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Abstract

One of the gnarliest challenges in reinforcement
learning (RL) is exploration that scales to vast do-
mains, where novelty-, or coverage-seeking be-
haviour falls short. Goal-directed, purposeful be-
haviours are able to overcome this, but rely on a
good goal space. The core challenge in goal dis-
covery is finding the right balance between gen-
erality (not hand-crafted) and tractability (useful,
not too many). Our approach explicitly seeks the
middle ground, enabling the human designer to
specify a vast but meaningful proto-goal space,
and an autonomous discovery process to refine
this to a narrower space of controllable, reachable,
novel, and relevant goals. The effectiveness of
goal-conditioned exploration with the latter is then
demonstrated in three challenging environments.

1 Introduction

Exploration is widely recognised as a core challenge in RL. It
is most acutely felt when scaling to vast domains, where clas-
sical novelty-seeking methods are insufficient [Taiga er al.,
2020] because there are simply too many things to observe,
do, and learn about; and the agent’s lifetime is far too short to
approach exhaustive coverage [Sutton et al., 2022a].

Abstraction can overcome this issue [Gershman, 2017;
Konidaris, 2019]: by learning about goal-directed, purposeful
behaviours (and how to combine them), the RL agent can ig-
nore irrelevant details, and effectively traverse the state space.
Goal-conditioned RL is one natural formalism of abstraction,
and especially appealing when the agent can learn to gener-
alise across goals [Schaul et al., 2015].

The effectiveness of goal-conditioned agents directly de-
pends on the size and quality of the goal space (Section 3). If
it is too large, such as treating all encountered states as goals
[Andrychowicz et al., 2017], most of the abstraction benefits
vanish. On the other extreme, hand-crafting a small num-
ber of useful goals [Barreto ef al., 2019] limits the generality
of the method. The answer to this conundrum is to adap-
tively expand or refine the goal space based on experience,
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Figure 1: Proto-goal RL: a goal-conditioned RL agent’s policy m
acts with goals g obtained from its Proto-goal Evaluator (PGE, blue).
The PGE refines a cheaply defined proto-goal space (B, violet) into
a smaller set of plausible goals G, using observed transition data
(s,a,r,s") that includes information about encountered proto-goals
(b). It further endows G with a distribution Pg, based on goal desir-
ability, from which g is then sampled.

also known as the discovery problem, allowing for a more
autonomous agent that can be both general and scalable.

Taking a step towards this ultimate aim, we propose a
framework with two elements. First, a proto-goal space (Sec-
tion 3), which can be cheaply designed to be meaningful for
the domain at hand, e.g., by pointing out the most salient part
of an observation using domain knowledge [Chentanez er al.,
2004]. What makes defining a proto-goal space much easier
than defining a goal space is its leniency: it can remain (com-
binatorially) large and unrefined, with many uninteresting or
useless proto-goals. Second, an adaptive function mapping
this space to a compact set of useful goals, called a Proto-goal
Evaluator (PGE, Section 4). The PGE may employ multiple
criteria of usefulness, such as controllability, novelty, reacha-
bility, learning progress, or reward-relevance. Finally we ad-
dress pragmatic concerns on how to integrate these elements
into a large-scale goal-conditioned RL agent (Section 5), and
show it can produce a qualitative leap in performance in oth-
erwise intractable exploration domains (Section 6).



2 Background and Related Work cover meaningful goals in large goal spaces. The IMGEP

We consider problems modeled as Markov Decision Pro]‘ramework[Forestieret al, 2024 also does skill-acquisition
cesses (MDPSM = (S:A:R:T: ), whereS is the state based on competence progress, but they assume more struc-
spaceA is the action sﬁac'eR ,is ihe,reward functionT is tre in the goe}I space (Q.g., Euclidean measure, objects),
the transition function and is the discount factor. The aim 2nd US€ évolution strategies to represent policies instead of
of the agent is to learn a policy that maximises the sum oRL: STOMP([Suttonet al,, 20220 learns feature attainment

options, which are similar to proto-goal achieving policies;
expected rewardsSutton and Barto, 2018 but unlike STOMP, we maintain different representations for

