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Abstract

One of the gnarliest challenges in reinforcement
learning (RL) is exploration that scales to vast do-
mains, where novelty-, or coverage-seeking be-
haviour falls short. Goal-directed, purposeful be-
haviours are able to overcome this, but rely on a
good goal space. The core challenge in goal dis-
covery is finding the right balance between gen-
erality (not hand-crafted) and tractability (useful,
not too many). Our approach explicitly seeks the
middle ground, enabling the human designer to
specify a vast but meaningful proto-goal space,
and an autonomous discovery process to refine
this to a narrower space of controllable, reachable,
novel, and relevant goals. The effectiveness of
goal-conditioned exploration with the latter is then
demonstrated in three challenging environments.

1 Introduction
Exploration is widely recognised as a core challenge in RL. It
is most acutely felt when scaling to vast domains, where clas-
sical novelty-seeking methods are insufficient [Taiga et al.,
2020] because there are simply too many things to observe,
do, and learn about; and the agent’s lifetime is far too short to
approach exhaustive coverage [Sutton et al., 2022a].

Abstraction can overcome this issue [Gershman, 2017;
Konidaris, 2019]: by learning about goal-directed, purposeful
behaviours (and how to combine them), the RL agent can ig-
nore irrelevant details, and effectively traverse the state space.
Goal-conditioned RL is one natural formalism of abstraction,
and especially appealing when the agent can learn to gener-
alise across goals [Schaul et al., 2015].

The effectiveness of goal-conditioned agents directly de-
pends on the size and quality of the goal space (Section 3). If
it is too large, such as treating all encountered states as goals
[Andrychowicz et al., 2017], most of the abstraction benefits
vanish. On the other extreme, hand-crafting a small num-
ber of useful goals [Barreto et al., 2019] limits the generality
of the method. The answer to this conundrum is to adap-
tively expand or refine the goal space based on experience,
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Figure 1: Proto-goal RL: a goal-conditioned RL agent’s policy π
acts with goals g obtained from its Proto-goal Evaluator (PGE, blue).
The PGE refines a cheaply defined proto-goal space (B, violet) into
a smaller set of plausible goals G, using observed transition data
(s, a, r, s′) that includes information about encountered proto-goals
(b). It further endows G with a distribution PG , based on goal desir-
ability, from which g is then sampled.

also known as the discovery problem, allowing for a more
autonomous agent that can be both general and scalable.

Taking a step towards this ultimate aim, we propose a
framework with two elements. First, a proto-goal space (Sec-
tion 3), which can be cheaply designed to be meaningful for
the domain at hand, e.g., by pointing out the most salient part
of an observation using domain knowledge [Chentanez et al.,
2004]. What makes defining a proto-goal space much easier
than defining a goal space is its leniency: it can remain (com-
binatorially) large and unrefined, with many uninteresting or
useless proto-goals. Second, an adaptive function mapping
this space to a compact set of useful goals, called a Proto-goal
Evaluator (PGE, Section 4). The PGE may employ multiple
criteria of usefulness, such as controllability, novelty, reacha-
bility, learning progress, or reward-relevance. Finally we ad-
dress pragmatic concerns on how to integrate these elements
into a large-scale goal-conditioned RL agent (Section 5), and
show it can produce a qualitative leap in performance in oth-
erwise intractable exploration domains (Section 6).



2 Background and Related Work
We consider problems modeled as Markov Decision Pro-
cesses (MDPs)M = ( S; A ; R; T ;  ), whereS is the state
space,A is the action space,R is the reward function,T is
the transition function and is the discount factor. The aim
of the agent is to learn a policy that maximises the sum of
expected rewards[Sutton and Barto, 2018].

