
BROWN UNIVERSITY

DOCTORAL DISSERTATION

Abstraction for Autonomous

Human-Robot Interaction

Author:

Eric Rosen

Advisor:

Stefanie Tellex and

George Konidaris

A dissertation submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Department of Computer Science



ii

February, 2024

© Copyright 2023 by Eric Rosen

W



This dissertation by Eric Rosen is accepted in its present form by the Department of
Computer Science as satisfying the dissertation requirement for the degree of Doctor of

Philosophy.

Date
Stefanie Tellex, Advisor

Date
George Konidaris, Advisor

Recommended to the Graduate Council

Date
James Tompkin, Reader

Date
Nicholas Roy, Reader

Approved by the Graduate Council

Date
Thomas A. Lewis, Dean of the Graduate School

1

09/08/2023

2023-08-09

08-09-2023

09/08/2023

*



1

Chapter 1

Curriculum Vitae

Eric Rosen attended Brown University, where he received a Bachelors of Science in Computer

Science and Applied Mathematics. At Brown Univerity, he co-created and taught Chore-

orobotics 101, the first course investigating the intersection of robotics and choreography. Eric

also spent time as a research intern at Uber ATG, Meta Reality Labs, and MERL.

During his PhD, Eric published the following papers: Synthesizing Navigation Abstractions

for Planning with Portable Manipulation Skills , Norm Learning with Reward Models from Instructive

and Evaluative Feedback, Bootstrapping Motor Skill Learning with Motion Planning, Mixed Reality

as a Bidirectional Communication Interface for Human-Robot Interaction, A General Methodology for

Teaching Norms to Social Robots, and Building Plannable Representations with Mixed Reality.

⑱

-

I



71

Acknowledgements
I would like to thank my committee members, Stefanie Tellex, George Konidaris, James Tomp-

kin, and Nicholas Roy, for all the help and support they have given me over the years on

advising my research. I would like to also thank my family (my mother, fathers, sister, and

grandparents especially) for all their love and support.

④°@°



i

Contents

Abstract v

1 Introduction 1

2 Background 4

2.1 Robot Motor Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Portable Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 State Abstractions for Planning . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Semantic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Mixed Reality for Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . . 11

3 Composable Interaction Primitives for Sustained-Contact Manipulaton 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Instantiating CIPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 CIPs for multi-step plan execution . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Bootstrapping Motor Skills with Motion Planning 26

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



ii

4.2 Bootstrapping Skills with Motion Planning . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Fitting a Policy to a Demonstration . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Policy Search with Kinematic Rewards . . . . . . . . . . . . . . . . . . . 33

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Real-world Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Learning Navigation Abstractions for Planning with Manipulation Skills 39

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Exploiting Spatial Independence for Learning Abstractions . . . . . . . . . . . . 42

5.4 Simulation and Hardware Experiments . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Constructing Abstractions for Robotic Planning with Mixed Reality 55

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Action-Oriented Semantic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Defining Action-Oriented Semantic Maps . . . . . . . . . . . . . . . . . . 57

6.2.2 Instantiating AOSMs with Mixed Reality . . . . . . . . . . . . . . . . . . 59

6.3 Iterative Design Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Study Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.2 Mixed Reality Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.3 Rapid Iterative Testing and Evaluation . . . . . . . . . . . . . . . . . . . 63

System V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

System V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

System V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

System V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.4 Overall Impressions of System . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



iii

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusion 69

Acknowledgements 71=> -5.



iv

List of Figures

3.1 Simulation Tasks for Composable Interaction Primitives . . . . . . . . . . . . . . 21

3.2 Simulation Results for Composable Interaction Primitives . . . . . . . . . . . . 23

3.3 Executing Two Composable Interaction Primitives . . . . . . . . . . . . . . . . . 24

4.1 Learning to close a microwave by bootstrapping with motion plans . . . . . . . 27

4.2 System diagram for bootstrapping skills with motion planners . . . . . . . . . . 31

4.3 Real-world ball hitting with learned skills . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Learning to open a drawer in simulation . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Simulation results for bootstrapping with motion plans . . . . . . . . . . . . . . 36

4.6 Hardware results for learning to close microwave . . . . . . . . . . . . . . . . . 37

5.1 An AOSM for a coffee preparation task . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Iteratively constructing an AOSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Transferring learned abstractions results . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Spatial independence graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Examples of learned operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Hardware demonstration of AOSM on Spot . . . . . . . . . . . . . . . . . . . . . 52

6.1 Hardware demonstration of MR for teaching abstractions . . . . . . . . . . . . . 56

6.2 User perspective with MR interface . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Images of household cleaning tasks for robot hardware experiment . . . . . . . 60



v

BROWN UNIVERSITY

Abstract
Department of Computer Science

Doctor of Philosophy

Abstraction for Autonomous

Human-Robot Interaction

by Eric Rosen

Humans are able to solve complex problems by distilling their knowledge of the world

into simplified task-relevant representations and creating plans to achieve their goals. In ad-

dition, central to effective human-human collaboration is the ability to teach these concise

models of the world to situated partners with ease. Motivated by these properties, this thesis

develops methods that enable mobile manipulators to learn action and state abstractions for

task planning, and to effectively communicate and learn relevant abstractions from humans

via Mixed Reality (MR) communication channels.

