OPTMR be the value of the optimal
Min-Rep solution to MR. The following lemmas demon-
strates the correspondence between a MOMI and Min-Rep
solution.

Lemma 4. OPTMOMI ≤ OPTMR

Proof. Our proof translates between point options in our
reduction and assignments in the input Min-Rep instance in
the natural way. Given a solution (γA, γB) to MR, define
OγA,γB as consisting of all point options from Sia to Si
if a ∈ γA(Ai) and all points options from Sjb to Sj if
b ∈ γB(Bj). Let γ∗A and γ∗B be the optimal solutions to MR
which is of cost OPTMR.

We claim that Oγ∗A,γ∗B is a feasible solution to MOMI(MR)
of cost OPTMR, demonstrating that the optimal solution to
MOMI(MR) has cost at most OPTMR. To see this notice
that by construction the MOMI cost of Oγ∗A,γ∗B is exactly
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the Min-Rep cost of γ∗A, γ
∗
B .

We need only argue, then, that Oγ∗A,γ∗B is feasible for
MOMI(MR) and do so now. Notice that the value of every
state in MOMI is 1. Thus, we must guarantee that after 2
iterations of value iteration, every state has value 1. How-
ever, without any options every state except for Se where
e ∈ E has value 1 after 2 iterations of value iteration. Thus,
it suffices to argue that Oγ∗A,γ∗B guarantees that every Se
will have value 1 after 2 iterations of value iteration. Since
(γ∗A, γ

∗
B) is a feasible solution to MR we know that for ev-

ery e = (Ai, Bj) there exists ā ∈ γ∗A(Ai) and b̄ ∈ γ∗B(Bj)
such that (ā, b̄) ∈ πe; correspondingly there is some action
from Se with a .5 probability of resulting in state Siā and
a .5 probability of resulting in state Sjb̄ where Oγ∗A,γ∗B has
a point option from Siā to Si and a point options from Sjb̄
to Sj . That is, V1(Siā) = 1 and V1(Sjb̄) = 1. Thus, after
one iteration of value iteration the values of Siā and Sjb̄ are
both 1 and so after two iterations of value iteration the value
of Se is

V2(Se) = max
α(a,b)

.5 · (V1(Sia)) + .5 · (V1(Sjb))

≥ .5 · (V1(Siā)) + .5 · (V1(Sjb̄))

= 1.

Thus, V2(Se) = 1 for every Se and so we conclude that after
two iterations of value iteration every state has converged
on its value.

We now show that a solution to MOMI(MR) corresponds
to a solution to MR. For the remainder of this section let
γOA (Ai) := {a : O(Sja, Sj) ∈ O} and γOB (Bj) := {b :
O(Sjb, Sj) ∈ O} where for the remainder of this section
O(S, S′) stands for a point option with initiation state S and
termination state S′.

Lemma 5. For any feasible solution O to MOMI(MR) we
have (γOA , γ

O
B ) is a feasible solution to MR of cost |O|.

Proof. Notice that by construction the Min-Rep cost of
(γOA , γ

O
B ) is exactly |O|. Thus, we need only prove that

(γOA , γ
O
B ) is a feasible solution for MR.

We do so now. Consider an arbitrary edge e = (Ai, Bj) ∈
E; we wish to show that (γOA , γ

O
B ) satisfies e. Since O is a

feasible solution we know that after two iterations of value
iteration every state must converge on its value (up to an ε
factor which we can ignore by our above assumption that
ε < .5). Moreover, notice that the value of every state in
MOMI(MR) is 1. Thus, it must be the case that for every
Se we have V2(Se) = 1 for e = (Ai, Bj). It follows, then,
that there is some action α(ā,b̄) where (ā, b̄) ∈ π(Ai,Bj) such
that

1 = V2(Se) = .5 · (V1(Siā)) + .5 · (V1(Sjb̄)).