Exploration in RL. Many RL systems use dithering strate-
gies for exploration (e.g.,� -greedy, softmax, action-noise
[Lillicrap et al., 2016] and parameter noise[Fortunatoet
al., 2018; Plappertet al., 2018]). Among those that ad-
dressdeepexploration, the majority of research[Taigaet al.,
2020] has focused on count-based exploration[Strehl and
Littman, 2008; Bellemareet al., 2016], minimizing model
prediction error[Pathaket al., 2017; Burdaet al., 2019a;
Burdaet al., 2019b], or picking actions to reduce uncertainty
[Osbandet al., 2016; Osbandet al., 2018] over the state
space. These strategies try to eventually learn aboutall states
[Ecoffet et al., 2021], which might not be a scalable strat-
egy when the world is a lot bigger than the agent[Suttonet
al., 2022a]. We build on the relatively under-studied family
of exploration methods that maximize the agent'slearning
progress[Schmidhuber, 1991; Kaplan and Oudeyer, 2004;
Colaset al., 2022].

General Value Functions. Rather than being limited to
predicting and maximizing a single reward (as in vanilla RL),
General Value Functions (GVFs)[Suttonet al., 2011] pre-
dict (and sometimes control[Jaderberget al., 2017]) “cumu-
lants” that can be constructed out of the agent's sensorimotor
stream. The discounted sum of these cumulants are GVFs and
can serve as the basis of representing rich knowledge about
the world[Schaul and Ring, 2013; Veeriahet al., 2019].

Goal-conditioned RL. When the space of cumulants is
limited to goals, GVFs reduce to goal-conditioned value func-
tions that are often represented using Universal Value Func-
tion Approximators (UVFAs)[Schaulet al., 2015]. Hind-
sight Experience Replay (HER) is a popular way of learn-
ing UVFAs in a sample-ef�cient way[Andrychowiczet al.,
2017]. The two most common approaches is to assume
that a set of goals is given, or to treats all observations as
potential goals[Liu et al., 2022] and try to learn a con-
troller that can reachany state. In large environments,
the latter methods often over-explore[Pong et al., 2019;
Pitis et al., 2020] or suffer from interference between goals
[Schaulet al., 2019].

Discovery of goals and options. Rather than assuming that
useful goals are pre-speci�ed by a designer, general-purpose
agents mustdiscovertheir own goals or options[Suttonet
al., 1999]. Several heuristics have been proposed for dis-
covery (see Abel [2020] Ch 2.3 for a survey): reward rel-
evance[Baconet al., 2017; Veeriahet al., 2021], compos-
ability [Konidaris and Barto, 2009; Bagaria and Konidaris,
2020], diversity [Eysenbachet al., 2018; Camposet al.,
2020], empowerment[Mohamed and Rezende, 2015], cover-
age[Bagariaet al., 2021a; Machadoet al., 2017], etc. These
heuristics measuredesirability, but they must be paired with
plausibilitymetrics like controllability and reachability to dis-

cover meaningful goals in large goal spaces. The IMGEP
framework[Forestieret al., 2022] also does skill-acquisition
based on competence progress, but they assume more struc-
ture in the goal space (e.g., Euclidean measure, objects),
and use evolution strategies to represent policies instead of
RL. STOMP[Suttonet al., 2022b] learns feature attainment
options, which are similar to proto-goal achieving policies;
but unlike STOMP, we maintain different representations for
states and goals. Furthermore, they do not provide a way to
prune large feature spaces, nor do they construct new fea-
tures/goals out of existing ones[Ring, 1994].

3 Goals and Proto-goals
A goal is anything that an agent can pursue and attain through
its behaviour. Goals are well formalised with a scalar cu-
mulantcg : S � A � S ! R and a continuation function
 g : S � A � S ! [0; 1], as proposed in the general value
function (GVF) framework[Suttonet al., 2011]. Here, we
consider the subclass ofattainmentgoalsg, or “endgoals”,
which imply a binary reward that is paired with termination.
In other words a transition has either(cg = 0 ;  g > 0) or
(cg = 1 ;  g = 0) , i.e., only terminal transitions are reward-
ing. The corresponding goal-optimal value functions satisfy:

Q�
g(s; a) = Es0

h
cg(s; a; s0) +  g(s; a; s0) max

a0
Q�

g(s0; a0)
i

;

with corresponding greedy policy� �
g := arg maxa Q�

g(s; a).
Proto-goalsare sources of goals. Since attainment goals

can easily be derived from any binary function, we formally
de�ne a proto-goal to be a binary function of a transition
bi : S � A � S ! f 0; 1g. We assume that, for a given
domain, a setB of such proto-goals can be queried. Proto-
goals differ from goals in two ways. First, to fully specify a
goal, a proto-goal must be paired with a time-scale constant
 2 [0; 1] (a discount), which de�nes the horizon over which
g should be achieved. The pair(bi ;  ) then de�ne the goal's
cumulantcg(s; a; s0) := bi (s; a; s0) and continuation function
 g(s; a; s0) :=  (1 � bi (s; a; s0)) . Second, less formally, the
space of proto-goalsB is vastly larger than any reasonable set
goalsG that could be useful to an RL agent. Hence the need
for the Proto-goal evaluator (Section 4) to convert one space
into the other.