Explorationin RL.  Many RL systems use dithering strate- states and goals. Furthermore, they do not provide a way to
gies for exploration (e.g.,-greedy, softmax, action-noise prune large feature spaces, nor do they construct new fea-
[Lillicrap et al, 2014 and parameter noisEortunatoet  tures/goals out of existing onéRing, 1994.

al., 2018; Plapperet al, 201g). Among those that ad-

dressdeepexploration, the majority of resear¢faigaetal, 3 Goals and Proto-goals

2020 has focused on count-based explorat[@trehl and A I thing that i d attain th h
Littman, 2008; Bellemaret al, 2016, minimizing model goalis anything that an ageént can pursue and attain throug

prediction error{Pathaket al, 2017; Burdaet al, 2019a; its behaviour. Goals are well formalised with a scalar cu-
Burdaet al,, 20194, or picking actions to reduce uncertainty mul.agtc?o\: SS | A SO'!l R and a %0.”“;‘#3“0” funlct|o|n
[Osbandet al, 2016; Osbancet al, 2018 over the state 9 -2 © o [0: 1], &‘g pt{OpOfel ”501?] g(?_r:era value
space. These strategies try to eventually learn adbstates unction ( ) framewor >uttonet al, . ere, w:a
[Ecoffet et al, 2021, which might not be a scalable strat- consider the subclass aftainmentgoalsg, or “endgoals”,
egy when the world is a lot bigger than the agEButtonet which imply a binary rgvyard that is paired with termination.
al., 20223. We build on the relatively under-studied family In Ot_hir. Wor_ds(,)a t.ransnlcl)nthas.eltlh(;.n;_; _.t.o' g > 0)or d
of exploration methods that maximize the agem#arning .(Cg =1, ¢4=0), .., only terminal fransiions are rewar .
progress[Schmidhuber, 1991; Kaplan and Oudeyer, 2004.N9- The corresgondmg goal-optimal value functions satisfy:
Colaset al, 2024.

General Value Functions. Rather than being limited to
predicting and maximizing a single reward (as in vanilla RL), with corresponding greedy policy, := arg maxa Qq(s; a).
General Value Functions (GVF$$Buttonet al, 2011 pre- Proto-goalsare sources of goals. Since attainment goals
dict (and sometimes contrfladerbergt al, 2017) “cumu-  can easily be derived from any binary function, we formally
lants” that can be constructed out of the agent's sensorimotdie ne a proto-goal to be a binary function of a transition
stream. The discounted sum of these cumulantsare GVFsatd : S A S ! f  0;1g. We assume that, for a given
can serve as the basis of representing rich knowledge abodpmain, a seB of such proto-goals can be queried. Proto-
the world[Schaul and Ring, 2013; Veeriatal., 2019. goals differ from goals in two ways. First, to fully specify a
goal, a proto-goal must be paired with a time-scale constant
2 [0; 1] (a discount), which de nes the horizon over which

|
Qqy(si8) = Eso Go(sia)+ g(s;a;s)maxQq(s’a)

Goal-conditioned RL. When the space of cumulants is

Itimite?htotgoals,ﬁGVFs reducg[tcagoa}l-coSd.itionetlj\\;alluefll:mc- should be achieved. The pdly; ) then de ne the goal's
t!onsA atare oten rﬁ)\;?:ien[g hUSIIngt Imvzecr)i?] aH_ued UNCumulantcy(s; a; s := b(s;a;s% and continuation function
ion Approximators ( skSchaulet al, - Hind- gsia;s) = (1 hb(s;a;s)). Second, less formally, the

sight Experience Replay (HER) is a popular way of Iearn—S :
. : : ! pace of proto-goaB is vastly larger than any reasonable set
ing UVFASs in a sample-ef cient wayAndrychowiczet al, oalsG that could be useful to an RL agent. Hence the need

2017. The two most common approaches 1is o assumeo; the Proto-goal evaluator (Section 4) to convert one space
that a set of goals is given, or to treats all observations a8t the other

potential goals[Liu et al, 2024 and try to learn a con-
troller that can reactany state. In large environments, 3.1 Example Proto-goal Spaces

the latter methods often over-explofPong et al., 2019; A ) Qo ;

iy . proto-goal space implicitly de nes a large, discrete space
I[Dsliigtjlzlt.'alzozzglgr suffer from interference between goals of goals. Its design uses some domain knowledge, but, cru-