First, we focus on autonomously learning action abstractions. We describe a novel policy

class for efficiently learning sustained-contact manipulation skills, and a method for boot-

strapping learning of dynamic motor skills with motion planning. Next, we focus on au-

tonomously learning state abstractions. We describe research on learning symbolic represen-

tations for navigation to support task planning on a mobile manipulator platform. Lastly,

we describe research on learning action and state abstractions from end-users via MR. Our

MR system enables humans to easily teach robots how to manipulate objects as well as la-

bel scene information to support planning. Collectively, these works lay the groundwork for

enabling mobile manipulators to solve tasks in complex environments by learning state and

action abstractions from interacting with the world or human teachers.



1

Chapter 1

Introduction

The long-standing promise of robotics is to enable autonomous robots to enter human-centered

environments and help people in their daily lives. Imagine a scenario where a mobile manip-

ulator enters a person’s home for the first time, and is able to rapidly learn how to tidy rooms

to their liking. For this to be a reality, the robot must be able to navigate the space, interact

with objects, and plan how to sequence these behaviors to achieve its intended goals. In addi-

tion, the human may be able to intuitively communicate with the robot, so that they can easily

specify goals to the robot and act as a teacher when new behaviors need to be programmed.

A robot with a fluid ability to autonomously interact with the environment and the humans

situated within it would be of immense value, and be a step towards moving robots out of

structured environments and into society at large.

To solve this problem, we suggest that a robot must construct a world model, or set of

abstractions, that can be used to support task planning. Robotic abstractions come in two

forms: action abstractions, which are temporally-extended actions (motor skills) that can be

sequentially composed, and perceptual abstractions (symbols), which are functions over sen-

sor data that can represent goals and construct executable sequences of actions (plans) that

achieve those goals. While the use of abstractions for generally intelligent robot behavior is

well-studied, a long-standing problem has been how to acquire a relevant and useful set of

abstractions for the task and environment at hand.

This thesis investigates two relevant sources of these two types of abstractions: autonomously

(by interacting with the environment), or from humans from users (via mixed reality commu-

nication channels). We decompose this down into four related subproblems: 1) learning skills



Chapter 1. Introduction 2

autonomously, 2) learning symbols autonomously, 3) learning skills from humans, and 4)

learning symbols from humans. Each chapter of this thesis addresses these subproblems, and

all the solutions share a common theme: they leverage 3D spatial structure. Leveraging 3D

spatial structure is a rich area for these four subproblems because a) all tasks a general mobile

manipulator faces takes place in 3D space and b) Mixed Reality technologies for human-robot

interaction benefit from 3D spatial modeling techniques. This leads to my thesis statement:

Leveraging 3D scene geometries enables efficient robot skill and symbol learning, either autonomously

interaction or intuitive human teaching via mixed-reality channels. We now provide an overview

of how each of our solutions leverage the 3D spatial structure present in robotic domains to

effectively learn abstractions autonomously and from humans.

We first describe our research on learning skills autonomously in Chapters 3 and 4. In

Chapter 3, we present a structured policy class for sustained-contacted manipulation with ob-

jects: Composable Interaction Primitives (CIPs). The robot can be put in a scene with multiple

objects that each require durative contact to manipulate, such as opening a door, sliding a

knob, lifting a lever, or opening a drawer, and is able to efficiently and safely learn a set of

motor skills to manipulate each of the objects. CIPs are designed so that after learning, given

a specified sequence of objects to interact with, it can compose the motor skills in any order

without any additional learning necessary, making them easy to integrate with task planning.

In Chapter 4, we discuss our work on bootstrapping motor skill learning using motion

planning. The robot can use readily-estimated (but potentially noisy) kinematic models of

articulated objects to generate motion trajectories that manipulate the object into a desired

pose. By leveraging a motion planner, we can plan kinematic paths in the object’s configura-

tion space, which defines a constrained motion planning problem for the manipulator based

on a grasp pose. Since we only use the kinematic model of the object and ignore dynamics,

this trajectory is sub-optimal and may not even accomplish the task in full, but it provides an

initial demonstration without any human intervention that can be used to bootstrap a policy

search algorithm to enable more efficient learning. These two works jointly address how 3D

scene geometries can be leveraged to enable robots to autonomously learn motor skills for

manipulation that can be effectively ported to new environments.



Chapter 1. Introduction 3

In Chapter 5, we discuss our work on learning perceptual abstractions for task planning on

a mobile manipulator. Given that a robot has a set of portable manipulation skills, we propose

a hierarchical planning representation, Action-Oriented Semantic Maps (AOSMs), that can be

learned from the agent automatically interacting with its environment. Perceptual symbols

that involve spatial components are learned in an object-centric frame and navigation behav-

iors are generated on-the-fly using off-the-shelf path planners so that high-level manipulation

knowledge can be rapidly transferred to new domains. This work addresses how mobile ma-

nipulators can leverage the 3D spatial structure present in robot domains to autonomously

learn symbols for task planning.

In Chapter 6, we discuss work on enabling users to teach robots action and perceptual

abstractions for planning using Mixed-Reality Head-Mounted Displays (MR-HMDs). This

work involves users wearing MR-HMDs and labeling both action information relevant to

manipulation and semantic information about the objects in the scene. We demonstrate that

humans can rapidly use our interface to enable a robot to plan actions to manipulate different

objects in a scene.

Taken together, this work demonstrates how 3D spatial structure can be leveraged to en-

able an interface for humans to rapidly specify complex action and perceptual abstractions

when situated in the same environment as the robot. The culmination of this research is a

significant step in enabling robots to acquire state and action abstractions for task planning,

either via autonomous interaction with the environment or from a situated teacher.