3.1 Example Proto-goal Spaces
A proto-goal space implicitly de�nes a large, discrete space
of goals. Its design uses some domain knowledge, but, cru-
cially, no direct knowledge of how to reach the solution. The
most common form is to use designer knowledge about which
aspects of an observation are most salient. For example,
many games have on-screen counters that track task-relevant
quantities (health, resources, etc.). Other examples include
treating inventory as privileged in MINECRAFT, sound ef-
fects in console video games, text feedback in domains like
NETHACK (see Section 6.3 and Figure 2 in the appendix),
or object attributes in robotics. In all of these cases, it is
straightforward to build a set of binary functions—for exam-
ple, in NETHACK, a naive proto-goal space includes one bi-
nary function for each possible word that could be present in
the text feedback.



3.2 Representation
Each observation from the environment is accompanied by a
binary proto-goal vectorb t 2 f 0; 1gjB j , with entries of1 in-
dicating which proto-goals are achieved in the current state
(Figure 1). Initially, the agent decomposesb t into 1-hot vec-
tors, focusing on goals that depend on a single dimension. As
the agent begins to master1-hot goals, it combines them us-
ing the procedure described in Section 3.3, to expand the goal
space and construct multi-hot goals.

When querying the goal-conditioned policy� (ajs; g), we
use the same1-hot or multi-hot binary vector representation
for the goalg.

3.3 Goal Recombinations
A neat side-effect of a binary proto-goal spaceB is that it
can straightforwardly be extended to a combinatorially larger
goal space with logical operations. For example, using the
logical ANDoperation, we can create goals that are only at-
tained once multiple separate bits ofb are activated simulta-
neously.1 One advantage of this is that it places less burden
on the design of the proto-goal space, becauseB only needs
to contain useful goal components, not the useful goals them-
selves. This is also a form of continual learning[Ring, 1994],
with more complex or harder-to-reach goals continually be-
ing constructed out of existing ones. The guiding principle to
keep this constructivist process from drowning in too many
combinations is to operate in a gradual fashion: we only com-
bine goals that in addition to being plausible and desirable
(Section 4), have also beenmastered(Section 5.3).

4 Proto-goal Evaluator
The Proto-goal Evaluator (PGE) converts the large set of
proto-goals to a smaller, more interesting set of goalsG. It
does this in two stages: a binary �ltering stage thatprunes
goals by plausibility, and a weighting stage that creates adis-
tribution over the remaining goalsPG : G ! [0; 1], based on
desirability.

4.1 Plausibility Pruning
Implausible proto-goals are those that most likely cannot be
achieved (eithereveror given the current data distribution).
Having them in the goal space is unlikely to increase the
agent's competence; to the contrary, they can distract and hog
capacity. We use the following three criteria to eliminate im-
plausible goals:

Observed: we prune any proto-goalbi that has never been
observed in the agent's experience, so far.

Reachable: we prune proto-goals that are deemed unreach-
able (e.g., pigs cannot �y, a person cannot be in London
and Paris at the same time).

Controllable: similarly, we prune goals that are outside of
the agent's control (e.g., sunny weather is reachable, but
not controllable).

1Note that we combine goals, but not their corresponding value-
functions[Barretoet al., 2019; Tasseet al., 2022]; we let the UVFA
Q� (s; a; g) handle generalization to newly created goals and leave
combination in value-function space to future work.