Since the value of every state is at most 1, it follows that
V1(Siā) = V1(Sjb̄) = 1. However, since V1(Siā) and
V1(Sjb̄) are both two hops from the only goal reachable
from them (Si and Sj respectively) it must be the case that
there is some point option from Siā to Si and Sjb̄ to Sj .
Thus, by definition of (γOA , γ

O
B ) we then have ā ∈ γOA and

b̄ ∈ γOB . Since (ā, b̄) ∈ π(Ai,Bj) it follows that arbitrary
edge e = (Ai, Bj) is satisfied. Thus, every edge in E is
satisfied and so (γOA , γ

O
B ) is a feasible solution for MR.

Finally, we conclude the hardness of approximation of
MOMI.

Theorem 4.3 Proof. Assume NP 6⊆ DTIME(npoly logn) and
for the sake of contradiction that there exists an ε > 0 for
which a polynomial-time algorithm AMOMI can 2log1−ε n-
approximate MOMI. We use AMOMI to 2log1−ε′ ñ approx-
imate Min-Rep for a fixed constant ε′ > 0 in polynomial-
time in ñ, thereby contradicting Lemma 1. Again, ñ is the
number of vertices in the graph of the Min-Rep instance.

We begin by noting that the relevant quantities in
MOMI(MR) are polynomially-bounded. Let ñ := |A| +
|B| be the number of vertices in our MR instance. Notice
that the number of states in the MDP, n, in our MOMI(MR)
instance is at most O(ñ+ 2|A||ΣA|+ |B||ΣB |+ |E|) ≤ ñc
for some fixed constant c by the aforementioned assumption
that ΣA and ΣB are polynomially-bounded in ñ.7

Our polynomial-time approximation algorithm to approxi-
mate instance MR of Min-Rep is as follows: Run AMOMI
on MOMI(MR) to get back option set O. Return (γOA , γ

O
B )

as defined above as our solution to MR.

We first argue that our algorithm is polynomial time in
ñ. For each vertex in MR, we create a polynomial num-
ber of states and actions. Thus, the number of states in
MOMI(MR) is polynomially-bounded in ñ and so AMOMI
runs in time polynomial in ñ. A polynomial runtime of our
algorithm immediately follows.

We now argue that our algorithm is a 2log1−ε′ ñ-
approximation for Min-Rep for some ε′ > 0. Applying
Lemma 5, the approximation of AMOMI and then Lemma 4,
we have that the Min-Rep cost of (γOA , γ

O
B ) is

costMin-Rep(γOA , γ
O
B ) = |O|

≤ 2log1−ε nOPTMOMI

≤ 2log1−ε nOPTMR

Thus, (γOA , γ
O
B ) is a 2log1−ε n approximation for the opti-

7It is worth noting, also, that since we create at most
∑
e |πe|

actions for any state, the number of total actions in our MDP is at
most polynomial in ñ.
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mal Min-Rep solution where n is the number of states in
the MDP of MOMI(MR). Now recalling that n ≤ ñc

for fixed constant c. We therefore have that (γOA , γ
O
B ) is a

2log1−ε ñc = 2c
1−ε log1−ε ñ ≤ c′ · 2log1−ε ñ approximation

for a constant c′. Choosing ε sufficiently small, we have
that c′ · 2log1−ε ñ ≤ 2log1−ε′ ñ for sufficiently large ñ.

Thus, our polynomial-time algorithm is a 2log1−ε′ ñ-
approximation for Min-Rep for ε′ > 0, thereby contra-
dicting Lemma 1. We conclude that MOMI cannot be
2log1−ε n-approximated.

A.4. A-MIMO

In this subsection we show the following theorem (we show
Theorem 5 later):
Theorem 6. A-MIMO has following properties:

1. A-MIMO runs in polynomial time.

2. If the MDP is deterministic, it has a bounded subopti-
mality of O(log∗ k).

3. The number of iterations to solve the MDP using the
acquired options is upper bounded by P (C).

Theorem 6.1. A-MIMO runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time. To compute d
we need to solve MDPs at most |S| times. Thus, it runs in
polynomial time.

