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Abstract— Robots must reason about pushing and grasping
in order to engage in flexible manipulation in cluttered envi-
ronments. Earlier works on learning pushing and grasping only
consider each operation in isolation or are limited to top-down
grasping and bin-picking. We train a robot to learn joint planar
pushing and 6-degree-of-freedom (6-DoF) grasping policies by
self-supervision. Two separate deep neural networks are trained
to map from 3D visual observations to actions with a Q-learning
framework. With collaborative pushes and expanded grasping
action space, our system can deal with cluttered scenes with a
wide variety of objects (e.g. grasping a plate from the side after
pushing away surrounding obstacles). We compare our system
to the state-of-the-art baseline model VPG [1] in simulation
and outperform it with 10% higher action efficiency and 20%
higher grasp success rate. We then demonstrate our system on
a KUKA LBR iiwa arm with a Robotiq 3-finger gripper.

I. INTRODUCTION
Imagine a robot trying to clean up a messy dinner table.

Two main manipulation skills are required: grasping that
enables the robot to pick up objects, and planar pushing that
allows the robot to isolate objects in the dense clutter to find
a good grasp pose. It is necessary to identify grasps within
the full 6D space because top-down grasping is insufficient
for objects with diverse shapes, e.g. a plate or a filled cup.
Pushing operations are also essential because in real-world
scenarios, the robot’s workspace can contain many objects and
a collision-free direct grasp may not exist. Pushing operations
can singulate objects in clutter, enabling future grasping of
these isolated objects. For example, in Fig. 1(c) the robot
must push the sugar box in the middle to make a future
grasp of the sugar box on the left accessible. Therefore, we
explore learning joint planar pushing and 6-degree-of-freedom
(6-DoF) grasping policies in a cluttered environment.

Many research studies have focused on learning to push
or grasp in isolation instead of learning multi-action policies
[2]–[4]. Fig. 1(c) shows that learning the synergies between
the two actions is essential to decluttering tasks since pre-
grasp pushing actions are often necessary in densely cluttered
scenarios. Some only focus on manipulating a single object
while in the real world target objects are often surrounded by
other objects [5]. Other approaches to multiple-object tasks
only consider top-down grasps or bin-picking scenarios [1],
[6] which largely limit the diversity of grasps (See Fig. 1(b)).

We propose an approach that learns multi-action policies
in the full 6-DoF pose space of the robotic hand. We model
the problem of learning joint policies for planar pushing and
6-DoF grasping as a Markov Decision Process (MDP) and use
a deep reinforcement learning algorithm trained end-to-end
with self-supervision. The main novel aspects of our system
are twofold:

(a) Grasp a baseball from the top.

(b) Grasp a plate from the side.

(c) Grasp a sugar box after a push.

Fig. 1. Pushes and 6-DoF grasps are both essential in decluttering tasks. (a)
the robot grasps a softball from the top. (b) the necessity of 6-DoF grasping;
the robot can only grasp the red plate from the side. (c) the necessity of
pushing; the sugar box on the left is only accessible after a push.

• In a Q-learning framework, we jointly train two separate
neural networks with reinforcement learning to maximize
a reward function. The reward function is defined as only
encouraging successful grasps; we do not directly reward
pushing actions, because such intermediate rewards often
lead to undesired behavior [7].

• We tackle the problem of limited top-down grasping
action space by integrating a 6-DoF grasping pose
sampler [8] rather than using dense pixel-wise sampling
from visual inputs and only considering hard-coded top-
down grasping candidates [1].

We evaluate our approach by task completion rate, action
efficiency, and grasp accuracy in simulation and demonstrate
performance on a real robot implementation. Our system
shows 10% higher action efficiency and 20% higher grasp
success rate than VPG[1], the current state-of-the-art, indicat-
ing significantly better performance in terms of both higher
prediction accuracy and quality of grasp pose selection.