For the �rst criterion, we simply track global countsN (g)
for how often we have observed the proto-goalbi that corre-
sponds tog being reached. Estimating reachability and con-
trollability is a bit more involved. We do this by comput-
ing a pair ofproxyvalue functions: each goalg is associated
with two types of reward functions (or cumulants)—one with
“seek” semantics and the other with “avoid” semantics:

Rseek(s; g) = 1 if g is achieved ins else0
Ravoid(s; g) = � 1 if g is achieved ins else0:

These seek/avoid cumulants in turn induce seek/avoid poli-
cies, and value functionsVseek; Vavoid that correspond to these
policies. Estimates of these values are learned from transi-
tions stored in the replay bufferB.

A proto-goalg is globally reachableif it can be achieved
from somestate:

max
s�B

Vseek(s; g) > � 1; (1)

where� 1 > 0 is a threshold representing the (discounted)
probability below which a goal is deemed to be unreachable.

A proto-goalg is judged asuncontrollable if a policy seek-
ing it is equally likely to encounter it as a policy avoiding it:

Es

h
Vseek(s; g)

i
� Es

h
� Vavoid(s; g)

i
< � 2; (2)

up to threshold� 2. The set of plausible goalsGis the subset of
those proto-goals induced byB that satisfy both Eq. 1 and 2.

Scalably Estimating Many Seek/Avoid Values with LSPI
As a �rst line of defense in the process of trimming a
vast proto-goal space, the reachability and controllability es-
timation (and hence the computation of the proxy values
Vseek; Vavoid) must be very cheap per goal considered. On
the other hand, their accuracy requirement is low: they are
not used for control, and it suf�ces to eliminatesomefrac-
tion of implausible goals. Consequently, we have adopted
four radical simpli�cations that reduce the compute require-
ments of estimating proxy values, to far less than is used in
the main deep RL agent training. First, we reduce the value
estimation to alinear function approximation problem, by in-
voking two iterations of least-squares policy iteration (LSPI,
[Lagoudakis and Parr, 2003; Ghavamzadehet al., 2010]), one
for the “seek” and one for the “avoid” policy. As input fea-
tures for LSPI we use random projections of the observations
into Rj � j , which has the added bene�t of making this ap-
proach scalable independently of the observation size. Third,
the estimation is done on a batch of transitions that are only a
small subset of the data available in the agent's replay buffer
B [Lin, 1993].2 Finally, we accept some latency by recom-
puting proxy values asynchronously, and only a few times
(� 10) per minute. Section 6.2 shows that such a light-weight
approach is indeed effective at identifying controllable goals.

4.2 Desirability Weighting
The second task of the PGE is to enable sampling the most
desirablegoals from the reduced set of plausible goalsGpro-
duced via pruning. A lot has been discussed in the litera-
ture about what makes goals desirable[Gregoret al., 2016;

2If the batch does not contain any transition that achieves a proto-
goal, we are optimistic under uncertainty and classify it as plausible.



Baconet al., 2017; Konidaris and Barto, 2009; Eysenbachet
al., 2018; Bellemareet al., 2016; Machadoet al., 2017]; for
simplicity, we stick to the two most commonly used metrics:
novelty and reward-relevance. We use a simple count-based
novelty metric[Auer, 2002]:

novel(g) :=
1

p
N (g)

; (3)

whereN (g) is the number of times goalg has been achieved
across the agent's lifetime. The desirability score (or “util-
ity”) of a goal g is then simplyu(g) := R(g) + novel( g),
whereR(g) is the average extrinsic reward achieved on tran-
sitions whereg was achieved. Desirability scores for each
goal are turned into a proportional sampling probability:

PG(g) :=
u(g)

P
g02G u(g0)

: (4)

In practice, when queried, the PGE does not output the full
distribution, but a (small) discrete set ofK plausible and de-
sirable goals, by sampling fromPG with replacement (K =
100in all our experiments).

5 Integrated RL Agent
This section details how to integrate proto-goal spaces and
PGE components into a goal-conditioned RL agent. As is
typical in the goal-conditioned RL literature, we use a Uni-
versal Value Function Approximator (UVFA) neural network
to parameterize the goal-conditioned action-value function
Q� (s; a; g), which is eventually used to pick primitive ac-
tions. At the high level, we note that the PGE is used at three
separateentry points, namely in determining how to act, what
to learn about (in hindsight), and which goals to recombine.
What is shared across all three use-cases is the plausibility �l-
tering of the goal space (implausible goals are never useful).
However, the three use-cases have subtly different needs, and
hence differ in the goal sampling probabilities.