? ' cially, no direct knowledge of how to reach the solution. The

Discovery of goals and options. Rather than assuming that most common formis to use designer knowledge about which
useful goals are pre-speci ed by a designer, general-purposaspects of an observation are most salient. For example,
agents mustliscovertheir own goals or optionfSuttonet  many games have on-screen counters that track task-relevant
al., 1999. Several heuristics have been proposed for disquantities (health, resources, etc.). Other examples include
covery (see Abel [2020] Ch 2.3 for a survey): reward rel-treating inventory as privileged in MECRAFT, sound ef-
evance[Baconet al, 2017; Veeriahet al, 2021, compos- fects in console video games, text feedback in domains like
ability [Konidaris and Barto, 2009; Bagaria and Konidaris, NETHACK (see Section 6.3 and Figure 2 in the appendix),
2024, diversity [Eysenbachet al, 2018; Camposet al,  or object attributes in robotics. In all of these cases, it is
2024, empowermentMohamed and Rezende, 2Q16over-  straightforward to build a set of binary functions—for exam-
age[Bagariaet al, 2021a; Machadet al., 2017, etc. These ple, in NETHACK, a naive proto-goal space includes one bi-
heuristics measurgesirability, but they must be paired with nary function for each possible word that could be present in
plausibilitymetrics like controllability and reachability to dis- the text feedback.



3.2 Representation For the rst criterion, we simply track global counié(g)

Each observation from the environment is accompanied by §r how often we have observed the proto-ghathat corre-
binary proto-goal vectdb, 2 f 0; g8}, with entries ofLin-  SPONdS tag being reached. Estimating reachability and con-
dicating which proto-goals are achieved in the current statd/©llability is a bit more involved. We do this by comput-
(Figure 1). Initially, the agent decompodasinto 1-hot vec- g @ pair ofproxyvalue functions: each goglis associated
tors, focusing on goals that depend on a single dimension. AYith two types of reward functions (or cumulants)—one with

the agent begins to mastihot goals, it combines them us- seek” semantics and the other with “avoid” semantics:
ing the procedure described in Section 3.3, to expand the goal Rsees; 9) = 1 if gis achieved irs else0

space and construct multi-hot goals. Ravid(S;g) = 1lif gis achieved irs else0:

us\évrhinsilﬁg;]r:)% ;[)r;emguolg-l-h?cnk;jigg)rne\?ecrz)t%“rcryeaj?ég)eln\tl\:/aetion These seek/avoid cumulants in turn induce seek/avoid poli-
for the goalg y P cies, and value functiongseek Vavoig that correspond to these
9 ' policies. Estimates of these values are learned from transi-

3.3 Goal Recombinations tions stored in the replay buff&.

A neat side-effect of a binary proto-goal spadis that it A proto-goalg is globally reachableif it can be achieved

: ; : from somestate:
can straightforwardly be extended to a combinatorially larger

goal space with logical operations. For example, using the fgngsee»(S:g) o )
logical ANDoperation, we can create goals that are only aty,nere . > 0Ois a threshold representing the (discounted)

tained once multiple separate bitstoéire activated simulta- . 5papility below which a goal is deemed to be unreachable.
neously* One advantage of this is that it places less burderP A proto-goalg is judged asincontrollable if a policy seek-

on the design of the proto-goal space, becauismly needs g it is equally likely to encounter it as a policy avoiding it:
to l(:ontajrnhysgfull goalfcomp(];)nent_s, noltlthe U[EM g](_);slgszl them- h i h i

selves. This is also a form of continual learn{Ring, , ) e i

with more complex or harder-to-reach goals continually be- Es Vscels:0)  Bs  Vaw(S:0) < 2 2)
ing constructed out of existing ones. The guiding principle toup to threshold,. The set of plausible goasis the subset of
keep this constructivist process from drowning in too manythose proto-goals induced I8 that satisfy both Eq. 1 and 2.
combinations is to operate in a gradual fashion: we only com
bine goals that in addition to being plausible and desirabl

(Section 4), have also beemasteredSection 5.3).