II. BACKGROUND & RELATED WORK

Our work is in the intersection of pushing, grasping and
learning joint policies for both actions.

a) Pushing: Pushing is one of many non-prehensile
manipulation modalities [9], enabling complex manipulation
tasks to be performed when objects are too large, too heavy,
or too cluttered. Most work on robotic pushing focuses on
generating accurate predictions for the outcome of a push.
Many use pure analytical methods [10]–[14], relying heavily
on strong assumptions (e.g. quasi-static assumption, [15])
and do not consider uncertainty. More studies use data-
driven approaches, estimating the parameters of the analytical
model based on observations [16]–[20]. While these data-
driven methods can generalize the dynamics of pushing, they
require explicit object modeling and are highly sensitive to
parameters, unlike our approach which is learned from data.
In terms of vision-based methods, Salganicoff, Metta, Oddera,
et al. [21] introduced a learning method to push an unknown
object with a single rotational point contact to an arbitrary
goal point. Lau, Mitani, and Igarashi [22] expanded their
method to handle objects with more complex shapes. Besides
these, many studies leverage deep learning techniques to
model pushing dynamics [23]–[25]. More recent work used
deep reinforcement learning methods to train pushing control
policies directly [2], [26]–[28]. However, these works only
focused on stable and accurate pushing in isolation without
considering potential subsequent manipulations, or have not
explored pushing in a dense-cluttered workspace. Our work
combines both pushing and grasping, allowing the system to
learn synergistic behavior between pushing and grasping to
autonomously clear a table.

b) Grasping: Grasping is widely explored so here we
only discuss the branch of grasp pose detection most related
to our work. Grasp pose detection finds an end-effector
configuration that maximizes a grasp quality metric. Previous
methods can be broadly divided into two main categories:
model-based and model-free [29]. Model-based methods use
mathematical and physical models of geometry, kinematics,
and dynamics to calculate stable grasps [30]–[33]. These
approaches typically use a pre-built grasp database of common
3D object models labelled with grasps and their quality and
to transfer to similar objects at runtime [34]. However, these
methods struggle to generalize to novel objects and objects
placed in dense clutter due to the limited database. Other
studies proposed data-driven model-free methods that leverage
vision-based deep learning techniques to learn grasping
policies for unknown objects. Most of them focus on grasping
isolated objects [35]–[39] while our approach can grasp in
dense clutter. Some studies explored grasping in cluttered
scenes but are limited to top-down grasping or bin-picking
scenarios (which are both 3-DoF grasping due to the grasping
pose encoding or limited workspace) [34], [40]–[44]. We used
a 6-DoF grasping pose generator from Pas, Gualtieri, Saenko,
et al. [8] as grasp sampler in our framework to make more
flexible, stable grasping poses accessible and increase the
sampling efficiency at the same time. However, the spatial

grasping pose generator alone cannot perform planning for
heavily cluttered situation where pre-grasping manipulation
(e.g. pushing) is required to reposition objects for future
grasping. This limitation also holds for other works on 6-DoF
grasping planning in clutter that do not consider pre-grasping
manipulation skills [3], [4]. Our work, in contrast, combines
pre-grasping manipulation skills with 6-DoF grasp planning.

c) Grasping Combined with Pushing: Mason [15]
presented a theoretical investigation of the use of pushing in
manipulation. Lynch and Mason [11] proposed one of the
first planners that integrated collaborative pushing operations.
King, Klingensmith, Dellin, et al. [5] presented the pre-grasp
manipulation problem as trajectory optimization, including
two modes of interactions: pushing and pick-and-place, and
completed multi-step planning for several manipulation tasks.
However, their approach only focused on a single object.
Dogar and Srinivasa [45] and Boularias, Bagnell, and Stentz
[46] both presented methods for robust grasping planning
under uncertainty in dense clutter by exploiting pre-grasping
actions. The policies in the former remain largely hand-crafted
and in the latter relied on hand-crafted representations for
pushing and grasping selection during training. Our work in
contrast, uses learned representations for deciding where to
push and grasp to clear the table.

Most related to our work, Zeng, Song, Welker, et al.
[1] and Deng, Guo, Wei, et al. [44] proposed to leverage
deep Q-Network (DQN) to learn pushing and grasping
operations jointly, and Kalashnikov, Irpan, Pastor, et al.
[6] introduced QT-Opt, a scalable self-supervised vision-
based reinforcement learning framework that performs closed-
loop grasping with non-prehensile pre-grasp manipulations.
Although [6] achieved an impressive 96% grasping successful
rate in bin-picking scenarios, their model was trained at high
cost (580k grasp attempts over 7 robot arms). Also, these
works are restricted to top-down grasping or bin-picking,
which limits grasp diversity and may fail for objects with non-
planar surface (e.g. a standing bottle). Also, in [1] they directly
reward pushing primitives to encourage pushing. This might
cause problems such as pushing objects out of workspace or
performing unnecessary pushing actions when there are only
a few objects scattered on the table and potential successful
grasps are available [7].