4

Chapter 2

Background

2.1 Robot Motor Skills

Motor skills are typically learned using reinforcement learning (RL) [118], where tasks are

typically formalized as a Markov Decision Process M = (S, A, R, T, g), where S is a set of

states which describe the current configuration of the task; A is a set of actions available to

the robot; R(s, a, s0) is a reward function describing the reward obtained for executing action

a in state s and transitioning to state s0; T(s0|s, a) is the transition function, describing the

probability that executing a in s leaving the robot in state s0, and g 2 (0, 1] is a discount factor

expressing a preference for immediate over delayed rewards. The robot’s goal is to learn a

policy p mapping a state to the action it should execute in that state, such that it maximizes

the discounted sum of expected future rewards (or return).

One popular approach for learning policies are policy search methods [31], which are

a family of model-free reinforcement learning algorithms that search within a parametric

class of policies to maximize reward. Formally, given a Markov Decision Process M =

hS ,A,R, T , gi, the objective of policy search is to maximize the expected return of the policy

pq :

max
q

E
M,pq

"
T

Â
t=0

gtrt

#
. (2.1)

These approaches can learn motor skills through interaction, and therefore do not require an

explicit environment model, and are typically agnostic to the choice of policy class (though

their success often depends on the policy class having the right balance of expressiveness and



Chapter 2. Background 5

compactness). However, their model-free nature leads to high sample complexity, which often

makes them infeasible to apply directly to robot learning problems.

Behavioral cloning methods [11, 95, 45] are another approach for learning policies, but

directly from supervised data. These methods attempt to directly learn a policy that repro-

duces the demonstrated policies. Given a dataset of expert demonstrations D, the objective of

behavioral cloning is: maxq Â(s,a)2D pq(a|s).

In many cases, the target motor skill is not the entirety of the robot’s task, but should in-

stead be used as an executable subroutine used as part of the solution. Such skills are typically

modeled using the options framework [119], where an option o is defined by a tuple (Io, po, bo),

where Io ✓ S is the initiation set, the set of states from which the robot may choose to execute

the option; bo : S ! [0, 1] is the termination condition, giving the probability that option ex-

ecution ceases in state s; and po is the option policy. The robot can choose to execute o if the

current state is inside Io, whereupon execution proceeds according to po and halts at each en-

countered state according to bo. When a motor skill is modeled this way, the skill’s objective

is typically specified by a reward function Ro, and the robot’s task is to learn option policy

po that maximizes return in the usual way. Modeling motor skills as options naturally sup-

ports reasoning about sequential compositionality—option o2 can be executed after option o1

if the state that o1 leaves the robot in lies within o2’s initiation set; composable options there-

fore have small termination conditions that are highly likely to lie within many other options’

(ideally large) initiation sets [82, 21, 120, 65].

2.1.1 Portable Skills

By considering an abstract action set, the decision-making process can select between much

higher-level motor skills, effectively reducing the problem diameter while leaving lower-level

control to resolve the much more limited-scope task of realizing each individual high-level

action. The options framework [117] is the most popular abstract action framework. An option

o is a tuple with three components: an option policy po, executed when the option is invoked

and mapping low-level states s 2 S to low-level actions a 2 A; an initiation set Io ✓ S that



Chapter 2. Background 6

identifies which low-level states the option policy can be executed from; and a termination

condition bo(s) ! [0, 1] that determines the low-level states in which execution will cease.

An additional advantage of using modular higher-level motor skills is that they need not

necessarily be functions of the full problem state. For example, a motor skill to walk towards a

door can be defined using just the robot’s local perception, rather than an entire map. In such

cases we model the option components as depending on some observation space D obtained

using sensor model f(S) ! D. Options with all three components defined in a portable

observation space are themselves portable, and can be reused in several places in a task, and

in new tasks [67, 51].

Robotic state and action spaces are typically real-valued and high-dimensional. Conse-

quently, the most popular family of approaches in this setting are policy search methods

[32, 63], where the mapping from states to actions is directly represented as p(a|s, y), con-

trolled by parameter vector y. This form offers the opportunity to structure the policy: p need

not be a simple learned mapping, but can instead include features such as safety constraints,

stabilizing feedback, highly specified policy programs with just a few parameters, actuation

limits, structured phases, and even motion planning. Additionally, in robotics there is the

question of which state and action spaces the policy should use—the policy designer must

choose where to place the policy on a spectrum ranging from directly mapping raw sensor

input to motor torques, to wrapping the policy in highly processed input and output spaces

(e.g., mapping object-level features extracted via computer vision to operation-space control).

All of these choices are critical to effective learning.

A great deal of recent work has examined the setting where a robot learns to map its sen-

sor input directly to motor torques via deep reinforcement learning [77, 62]. These methods

offer flexibility, generality, and autonomy by exploiting recent advances in learning deep net-

works. However, that generality has a cost: such methods rely on access to massive amounts

of compute and data and therefore typically require additional methods that implicitly encode

design insight into the data set [36, 106, 8], collect experience from multiple robots in parallel

[42], or include human demonstration [107, 9, 89]. Additionally, these approaches make it

difficult to incorporate the structural knowledge that robotics as a field has developed around



Chapter 2. Background 7

techniques like forward and inverse kinematics, motion planning, wrench closure, safety, and

feedback control.