Scalably Estimating Many Seek/Avoid Values with LSPI

s a rst line of defense in the process of trimming a
vast proto-goal space, the reachability and controllability es-
timation (and hence the computation of the proxy values
4  Proto-goal Evaluator Vseek Vavoid) Must be very cheap per goal considered. On
The Proto-goal Evaluator (PGE) converts the large set ofhe other hand, their accuracy requirement is low: they are
proto-goals to a smaller, more interesting set of g@ldt  not used for control, and it suf ces to eliminas®mefrac-
does this in two stages: a binary ltering stage tpatines  tion of implausible goals. Consequently, we have adopted
goals by plausibility, and a weighting stage that creatgisa  four radical simpli cations that reduce the compute require-
tribution over the remaining goaRs : G ! [0; 1], based on ments of estimating proxy values, to far less than is used in

desirability. the main deep RL agent training. First, we reduce the value
o ) estimation to dinear function approximation problem, by in-
4.1 Plausibility Pruning voking two iterations of least-squares policy iteration (LSPI,

Implausible proto-goals are those that most likely cannot béLagoudakis and Parr, 2003; Ghavamzaeeal., 201(), one
achieved (eitheeveror given the current data distribution). for the “seek” and one for the “avoid” policy. As input fea-
Having them in the goal space is unlikely to increase theures for LSPI we use random projections of the observations
agent's competence; to the contrary, they can distract and hagto R !, which has the added benet of making this ap-
capacity. We use the following three criteria to eliminate im-proach scalable independently of the observation size. Third,

plausible goals: the estimation is done on a batch of transitions that are only a
Observed: we prune any proto-god that has never been Small subset of the data available in the agent's replay buffer
observed in the agent's experience, so far. B [Lin, 1993.2 Finally, we accept some latency by recom-

puting proxy values asynchronously, and only a few times
{ 10) per minute. Section 6.2 shows that such a light-weight
Mapproach is indeed effective at identifying controllable goals.

Reachable: we prune proto-goals that are deemed unreach
able (e.g., pigs cannot y, a person cannot be in Londo
and Paris at the same time).

Controllable: similarly, we prune goals that are outside of 4-2 Desirability Weighting
the agent's control (e.g., sunny weather is reachable, buthe second task of the PGE is to enable sampling the most
not controllable). desirablegoals from the reduced set of plausible gdajsro-
duced via pruning. A lot has been discussed in the litera-

Note that we combine goals, but not their corresponding valuetyre about what makes goals desiraliregoret al,, 2016;
functions[Barretoet al,, 2019; Tasset al,, 2023; we let the UVFA

Q (s;a;g) handle generalization to newly created goals and leave 2If the batch does not contain any transition that achieves a proto-
combination in value-function space to future work. goal, we are optimistic under uncertainty and classify it as plausible.



Baconet al,, 2017; Konidaris and Barto, 2009; Eysenb&th Strati ed Sampling over Heterogeneous Timescales

al., 2018; Bellemaret al, 2016; Machadet al, 2017; for  The attainment count for a goal (g) can be low because
simplicity, we stick to the two most commonly used metrics:it is rarely reachablepr because it naturally takes a long
novelty and reward-relevance. We use a simple count-baséfine to reach. To account for this heterogeneity in goal

novelty metriclAuer, 2002: space, we rst estimate each goal's natural timescale and
then usestrati ed samplingto preserve diversity and en-
novel(g) := Pa (3)  courage apples-to-apples desirability comparisons. To esti-
(9) mate the characteristic timescale (or horizbripr each goal,

whereN (g) is the number of times goalhas been achieved we average the “seek” value-function over the state-space:
across the agents lifetime. The desirability score (or “util-n(g) := Eqg  Vieeds;g) . Once each goal has a timescale

ity”) of a goal g is then simplyu(g) := R(g) + novel(g), . o . . .
Wyh()areR(g% is t%e average egt?lin(s?g rewart(dg;chieved(ogrz tranSStimate, we divide the goals in the goal space into different
buckets (quintiles). Then, we uniformly sample a bucket of

sitions whereg was achieved. Desirability scores for each e ; e
goal are turned into a proportional sampling probability: goals; since the goals in the bucke_t.have similar tlmescales
' ( h), we use novelty and reachability to sample a specic

- p u(g) ) goal from that bucket to pursue (see Algorithm 2 in the ap-
Pa(0) = 4026 U(G) (4) pendix for details).