We followed the Q-learning framework and Markov Deci-
sion Process (MDP) formulation illustrated in Zeng, Song,
Welker, et al. [1]. We reconstructed the grasping planning
module to enable 6-DoF grasp prediction and removed the
direct reward for pushing actions. These changes to the reward
function allow the model to operate more effectively when
there are only a few objects on the table. Note that because
we introduced 6-DoF grasping in our system so we expanded
the grasping action space in the MDP formulation.

III. LEARNING JOINT PUSHING & GRASPING POLICIES

A. Problem Formulation

a) MDP: Following Zeng, Song, Welker, et al. [1],
we formulate this sequential decision making process as
a Markov Decision Process (MDP). An MDP is formally



Fig. 2. System Overview Our system takes in RGB-D visual observation of the scene and predicts the next action primitive (i.e. pushing or grasping), as
well as the position and orientation for executing that action. The learning objective is to find a policy that always chooses the action that maximizes the
expected success of current/future grasps.

defined by a tuple M = (S ,A ,T ,r,γ) in which S , A ,
T , r and γ denote the state space, the action space, the
transition function, the reward function and the discount factor
respectively. Our goal is to find an optimal policy π∗ that
maximizes the expected discounted sum of future rewards:
Rt = Σ∞

t=0γ tr(st ,at ,st+1). We define the state space s ∈S as
the current visual observation captured by cameras, an RGB-
D image covers the robot’s workspace. The actions a ∈A
consist of the choice of action primitive, the end-effector
position and orientation:

a = (ψ,x,θ),ψ ∈ {push,grasp} ,x,θ ∈ R3,

where x and θ denote the end-effector position and orientation
respectively. The reward is defined as a binary, sparse reward
function: the reward R(st ,st+1) is 1 for a successful grasp and
0 otherwise. We detect grasp success by checking whether
the antipodal distance between parallel-jaw gripper fingers
after a grasp attempt is lower than a pre-defined threshold. No
direct reward for pushing actions is included in our reward
formulation. Our model learns collaborative pushes that can
benefit future grasps only through the reward for successful
grasps.

b) Learning Process: We use an off-policy Q-learning
algorithm to learn a deterministic policy for collaborative
pushing and grasping. Given any state st at time t, the robot
takes an action at based on a policy π(st) and transitions to
a new state st+1 with a reward r(st ,at ,st+1). Every timestep
t the robot picks an action that has the maximum Q-value
for a given state, in other words, our policy picks an action
by maximizing the Q-function which measures the expected
reward for taking action at at state st . And we used temporal
difference (TD) learning in which the learning objective is
to minimize the temporal difference of the current Q-value
function Qπ(st ,at) to the label yt :

yt = r(st ,at ,st+1)+ γQ(st+1,argmax
a′

(Q(st+1,a′)),

where a′ is the set of all available actions.
c) Loss Function: We use different loss functions for

pushing and grasping skills. We only compute the loss for the
selected pixel/pose (where the robot will take the next action),
all other pixels/poses backpropagate with loss 0. For pushing,

we generate yi by calculating the scene image difference after
the push, if it is higher than a threshold we consider the push
successful. This method may be sensitive to the manually
selected threshold, hence we use the Huber loss for pushing
because it is less sensitive to inaccurate labels [47]:
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For grasping, we can get the ground truth label yi via the
feedback signal from the gripper. Therefore, we can assume
all labels are accurate and use the binary cross-entropy loss.
Let ŷk
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ing/grasping, θi/φi are the parameters of pushing/grasping
prediction network at iteration i, and θ

−
i are the target push

network parameters, which are fixed between individual
updates.

B. Perception Module

Given the state st at time t, which is the RGB-D image
provided by cameras, perception module generates feature rep-
resentations and point clouds and feed them into push/grasp
modules, structural details of the perception module is shown
in Fig.2. All three 121-layer DenseNet [48] are pretrained
on ImageNet [49], we use ReLU [50] activation for all
convolutional layers and the fully-connected layer, and we
apply spatial batch normalization for all convolutional layers.

C. Pushing Module

The pushing module aims to predict the most beneficial
pushing action apush

t for future grasps among a pixel-wise
sampling of end-effector locations and orientations given st .

The pushing action in our system is defined similar to
Zeng, Song, Welker, et al. [1]. Given st at time t, a planar



pushing action apush
t is parameterized as (x,θ) in which x

and θ denote the location (xx,xy) and the orientation of the
end-effector when execute the push. Since all the pushes are
planar, θ is the rotated angle of the end-effector in xy-plane.