(2) The approximation algorithm we deploy for solving
the asymmetric-k center which runs in polynomial time
(Archer, 2001). Because the procedure by Archer (2001)
terminates immediately after finding a set of options which
guarantees the suboptimality bounds, it tends to find a set of
options smaller than k. In order to use the rest of the options
effectively within polynomial time, we use a procedure
Expand to greedily add a few options at once until it finds
all k options. We enumerate all possible set of options of
size r = dlog ke (if |O|+log k > k then we set r = k−|O|)
and add a set of options which minimizes ` (breaking ties
randomly) to the option set O. We repeat this procedure
until |O| = k. This procedure runs in polynomial time. The
number of possible option set of size r is rCn = O(nr) =
O(k). We repeat this procedure at most dk/ log ke times,
thus the total computation time is bounded by O(k2/ log k).

(3) Immediate.

Therefore, A-MIMO runs in polynomial time.

Before we show that it is sufficient to consider a set of
options with its terminal state set to the goal state of the
MDP.

Lemma 6. There exists an optimal option set for MIMO
and MOMI with all terminal state set to the goal state.

Proof. Assume there exists an option with terminal state set
to a state other than the goal state in the optimal option set
O. By triangle inequality, swapping the terminal state to
the goal state will monotonically decrease d(s, g) for every
state. By swapping every such option we can construct an
option set O′ with Lε,V0

(O′) ≤ Lε,V0
(O).

Lemma imply that discovering the best option set among
option sets with their terminal state fixed to the goal state is
sufficient to find the best option set in general. Therefore,
our algorithms seek to discover options with termination
state fixed to the goal state.

Using the option set acquired, the number of iterations to
solve the MDP is bounded by P (C). To prove this we first
generalize the definition of the distance function to take a
state and a set of states as arguments dε : S × 2S → N.
Let dε(s, C) the number of iterations for s to converge ε-
optimal if every state s′ ∈ C has converged to ε-optimal:
dε(s, C) := min(d′ε(s), 1 + d′ε(s, C)) − 1. As adding an
option will never make the number of iterations larger,

Lemma 7.
d(s, C) ≤ min

s′∈C
d(s, s′). (1)

Using this, we show the following proposition.

Theorem 6.2. The number of iterations to solve the MDP
using the acquired options is upper bounded by P (C).

Proof. P (C) = maxs∈S minc∈C d(s, c) ≥
maxs∈S d(s, C) = Lε,V0(O) (using Equation 1). Thus
P (C) is an upper bound for Lε,V0(O).

The reason why P (C) does not always give us the exact
number of iterations is because adding two options starting
from s1, s2 may make the convergence of s0 faster than
d(s0, s1) or d(s0, s2). Example: Figure 4 is an example
of such an MDP. From s0 it may transit to s1 and s2 with
probability 0.5 each. Without any options, the value function
converges to exactly optimal value for every state with 3
steps. Adding an option either from s1 or s2 to g does not
shorten the iteration for s0 to converge. However, if we
add two options from s1 and s2 to g, s0 converges within 2
steps, thus the MDP is solved with 2 steps.

The equality of the statement 1 holds if the MDP is determin-
istic. That is, d(s, C) = mins′∈C d(s, s′) for deterministic
MDP.

Theorem 6.3. If the MDP is deterministic, it has a bounded
suboptimality of O(log∗ k).
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s0

s1 s2

s3

g

Figure 4: An example of an MDP where d(s, C) <
mins′∈C d(s, s′). Here the transition induced by the op-
timal policy is stochastic, thus from s0 one may go to s1

and s2 by probability 0.5 each. Either adding an option
from s1 or s2 to g does not make the convergence faster, but
adding both makes it faster.

Proof. First we show P (C∗) = Lε,V0
(O∗) for de-

terministic MDP. From d(s, C) = mins′∈C d(s, s′),
P (C∗) = maxs∈S minc∈C∗ d(s, c) = maxs∈S d(s, C∗) =
Lε,V0

(O∗).