An alternative approach is to carefully design and structure a policy class to guarantee de-

sirable properties (e.g., stability, joint and torque limits, and safety constraints) while exploit-

ing properties of a broad class of target tasks to support sample-efficient learning. The most

historically important such policy class is Dynamic Movement Primitives, or DMPs [109, 48],

which have been used to learn an impressive range of dynamic behaviors [63, 88] in tens

or low hundreds of interactions, though they must typically be bootstrapped by an expert

demonstration trajectory [9]. The key assumption underlying DMPs is that dynamic mo-

tions can be represented largely as a trajectory shape—represented separately for each joint,

as a linear combination of learned weights with basis functions over time—coupled with a

second-order dynamical system that safely and stably controls the robot towards the shape

trajectory.

Other important policy classes overcome the standard shortcomings of DMPs. For exam-

ple, Probabilistic Movement Primitives [93] learn a distribution over basis functions, so that

variability across demonstrations and different DoFs are captured. Conditional Movement

Primitives [111] encode demonstrations as a whole with high dimensional task parameters by

a deep network, and in RL setting, safety and stability are achieved by encoding exploration

trajectories into the same latent space [6] or coupling it with external controllers [5]. However,

these approaches rely on demonstrations. Riemannian Motion Policies (RMPs) [25, 102] sup-

port combining multiple (second-order dynamical system) controllers defined in potentially

different task spaces in a natural way to obtain a single controller that combines their effects

in the joint space. RMPs provide a principled approach for integrating multiple concurrent

controllers but have yet to see wide success in contact-rich manipulation tasks [112, 130].

An important consideration for motor learning is at what level of control and in which

space the policy’s action space operates at. Approaches that learn low-level controllers by

directly mapping to joint torque or velocities [77] can optimize across the entire space of pos-

sible motor behaviors resulting in highly efficient behaviors, but can require a large number

of samples because of the large policy space, as well as potentially exploring behaviors with



Chapter 2. Background 8

undesirable properties. A popular choice of high-level action spaces for contact-rich manipu-

lation are those that combine end-effector control (for position control) with impedance con-

trol (for compliant force control), which enable the robot to map to actions in the task-relevant

space (e.g. SE(3)) and explore safe and useful policies for interaction. Examples of such action

spaces include Variable Impedance Control in End-Effector Space (VICES) [85] and hierarchi-

cal approaches like Cartesian Adaptive Force-Impedance Control (AFORCE) [124].

2.1.2 Motion Planning

The pose of an articulated rigid body can defined by the state of each of its movable joints. The

space of these poses is called the configuration space C [83]. Motion planning is the problem

of finding a path (sequence of poses) through configuration space such that the articulated

object is moved to a desired goal configuration, without encountering a collision.

While there exist many different families of motion planning algorithms, such as geomet-

ric, grid-based, and probabilistic road maps [76], they all operate in a similar fashion: given

a configuration space C and start and goal joint configurations q0, q⇤ 2 C, return a valid path

of joint configurations {qt}T
t=0 between the start and end configurations. We focus on sample-

based motion planning approaches.

Probabilistic motion planners provide a principled approach for quickly generating collision-

free robot trajectories. However, online replanning is expensive, and kinematic motion plan-

ners are only as effective as their kinematic models are accurate: they generate trajectories

directly, and thus cannot be improved through subsequent interaction and learning. Further-

more, kinematic planners produce trajectories that only account for kinematics, not dynamics:

they explicitly do not account for forces involved in motion, such as friction, inertial forces,

motor torques, etc, which are important for effectively performing contact-rich, dexterous

manipulation.

The process of computing the position and orientation p 2 SE(3) of a link in a kinematic

chain for a given joint variable setting (a point in configuration space) is termed forward kine-

matics. Inversely, computing a configuration to attain a specific end effector pose p is termed

inverse kinematics. We denote the forward kinematics functions p = f (q).



Chapter 2. Background 9

2.1.3 State Abstractions for Planning

We are interested in learning an abstract representation that facilitates planning. A probabilis-

tic plan p is sequence of (potentially abstract) actions to execute from states sampled from

a distribution Z: p = {o1, ..., opn}. A suitable representation for planning must enable the

agent to correctly evaluate the probability of a plan. Since a plan is a sequence of options to

be executed, it is necessary and sufficient to learn when an option can be executed (known

as the preconditions, which represent the probability the agent can execute the option from a

given state) and what the result of executing an option is (known as the image operator, which

represents the distribution over states the agent will be in after executing the option from a

starting state set). Computing the image operator for arbitrary options is challenging for con-

tinuous state spaces; however, it is tractable for a subclass of subgoal options [98]: A subgoal

option’s resulting state distribution after executing the policy is independent of the starting

state, so Pr(s0 |o, s) = Pr(s0 |o), so computing the entire image operator can be substituted with

representing the effect of executing the option (the distribution over states the agent will be in

after executing the option), Effect(o). If an option does not satisfy the subgoal condition, the

state space can be partitioned into classes C such that P(s0 |o, s, c) u P(s0 |o, c)8c 2 C, which

corresponds to |C| subgoal options.

If all options modify all state variables simultaneously, then the resulting abstraction can

be represented as a graph. However, if an option only modify a subset of state variables—the

option’s factors—then the abstract state space is expressible using a factored classical plan-

ning representation like PDDL [66]. In this formulation, preconditions and effects can be

represented by propositional symbols (which constitute an abstract state space), and actions

are expressed as operators on the propositional symbols.