The detailed push prediction network structure can be found
in Fig. 2. It is a feed-forward fully convolutional network
which maps the visual observation of the scene at time t to
a dense pixel-wise Q-value estimate of the workspace. When
the robot executes a push, it closes its gripper, moves the
gripper to the selected location and pushes for 10cm in the
selected direction. During the execution, the gripper holds the
same height from the tabletop in order to keep the push planar
and stable. We keep length fixed for pushing since our goal is
exploring the synergies between actions. However, direction
is not fixed; we rotated the original visual observation in
16 orientations before prediction so that every pixel gets 16
Q-value estimates for executing a push in each direction.

D. Grasping Module

This module contains a grasp pose generation algorithm,
a convolutional network for color features, and a fully-
connected layer that learns to find a grasp candidate agrasp

t
at time t that can maximize the probability of future grasp
success. Enabling the robot to select a grasp from the full
6-DoF space of poses is the key advance of our model,
compared to several previous works that are limited to top-
down grasping or bin-picking [1], [6].

We define the 6-DoF grasping action agrasp
t in our system

as (x,θ), in which x and θ denote the 3D location (xx,xy,xz)
and the orientation (θα ,θβ ,θγ) of the end-effector when
executing the grasp. These 6-DoF poses are produced by
the grasp candidate generation algorithm defined in Pas and
Platt [51] and used in Pas, Gualtieri, Saenko, et al. [8].
Given st , a set of candidates is generated by sampling points
from the point cloud to use as grasp centroids, with grasp
orientations determined by each centroid’s local geometry. We
filter grasping samples by the end-effector position and their
approach direction before feeding into the fully-connected
layer; if either the pre-grasp or target end-effector position is
out of robot’s workspace, we consider this sample as invalid.

As shown in Fig. 2, grasp prediction network takes color
feature extraction from 121-layer DenseNet [48] and point
clouds from raw RGB-D camera data as input. φ color

g are
two convolutional layers and a bilinearly upsampling layer
for color features. The point cloud is passed into φ

gpg
g ,

a grasping pose generator (GPG) [8]. Q-values for every
grasping candidate sampled from GPG are calculated by
concatenating the output from φ color

g and φ
gpg
g , passing through

a fully-connected layer.

IV. EVALUATION

A. Evaluation Metrics

To assess our model’s performance, we assess its speed
and accuracy at picking up objects. Each trial is a new clutter
of N objects in the workspace and the robot must remove
all objects by grasping. For each test, we execute 10 trials
and compute the average evaluation scores. We quantitatively

evaluate the performance of the learned pushing and grasping
policies with three evaluation metrics:
• Completion: If the robot successfully picked up every

object without more than 10 consecutive failed grasping
attempts in one test trial, we consider this trial a
completion. This shows the ability of the system to
finish the task.

• Grasp Success (GS): the ratio of successful grasps in
all grasp attempts per completion, measures the accuracy
of the grasping policy. This matrix indicates how quickly
the policy can reach a completion.

• Action Efficiency (AE): the ratio of number of objects
N to the number of actions executed before completion.

B. Simulation Experiments

In this section, we present system evaluation with Cop-
peliaSim [52] simulator. In simulation, we compare the
quantitative results with VPG from [1] on a collection of
basic geometric shapes and provide quantitative results of
our model in simulation on the Yale-CMU-Berkeley (YCB)
dataset [53] to show its performance on decluttering more
challenging objects, that are representative of real-life tasks.

Fig. 3. Simulation Configuration (a) shows our environment configuration
in CoppeliaSim [52]. (b) shows the view captured by th RGB-D camera
mounted on robot’s shoulder. (c) shows the point cloud we build from the
raw RGB-D images, and generated grasping samples (blue) by Pas, Gualtieri,
Saenko, et al. [8], the camera frame (camera link) and the world frame
(world).

a) Simulation Configuration: We use CoppeliaSim [52]
simulator with Bullet Physics 2.83 for dynamics and Cop-
peliaSim’s built-in inverse kinematics for motion planning.
We test our system on a simulated UR5 robot with an RG2
gripper. A RGB-D camera is placed to provide visual inputs
from an ego-centric view of the workspace for the robot. The
camera resolution is 640×480, with a near/far clipping plane
of 0.01/10.0m, a perspective angle of 54.7◦. Fig.3 shows the
simulated CoppeliaSim [52] scene configuration we use for
experiments. We did not add any noise to images captured by
the vision sensor and we removed the simulated floor from
the point cloud data for better grasping pose detection.