5.1 Which Goal to Pursue in the Current State
For effective exploration, an agent should pursue goals that
maximize its expected learning progress, i.e., it should pick a
goal that will increase its competence the most[Lopeset al.,
2012]. As proxies for learning progress, we adopt two com-
monly used heuristics, namely novelty[Auer, 2002] (Eq. 3)
and reachability[Konidaris and Barto, 2009; Bagariaet al.,
2021b]. The issue with exclusively pursuing novelty is that
this could lead the agent to prioritise the most dif�cult goals,
which it cannot reach with its current policy yet, and hence
induce behaviour that is unlikely to increase its competence.
Thus, we combine novelty with alocal reachability metric,
for which we can reuse the goal-conditioned valueV� (st ; g),
which can be interpreted as the (discounted) probability that
the agent can achieve goalg from its current statest , under
the current policy� � . To avoid computing reachability for
each goal inGt (which can be computationally expensive),
we instead sampleM goals based on novelty and pick the
closest:

gt = argmax
g2f g1 ;:::;g M g� novel

h
V� (st ; g)

i
:

Strati�ed Sampling over Heterogeneous Timescales
The attainment count for a goalN (g) can be low because
it is rarely reachable,or because it naturally takes a long
time to reach. To account for this heterogeneity in goal
space, we �rst estimate each goal's natural timescale and
then usestrati�ed sampling to preserve diversity and en-
courage apples-to-apples desirability comparisons. To esti-
mate the characteristic timescale (or horizon)h for each goal,
we average the “seek” value-function over the state-space:

h(g) := Es�B

h
Vseek(s; g)

i
. Once each goal has a timescale

estimate, we divide the goals in the goal space into different
buckets (quintiles). Then, we uniformly sample a bucket of
goals; since the goals in the bucket have similar timescales
(� h), we use novelty and reachability to sample a speci�c
goal from that bucket to pursue (see Algorithm 2 in the ap-
pendix for details).

Learning about Extrinsic Reward
The evaluator always picks actions to maximize the extrinsic
task reward. If the actors never did during training, then the
action-value function would have unreliable estimates of the
task return (called thetandem effect[Ostrovskiet al., 2021]).
So, periodically, the actors pick the task reward function and
select actions based on that. Since the task reward function
may not correspond to a speci�c goal, we represent the task
reward function as a special conditioning—a0 tensor serves
as the goal input toQ� (s; a; g = 0).

5.2 Which Goals to Learn about in Hindsight
Once the agent picks a goalg to pursue, it samples a trajectory
� by rolling out the goal-conditioned policy� � (:; g). Given
all the goals achieved in� , G�

A , the agent needs to decide
which goalsG � G �

A to learn about in hindsight.
We always learn about the on-policy goalg, and the task re-

ward (which corresponds to the conditioningg = 0). Among,
the set of achieved goalsG � G �

A , the agent samples a
�xed set of M her goals and learns about them using hind-
sight experience replay[Andrychowiczet al., 2017] (we use
M her = 15). Similar to the previous section, we want to
sample thoseM her goals that maximize expected learning
progress. We found that using a count-based novelty score
as a proxy for learning progress (sample proportionally to
novel(g)) worked well for this purpose, and outperformed the
strategies of (a) learning about all the achieved goals and (b)
picking theM her goals uniformly at random fromG�

A .

5.3 Mastery-based Goal Recombination
We use one simple form of goal recombination in the agent:
for any pair of goals that it hasmastered, it adds their combi-
nation (logicalAND) as proto-goal candidate to be evaluated
by the PGE. A goal is considered mastered when its success
rate is above a pre-speci�ed threshold� (= 0 :6 in all our ex-
periments). For example, if the agent has mastered the goal of
getting the key, and another goal of reaching the door, it will
combine them to create a new proto-goal which is attained
when the agent has reached the door with the key. Imple-
mentation details about creating and managing combination
proto-goals can be found in the appendix (Algorithm 5).
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