When the options are portable, the precondition and effect symbols are defined over the

observation space D instead of the state space S. While this enables the options and symbols

to be ported across different tasks, there is the issue that goals specified in the state space may

be aliased due to symbols defined in the observation space, making it infeasible to correctly

evaluate the probability of a plan using the abstract model. To address this issue, a two stage

approach is used to learn a portable symbolic vocabulary and generate a forward model: first,



Chapter 2. Background 10

propositional symbols of the options over the observation space D are learned in a training

environment (resulting in parameterized symbols), then in a test environment, the portable

options are partitioned based on the effects in the state-space to make them subgoal in both

S and D. We defer the details of this process to James et al. [51, 52], and note that we use a

similar approach for constructing our portable symbolic vocabulary.

This formulation for learning abstractions has been used by several real robots to perform

complex tasks [66, 7, 41], but is generic and does not exploit any structure present across the

family of tasks a real robot faces. As a consequence, it takes too long to learn the abstractions

to be practical (e.g., several hours and over a hundred skill executions to learn a representation

for a single small room [66]), and it assumes the robot is already equipped with a complete

set of action abstractions for the particular environment it faces.

2.2 Semantic Maps

Numerous previous works have combined low-level metric maps with high-level topological

and semantic information [126, 99, 68, 91, 13, 114, 43], but with a focus on navigational tasks.

Various works have made semantic map representations that use a hybrid of metric, topo-

logical, and conceptual representations [126], and incorporated human input to improve and

teach these representations for the purpose of navigation [114, 13, 99]. Most notably, Pronobis

and Jensfelt [99]’s semantic map representation has place appearance and geometry, object

information, topology, human input, segmentation, conceptual maps, uncertain concepts, in-

ferred properties, and autonomously acquired concepts. However, Pronobis and Jensfelt [99]

do not learn object manipulation requisites, such as grasp points, termination sets, and motor

policy representations, and only focus on information necessary for effective localization and

navigation.

Previous works have learned object representations that do contain information that is

used for object manipulation planning [129, 71, 15, 101, 97], but do not consider learning se-

mantic map representations of their environment in the process. Object-Action-Complexes

(OACs) [129, 71], which consider objects and action representations to be intertwined by cap-

turing interactions between objects and associated actions, allow the agent to acquire object



Chapter 2. Background 11

knowledge about the world through predicting changes in the world via agent interaction.

While OACs provide a symbolic representation of sensormotor experience for objects, they

do not have sufficient information about the environment to generate maps for the use of

navigation. Beetz et al. [15] present an impressive knowledge-base, KNOWROB2, which in-

corporates components like perception, learning, and reasoning to achieve complicated ma-

nipulation tasks like making a pizza. While KNOWROB2 is able to learn what robot poses

in a map of the environment are useful for actions like suitable grasps, it requires access to

an “inner world” of the environment with symbolically-annotated objects with the map, and

does not address how to learn such a detailed and accurate semantic map representation of

the environment. More importantly, KNOWROB2 does not represent actions in local object

frames, which is crucial for leveraging the MR interface and teacher input.

2.3 Mixed Reality for Human-Robot Interaction

MR-HMDs show great promise for facilitating human-robot interaction, and have been used

for communicating robot motion trajectories [103, 125, 23] and specifying robot commands

[46]. Beyond their improvements to speed, accuracy, and mental workload over baselines

[103], MR-HMDs also enable the human to share the same space as the robot and interact with

a virtual environment instead of having to interact with the real, physical robot [38]. While

projector-based approaches are also a powerful tool for facilitating human-robot interaction

[20], they require structured environments and are unable to highlight free 6D space because

they must project onto a surface, which is limiting in the case where a human must teach

spatial attributes (like a grasp pose) for planning.

While some previous work has used MR-HMDs to have robots learn from humans, it has

only focused on simple pick and place tasks, and not on using the MR interface to learn requi-

site information needed for complex object manipulation and navigation [38, 72]. Gadre et al.

[38] designed an MR interface to enable end-users to program robot motions via waypoint

specification for the purpose of pick and place, and Krupke et al. [72] designed a MR interface

for a similar task, but instead manipulated virtual items in the workspace to specify place



Chapter 2. Background 12

locations. While these works demonstrate the capability of learning with MR, they focus on

how such an interface compares to other modalities (like 2D monitor interfaces).



13

Chapter 3

Composable Interaction Primitives for

Sustained-Contact Manipulaton

3.1 Introduction

The unique potential of robots lies in their ability to do physical work in the world—every

process that currently requires a human to meaningfully interact with a physical object can

only be automated by a robot. Despite this immense potential value, only a tiny fraction of

the physical manipulation tasks that can be automated currently are [69]. There are multiple

causes of this failure, but one of the most acute is that robots are currently not as flexible as

humans in their ability to learn to interact with objects around them. A human factory worker

can be trained to basic proficiency in an unfamiliar new task in a day; skillful and reliable

execution of rote manual labor tasks rarely requires longer than a few weeks. Achieving

the same level of flexibility, reliability, and skill in robots requires major advances in their

learning capabilities, so that a robot can be trained to solve a new task, and subsequently

improve its own performance, in a reasonable amount of time without the support of expert

programmers. How can robots efficiently learn action abstractions for object manipulation in

an autonomous manner?

To answer this question, this chapter investigates designing a highly structured policy

class [48, 25, 102] to achieve sample-efficient learning, thereby trading design effort, flexibility,

and generality for sample efficiency. Such approaches have been used to learn an impressive

range of dynamic behaviors [63, 88] in a feasibly low number of interactions, but are best



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 14

suited for targeting a restricted class of motor skills where there is structure to be exploited

and sample efficiency is paramount.