In practice, when queried, the PGE does not output the fulLearning about Extrinsic Reward
distribution, but a (small) discrete set§f plausible and de- The evaluator always picks actions to maximize the extrinsic

sirable goals, by sampling frofds with replacementl = task reward. If the actors never did during training, then the

100in all our experiments). action-value function would have unreliable estimates of the
task return (called theandem effediOstrovskiet al, 2021).

5 Integrated RL Agent So, periodically, the actors pick the task reward function and

This section details how to integrate proto-goal spaces angelect actions based on that. Since the task reward function
PGE components into a goal-conditioned RL agent. As ign'@Y not correspond to a speci ¢ goal, we represent the task
typical in the goal-conditioned RL literature, we use a Uni-réward function as a special conditioning-64ensor serves
versal Value Function Approximator (UVFA) neural network aS the goalinputt® (s;a;g= 0).

to parameterize the goal-conditioned action-value functio . S .
Q (s;a;g), which is eventually used to pick primitive ac- 5.2 Which Goals to Learn about in Hindsight

tions. At the high level, we note that the PGE is used at thre@nce the agent picks a gaglo pursue, it samples a trajectory
separat@ntry points namely in determining how to act, what by rolling out the goal-conditioned policy (:;g). Given

to learn about (in hindsight), and which goals to recombineall the goals achieved in, G,, the agent needs to decide
What is shared across all three use-cases is the plausibility Iwhich goalsG G , to learn about in hindsight.

tering of the goal space (implausible goals are never useful). We always learn about the on-policy ggahnd the task re-
However, the three use-cases have subtly different needs, am@rd (which corresponds to the conditionipg 0). Among,

hence differ in the goal sampling probabilities. the set of achieved goal§ G ,, the agent samples a

) ] xed set of Mper goals and learns about them using hind-
5.1 Which Goal to Pursue in the Current State sight experience replayAndrychowiczet al, 2017 (we use
For effective exploration, an agent should pursue goals thadflner = 15). Similar to the previous section, we want to
maximize its expected learning progress, i.e., it should pick sample thoséVi,,e, goals that maximize expected learning
goal that will increase its competence the mldstpeset al,  progress. We found that using a count-based novelty score

2014. As proxies for learning progress, we adopt two com-as a proxy for learning progress (sample proportionally to
monly used heuristics, namely novelt&uer, 2002 (Eg. 3)  novel(g)) worked well for this purpose, and outperformed the
and reachabilityf Konidaris and Barto, 2009; Bagaré al., strategies of (a) learning about all the achieved goals and (b)
20214. The issue with exclusively pursuing novelty is that picking theMye, goals uniformly at random fror@, .

this could lead the agent to prioritise the most dif cult goals, o

which it cannot reach with its current policy yet, and henceb.3 Mastery-based Goal Recombination

induce behaviour that is unlikely to increase its competenceye use one simple form of goal recombination in the agent:

Thus, we combine novelty with lacal reachability metric,  for any pair of goals that it hamasteredit adds their combi-

for which we can reuse the goal-conditioned vali€si; 9),  nation (logicalAND as proto-goal candidate to be evaluated

which can be interpreted as the (discounted) probability thagy the PGE. A goal is considered mastered when its success

the agent can achieve gogfrom its current statsy, under  rate is above a pre-speci ed threshold= 0:6 in all our ex-

the current policy . To avoid computing reachability for periments). For example, if the agent has mastered the goal of

each goal inG (which can be computationally expensive), getting the key, and another goal of reaching the door, it will

we instead sampl#! goals based on novelty and pick the combine them to create a new proto-goal which is attained

closest: h i when the agent has reached the door with the key. Imple-
mentation details about creating and managing combination

o = - glé}:f:ggﬂ;ix . V (st:0) : proto-goals can be found in the appendix (Algorithm 5).
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