b) Baseline Model: We compare our system to the
Visual Pushing for Grasping (VPG) model [1]. VPG is
the state-of-the-art model that also learns joint pushing
and grasping polices for clutter clean-up. However, it has



three main constraints. First, the grasping action space of
VPG is restricted to top-down grasping. Second, VPG uses
computationally-consuming dense pixel-wise sampling for
both actions. Last, it includes direct reward for pushing actions
that made changes to the scene. This can be problematic, it
may encourage the robot to push objects in clutter, but risks
rewarding the robot for redundant pushes.

c) General Tasks: We first verify that our model can pick
up basic geometric shaped objects with learned policies. Our
training shape set includes 5 different shapes and the testing
shape set includes the training shape set and 5 novel shapes.
For each trial, we randomly select shapes from corresponding
shape set to generate a new arrangement of N objects with
randomly selected shape/color/position/orientation, so clutters
in testing have never appeared in training even their shape
sets overlap. We train our model to convergence with 600
randomly generated 10-object scenes and test it with both
10-object scenes and more cluttered 30-object scenes. Since 5
novel shapes are added during testing so we can also evaluate
how our model generalizes to novel objects.

The testing results for general tasks are shown in Table
I, which indicates that though both methods have 100%
completion rate, our method outperforms VPG in both action
efficiency and grasp success rate. Also, as the number of
objects increases, our model, benefiting from more flexible
6-DoF grasps, has a higher grasp success rate while VPG’s
grasp success decreases by 8.3%, which implies our model’s
ability to adapt to more cluttered scenarios. To verify that
removing the pushing reward contributes to our improved
performance, we also tested our model with the pushing
reward used in Zeng, Song, Welker, et al. [1] included, for
both 10-object and 30-object scenarios. As shown in Table
I, the added pushing reward results in a mostly comparable
grasp success rate, but leads to a significant decrease in action
efficiency compared to our method. These results show that
including a direct pushing reward leads to redundant pushes,
thereby decreasing performance.

Two methods are also tested in scenarios with fewer objects
(< 10), the results can be found in Fig.4. It shows that
our system has a better performance over all fewer-object
scenarios. The action efficiency is significantly higher than the
baseline which indicates that our model has fewer redundant
pushes, which comes from removing the pushing reward.
However, with more objects on the table, we find the action
efficiency of our system dropped. Since the action efficiency
is defined as the ratio of number of objects N to the number
of actions executed before completion, with more objects
in the workspace, more pushing operations are expected to
singulate objects from the clutter for future grasp. With at
least N grasp attempts to finish the task and more expected
pushing operations, the action efficiency may decrease in
scenarios with more objects.

Interestingly we find VPG has a lower action efficiency
(≤ 50%) for sparse scenes (with ≤ 2 objects) which are
normally considered easier for grasping. We hypothesize
that this is due to the direct reward for pushing actions that
encourage the robot to execute unnecessary pushes, hence

TABLE I
GENERAL TASK RESULTS (MEAN %)

Model Num. of Obj. Completion AE GS

VPG [1] 10 100.0 51.9 68.3
Ours 10 100.0 62.7 88.9
Ours w. Pushing Rwd 10 100.0 50.2 87.7

VPG [1] 30 100.0 67.7 60.9
Ours 30 100.0 87.9 95.6
Ours w. Pushing Rwd 30 100.0 62.2 89.3

reducing the robot’s action efficiency. Our model, on the
other hand, learned to pick up objects in the workspace with
significantly higher (≥ 60%) action efficiency.

(a) Action Efficiency (b) Grasp Success

Fig. 4. Fewer-object Clutters

d) Challenging Tasks: We also tested our system with
more challenging scenarios: adversarial clutters and YCB-
object clutters. Example object arrangements of adversarial
clutters and YCB-object clutters can be found in Fig.5.

Like shown in Fig.5(a), each adversarial clutter has 3-6
basic geometric shaped objects that are intentionally placed
tightly enough that policies with only grasping actions will
struggle to finish the task. An isolated object is placed as a
sanity check, since a policy should at least be able to pick
up the isolated object.

To create YCB-object clutters, we select shapes from
Yale-CMU-Berkeley (YCB) dataset [53] instead of for-
merly used basic geometric shapes so that high-precision,
more flexible 6-DoF grasps are essential to finish
the task. We include the following objects from the
YCB dataset for testing: 001 chips can, 003 cracker box
,004 sugar box, 005 tomato soup can, 008 pudding box,
009 gelatin box, 015 peach, 016 pear, 024 bowl, 025 mug,
029 plate, 065 a cups. When we generate random YCB-object
clutters, we make two restrictions on 003 cracker box and
029 plate. We let the object 003 cracker box can only be
placed as “standing” on the table otherwise it cannot be
picked up due to its width, and we set the object 029 plate
always on top of other objects to give it an offset height
so that the gripper will not scratch table surface when try
to grasp it. Note that we never train our model on these
challenging tasks, we use the same model trained for general
tasks (i.e. randomly generated 10-object clutter which only
contains basic geometric shapes).