This chapter’s focus is on one such class, sustained contact manipulation skills—where a

robot must establish stable contact (in the form of a grasp) with an object in order to change

its state, and sustain that contact throughout execution. Examples of such tasks include open-

ing a drawer, pulling a lever, turning a doorknob, opening a door, turning a wheel, or shifting

gears. We introduce a new policy class, Composable Interaction Primitives (or CIPs), that draws

from the best of both motor skill learning approaches: it exploits the structure present in sus-

tained contact tasks, resulting in a policy class that is structured, safe, and highly parameter-

(and therefore data-) efficient; and then applies deep networks to the components where

learning from high-dimensional input is unavoidable. Additionally, CIPs are sequentially

composable by construction, so that learned skills can be sequenced to solve new tasks in an

order determined at runtime by a task-level planner. Using an ablation experiment in four

simulated manipulation tasks, we experimentally explore the role of structure in manipula-

tion skill learning, and show that the components of CIPs substantially improve learning effi-

ciency and safety. We then demonstrate the use of CIPs to efficiently learn, and subsequently

sequence on-demand, two real sustained-contact manipulation skills.

3.1.1 Related Work

To our knowledge, our method is the first to use an object’s estimated kinematics in conjunc-

tion with a known robot dynamics model to bootstrap motor policy learning, and we discover

and discuss important problems that are only introduced when leveraging policy-learning al-

gorithms, behavioral-cloning, and motion planning algorithms to do so. In this section, we

discuss relevant approaches to motor skill learning.

Recently, Model-Predictive Control (MPC) has been used in the context of imitation learn-

ing and reinforcement learning to address the high sample complexity of policy search [58, 92].

These approaches require a priori object dynamics, or human demonstrations to fit learned

models; in constrast, our approach requires only object kinematics, which are much more

readily estimated from visual data at runtime [2, 80]. As such, our approaches enables the



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 15

learning of manipulation skills to be more autonomous than existing MPC-based methods.

Tosun et al. [122] proposed a neural network model for generating trajectories from images,

using a motion planner during training to enable the robot to generate a trajectory with a sin-

gle forward pass at runtime. While this approach uses a motion planner for behavior cloning,

it stops short of optimization to improve the resulting policy. In constrast, our method uses

object kinematics to produce initial trajectories, while Tosun et al. [122] only use the robot’s

kinematic model, which is insufficient when the task is to manipulate an object to a specific

joint configuration.

While classic robot motor learning papers [11] leverage the known kinodynamics of the

robot, they do not discuss kinematics of external objects or grasp candidates to bootstrap

motor policies for object manipulation. We emphasize that we cannot form dynamic plans in

the problem setting we are interested in: objects with unknown a priori dynamics.

Kurenkov et al. [74] proposed training an initially random RL policy with an ensemble of

task-specific, hand-designed heuristics. This improves learning but the initial policy is still

random, yielding potentially unsafe behavior on real hardware, and delaying convergence to

a satisfying policy. By contrast, we choose to initialize the policy with demonstrations from

a kinematic planner, ensuring feasibility, safety, and rapid learning. Moreover, we argue that

motion planning is the principled heuristic to use to accelerate learning, as it is capable of

expressing manually programmed heuristics like reaching and pulling. Finally, our approach

can use the existing estimated object kinematics to provide a principled reward signal for

model-free reinforcement learning.

Recently, residual reinforcement learning approaches have been developed which learn a

policy superimposed on hand-designed or model-predictive controllers [113, 55]. Our method

is compatible with these approaches, where demonstrations from the motion planner can be

used as a base policy on top of which a residual policy can be learned based on kinematic

rewards. These methods typically suffer from the same limitations as MPC-based methods

mentioned above.

Guided Policy Search (GPS) [78] uses LQR to guide policy search into high-reward regions

of the state-space. The models employed are fundamentally local approximations, and thus



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 16

would benefit greatly from a wealth of suboptimal demonstrations from the outset (as made

evident by Chebotar et al. [24]). GPS is one of the state-of-the-art algorithms we expect to

be used within our framework as the policy search implementation (Section 4.2.2). A critical

distinction between our work and GPS is the notion of planning trajectories in object con-

figuration spaces and reasoning about grasp candidates to achieve a desired manipulation.

This is done using information available apriori, and thus is immediately capable of gener-

ating high-value policies, whereas GPS is estimating dynamics models given observed data

(obtained either from demonstration or random initialization). In the absence of a human

demonstrator, our method would provide far more useful data at the outset of learning than

running a naively initialized linear-gaussian controller (as evidenced by our comparisons to

random initialization). The ideas proposed in our paper are distinct from those put forth

in GPS: we present a method for obtaining demonstrations under certain conditions in the

absence of a human.

Most similar to our line of work are those that use sample-based motion planners for im-

proved policy learning. Jurgenson and Tamar [56] harness the power of reinforcement learn-

ing for neural motion planners by proposing an augmentation of Deep Deterministic Policy

Gradient (DDPG) [81] that uses the known robot dynamics to leverage sampling methods

like RRT* to reduce variance in the actor update and provide off-policy exploratory behavior

for the replay buffer. However, Jurgenson and Tamar [56] are only able to address domains

where they can assume good estimates of the dynamics model, such as producing free-space

motions to avoid obstacles. Our setting, in contrast, focuses on object manipulation, where

dynamics are not readily available, but are critical for learning good policies. Jiang et al.