The asymmetric k-center solver guarantees that the out-
put C satisfies P (C) ≤ c(log∗ k +O(1))P (C∗) where n is
the number of nodes (Archer, 2001). Let MIMO(M, ε, k)
be an instance of MIMO. We convert this instance to an
instance of asymmetric k-center AsymKCenter(U , d, k),
where |U| = |S|. By solving the asymmetric k-center
with the approximation algorithm, we get a solution C
which satisfies P (C) ≤ c(log∗ k +O(1))P (C∗). Thus, the
output of the algorithm O satisfies Lε,V0

(O) = P (C) ≤
c(log∗ k + O(1))P (C∗) = c(log∗ k + O(1))Lε,V0

(O∗).
Thus, Lε,V0

(O) ≤ c(log∗ k + O(1))Lε,V0
(O∗) is de-

rived.

Proposition 1 (Greedy Strategy). Let an option set O be
a set of point option constructed by greedily adding one
point option which minimizes the number of iterations. An
improvement Lε,V0

(∅)− Lε,V0
(O) by the greedy algorithm

can be arbitrary small (i.e. 0) compared to the optimal
option set.

Proof. We show by the example in a shortest-path problem
in Figure 5. The MDP can be solved within 4 iterations
without options: Lε,V0

(∅) = 4. With an optimal option
set of size k = 2 the MDP can be solved within 2 itera-
tions: Lε,V0(O∗) = 2 (an initiation state of each option
in optimal option set is denoted by ∗ in the Figure). On
the other hand, a greedy strategy may not improve L at
all. No single point option does not improve L. Let’s say
we picked a point option from s1 to g. Then, there is no
single point option we can add to that option to improve
L in the second iteration. Therefore, the greedy procedure
returns O which has Lε,V0(∅)− Lε,V0(O) = 0. Therefore,

(Lε,V0
(∅) − Lε,V0

(O))/(Lε,V0
(∅) − Lε,V0

(O∗)) can be ar-
bitrary small non-negative value (i.e. 0).

∗

s1

∗ g

Figure 5: Example of MIMO where the improvement of
a greedy strategy can be arbitrary small compared to the
optimal option set.

A.5. A-MOMI

In this subsection we show the following theorem:

Theorem 5. A-MOMI has the following properties:

1. A-MOMI runs in polynomial time.

2. It guarantees that the MDP is solved within ` iterations
using the option set acquired by A-MOMI O.

3. If the MDP is deterministic, the option set is at most
O(log n) times larger than the smallest option set pos-
sible to solve the MDP within ` iterations.

Theorem 5.1. A-MOMI runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time (Littman et al.,
1995). To compute d we need to solve MDPs at most |S|
times. Thus, it runs in polynomial time.

(4) We solve the set cover using a polynomial time approxi-
mation algorithm (Chvatal, 1979) which runs inO(n3), thus
run in polynomial time.

(2), (3), and (5) Immediate.

Theorem 5.2. A-MOMI guarantees that the MDP is
solved within ` iterations using the option set O.

Proof. A state s ∈ X+
g reaches optimal within ` steps by

definition. For every state s ∈ S \X+
g , the set cover guar-

antees that we have Xs′ ∈ C such that d(s, s′) < `. As
we generate an option from s′ to g, s′ reaches to optimal
value with 1 step. Thus, s reaches to ε-optimal value within
d(s, s′) + 1 ≤ `. Therefore, every state reaches ε-optimal
value within ` steps.

Theorem 5.3. If the MDP is deterministic, the option set is
at most O(log n) times larger than the smallest option set
possible to solve the MDP within ` iterations.
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Proof. Using a suboptimal algorithm by Chvatal (1979) we
get C such that |C| ≤ O(log n)|C∗|. Thus, |O| = |C| ≤
O(log n)|C∗| = O(log n)|O∗|.

Appendix: Experiments
We show the figures for experiments. Figure 6 shows the
options found by solving MIMO optimally/suboptimally in
four room domain. Figure 7 shows the options in 9x9 grid
domain.
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Figure 6: Comparison of the optimal point options vs. options generated by the approximation algorithm A-MIMO. We
observed that the approximation algorithm is similar to that of optimal options. Note that optimal option set is not unique:
there can be multiple optimal option set, and we are visualize one of them returned by the solver.
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Figure 7: Comparison of the optimal point options for planning vs. bottleneck options proposed for reinforcement learning
in the four room domain. Initiating conditions are shown in blue, the goal in green.