We have 10 test trials for both challenging tasks and
calculate the mean completion rate, action efficiency, and



(a) Adversarial Clutters

(b) YCB Dataset Objects

Fig. 5. (a) Adversarial clutters used by Zeng, Song, Welker, et al. [1] for
fair comparison. (b) Randomly generated YCB-object clutters.

TABLE II
CHALLENGING TASK RESULTS (MEAN %)

Model Task Completion AE GS

VPG [1] Adversarial 82.7 77.2 60.1
Ours Adversarial 100.0 65.2 87.0

Ours YCB-object 77.8 49.8 58.4

grasp success rate for each task. The quantitative results for
these challenging tasks are shown in Table II.

In the adversarial clutter setting, we see a higher completion
rate and grasp success rate compared to VPG which indicates
a better performance in terms of finishing the task. However,
we observe a 12% lower action efficiency. Our model is able
to tackle difficult adversarial clutters that are challenging
for VPG given a 17.7% higher completion rate, which we
believe is due to additional effective pushes. By the definition
of action efficiency, more pushing actions will lower the
evaluation score. Since we do not consider the extra pushing
actions are redundant in this case, we do not think the lower
action efficiency indicates a poorer performance of our model.
For YCB-object clutters, the result shows our model is capable
of decluttering a wide variety of objects. Though we did
see decreased action efficiency and grasp success in YCB-
object scenarios due to more challenging object shapes, our
completion rate remains relatively high at 77.8%. We did not
include the results for applying VPG to YCB-object scenarios
because VPG only allows top-down grasps so that it would
constantly fail with objects which require side grasps (e.g.
plates) and have a 0% completion.

C. Robot Demonstration

The aim of our real robot demonstration is to show that our
framework can work with real-life objects. We use a KUKA
LBR iiwa arm with the Robotiq 3-finger adaptive gripper
for demonstration as shown in Fig.6. We set the gripper to
its pinch mode, where two fingers on the same side move
close together, to perform parallel-jaw-like grasps. Two Intel
RealSense D435 cameras are mounted above the tabletop
scene; one captures RGB-D images for the top-down view

for color feature extraction and the other provides a side-view
point cloud data. Both cameras are calibrated with respect
to the robot base. We place objects from the Yale-CMU-
Berkeley dataset [53] within a 0.224m2 workspace in front
of the robot to create a cluttered tabletop scene.

Fig. 6. Robot Experiment Configuration

Using the models trained in simulation with synthetic data,
our system can successfully pick objects from the scene
using flexible 6-DoF grasp poses. We show the necessity of
collaborative pushing and 6-DoF grasping in Fig.1. VPG [1]
may be able to finish the task in Fig.1(a) but it would fail to
pick up the plate in Fig.1(b) due to its limitations on grasping
action space. A link to our real robot demonstration video
can be found in the supplemental materials.

V. CONCLUSION AND FUTURE WORK

We present a system that jointly learns pushing and 6-DoF
grasping policies. Our system outperforms the state-of-the-
art learning method [1] in terms of action efficiency, grasp
success rate and completion rate in simulated evaluation.
Also, we tackle the problem of grasping pose inaccessibility
for objects with more challenging shapes, by expanding the
grasping action space to 6-DoF.

In our real robot demonstrations, we observe several failure
cases that suggest the limitations of our current system. The
quality of the point cloud data will dominate the model’s
performance since the grasp candidates are sampled from it.
Also, the surface direction of the point cloud provided by
the camera will affect the generated grasp pose orientations
which may cause motion planning failures if the camera is
not mounted near the origin of the robot’s workspace.

In future work, we hope to integrate tactile sensor data
in our system for non-rigid objects manipulation since in
real-life the robot might encounter fabrics, glasses, and other
materials that requires tactile sensor information to manipulate.
Also, it would be interesting to replace the sparse reward
function with a human feedback signal in our system to help
with reward shaping or use natural language for grasping
target specification. Investigating a better formulation for the
reward function for this framework to accelerate learning and
to improve the system performance is worth exploring.
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