[54] address learning to improve plans produced by a motion planner, but do not bootstrap

closed-loop policies. Motion planners aren’t expressive enough to leverage the dynamics in

object-manipulation tasks, especially in the presence of unknown dynamics, and traditionally

are unable to handle perceptual data like RGB images. Our method, on the other hand, en-

ables motion planning to bootstrap policies that are more expressive than the original planner.



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 17

3.2 Approach

We identify four important properties present in sustained-contact motor skills. First, skill

execution can be decomposed into phases: the robot first moves through free-space to reach a pre-

grasp pose, then achieves a stable grasp, then manipulates the object, then releases its grasp,

and finally controls its gripper back into free-space. Second, most phases involve little or no per-

task learning: motion through free-space and to achieve or release a grasp can be computed

using motion planning and feedback control, respectively; the choice of where to grasp the

object is a supervised learning task that can be resolved (or at least bootstrapped) using a

generic grasp detector. Only the sustained-contact controller itself need be largely learned

on a per-task basis, though it could be bootstrapped using learning from demonstration [9]

or kinematic motion planning [3]. Third, the sustained-contact controller itself requires structure:

the controller must be a function of force- and tactile-feedback, learned using reinforcement

learning; the goal of learning should be to reach a task-specific goal (e.g., opening a door, or

switching a light on) while avoiding task-general failure modes (like losing contact with the

object or becoming stuck); and during learning the policy should be able to explore while

being position and torque constrained so as to never damage the robot or the object. Finally, a

natural means of composition is through free-space motion planning: motor skills can be sequenced

by simply motion planning from one skill’s release point to another skill’s grasp point.

We therefore propose Composable Interaction Primitives (CIPs), a new policy class structured

by these insights and aimed at learning composable sustained-contact manipulation skills

in tens, rather thousands, of real-world interactions. CIPs are structured as a tuple, where

components subscripted by c are specific to the task, and the remainder are specific to the

robot but generic across tasks:

C = (pc, s, bc, Ic, h, t, B) ,

where:

• pc : f ! t is a motor control policy that maps tactile sensor signals, proprioceptive

data, and object state information f to joint torques t.



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 18

• Policy pc is constrained by s, a safety envelope specific to the robot joint space but not

to the task. Learning and execution are constrained to obey s so that the agent does not

damage the object it is interacting with or itself.

• bc : f ! {0, 1} is a task-specific success indicator that maps the robot’s observations f

to a boolean indicating whether the interaction primitive has achieved its goal.

• B is a task-general classifier indicating interaction failure (e.g., that contact has been lost,

the interaction has timed out, or execution cannot continue without a safety constraint

being violated). Once initiated, pc continues execution until either bc indicates success

or B indicates failure. The resulting signal informs a policy search algorithm to optimize

pc.

• Ic : v, g ! [0, 1] is the grasp initiation set, a probabilistic classifier conditioned on visual

data v that maps end-effector poses g to the probability with which executing pc from

grasp g terminates in bc (success) as opposed to B (failure).

• h and t are the head and the tail, motion planners that control the robot through free

space to achieve a grasp generated by Ic, and extract the robot from contact back into

free space—or into the head of another skill—after the skill terminates, respectively.

These serve to establish and break contact, and to sequence skills: the tail of one skill

simply becomes the head of another.

For most tasks, we envision that all the skill components are given or designed except

pc and Ic, which leads to a problem of jointly learning a policy and affordance model for

functional grasping. The CIP model structures the motor skill learning problem so that: only

motor control involving contact with the object is learned, and free-space motion is generated

using a planner; interaction with an object is always safe; and motion planning is used for the

remainder of motor control, especially to stitch motor skills together. At the same time, the

components that must be learned offer natural opportunities for incorporating powerful deep

network methods to learn rich sensorimotor policies. The result is small, isolated pockets of

motor skill learning connected by much longer trajectories generated by a motion planner.



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 19

3.2.1 Instantiating CIPs

One benefit of the CIP framework is that its different components may be chosen to match the

robot hardware it is being instantiated on. We now detail our specific choices of component

instantiations used in the experiments (described in Section 3.3) as an illustrative example.

Motor control policy pc. Our examples use sensor input from the touch sensors on the

robot’s grippers, the joint and Cartesian state of the robot, and object joint state, which are

fed into a two-layered multi-layered perceptron (MLP) with 64 hidden nodes. For the action

space, we chose to have the robot command the end-effector in Cartesian space while main-

taining compliance with external forces, to promote ease-of-learning and safety during sus-

tained contact. We therefore selected the Variable-Impedance Control in End-Effector Space

[85] scheme as our action space. Motor policy pc maps sensor readings f to a desired delta

end-effector position pd and desired rotation Rd, as well as commanded stiffness terms kp
p and

kR
p for position and rotation respectively. These terms are then use to directly map to joint

torques t via:

t = Jp[Lp[k
p
p(pd � p)� kp

dv]] + JR[LR[kR
p (Rd ⇥ R)� kR

d w]], (3.1)

where Lp and LR are the position and orientation components of the inertia matrix L 2 R6⇥6

in the end-effector frame, Jp and JR are the position and orientation components of the end-

effector Jacobian J, and Rd ⇥R corresponds to subtraction in SO(3). kp
d and kR

d are the damping

values for position and rotation respectively, and are set with a damping ratio of 1 (critically

damped). We also map directly to the gripper state g 2 R, with �1 being fully opened at 1

being fully closed. The resulting action space is therefore 13 dimensional.

Safety envelope s. We limit the maximum value of stiffness parameters kp
p and kR

p , so that

the robot remains compliant and does not generate high torque values when it contacts the

object. In addition, the torques are clipped if they exceed the allowed range. In order to pre-

vent joint limit violations, we use a two-fold strategy with two threshold parameters, s1 and



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 20

s2 (s1 > s2), that check how close the robot joints are to its limits. If a joint position qi ex-

ceeds its threshold s1, we switch to a null-space controller [61] that attempts to move qi away

from its limit without changing the end-effector pose. If the robot nonetheless exceeds s2 at

joint index i (e.g. due to a high enough initial velocity to overcome the null-space controller),

the controller generates a torque in the opposite direction for qi to attempt to return to a safe

configuration.

Task-specific success indicator bc. These were designed by hand for each task, and return

true when the object’s joints are above a threshold.

Task-general failure classifier B. In our case, B simply served as a joint limit safety check:

if the robot is within 5 degrees of its joint limits, the classifier returns true and the learning

episode ends early. Episodes are also terminated early if the agent loses contact with the object

for sufficiently many timesteps.

Grasp initiation set Ic. In each case, the visual data v is represented as a point cloud of

the scene, which is segmented to only include the part of the object that the robot should

manipulate. An existing task-general grasp generator by ten Pas et al. [121] is used to sample a

set of grasp poses G based on the normals calculated from the point cloud. Each grasp g 2 G is

then checked for reachability and collision, and the stability of the grasp for sustained-contact

manipulation is evaluated by using a random noise policy to jiggle the gripper at the grasp

pose g, and then the gripper is checked to still be in contact with the object. Grasps g which

pass all these checks are added to a list of acceptable grasp poses that define the domain of Ic.

For sampling a grasp pose g 2 Ic for the head h during learning, we propose treating grasp

pose sampling as a bandit problem that is solved with Upper Confidence Bounds (UCB) [116]

where Q-values are task success rates. We therefore treat learning Ic and sampling grasp poses

as an active-learning problem, and purposely choose UCB since it is particularly well-suited

to balance exploration and exploitation.

Once a grasp pose g is sampled, we repeatedly solve inverse kinematics to obtain a joint

configuration q with high manipulability. A manipulability score is computed for a joint



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 21

(A) Open door task (B) Slide knob task (C) Open drawer task (D) Flip lever task

FIGURE 3.1: Simulation Task Environments

configuration q as the product of two values: 1) the manipulability index introduced by

Yoshikawa [131] that analyses the size of the manipulability ellipsoid: w =
p

det(J JT) where

J is the Jacobian for a particular joint configuration q, and 2) a penalization term introduced

by Tsai [123] based on the distance to the upper and lower joint limits for a particular joint

configuration q:

P(q) = 1 � exp(�k
n

’
j=1

(qj � l�j )(l
+
j � qj)

(l+j � l�j )2 ), (3.2)

where l�j and l+j are the lower and upper joint limits for joint j. When these two metrics are

multiplied together, they capture for a joint configuration q how close the robot’s end-effector

is to a singularity and how close the robot’s joints are to joint limits, respectively, which is

termed the manipulability value.

Motion planners h and t. These were instantiated for each domain using the TRAC-IK in-

verse kinematics solver [14] and a basic grasping controller for establishing contact at the

grasp pose sampled from the grasp initiation set Ic.

3.3 Experiments

We evaluate the CIP framework in simulation using Robosuite [132]. We conducted experi-

ments on four different articulated object tasks: opening a door, opening a drawer, sliding a

knob, and lifting a lever.

The state space for our policy is the state of the object, the position and velocities of the

robot’s joints, and tactile readings from the force sensors at the robot’s grippers. We use TD3



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 22

[37] as our actor-critic method. To incorporate exploration during learning, we add Gaussian

noise parameterized with 0 mean and 0.05 standard deviation to the policy. We use the Adam

optimizer with a learning rate set to 0.0001.

Our reward function is a dense reward based on the state of the object and how much its

joint has progressed towards the goal, which leverages potential-based reward shaping [90]

to ensure the optimal policy is not changed compared to the sparse reward setting based on

success. Training episodes are ran for a maximum of 250 steps each, and trained for a total of

25, 000 training steps, which result in 100 � 1000 training episodes depending on the task and

experiment conditions. We evaluate the policies performance every 10 training episodes with

10 policy roll-outs.

We consider two evaluation metrics: 1) Task Success Rate, which measures how success-

ful the policy is at manipulating the object, and 2) Joint Limit Violation Rate, which is a proxy

measure for how safe the policy is. To analyze how each of the structures of CIP impact these

metrics, we run 5 ablations that incrementally include structure described in Section 3.2.1:

1. Unstructured: This setting is a baseline that incorporates none of the CIP structure. The

robot begins in a home pose with no contact to the object, and must learn a complete

policy for moving to the object and manipulating it.

2. Head: This setting is a baseline that incorporates the head hc structure of the CIP. The

agent has access to the domain of the grasp initiation set Ic, but samples grasp poses

randomly and chooses random valid joint configurations.

3. Safety: This baseline extends the Head setting to additionally incorporate the safety

envelope.

4. Manipulability Value (MV): This baseline extends the Safety setting, and additionally

incorporates the manipulability value into the sampling approach for Ic, which adds

additional structure on top of the Head approach. After sampling a random grasp, we

sample a set of inverse kinematics solutions and select the one with the highest manip-

ulability value.



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 23

(A) Success rates for simulated tasks (Door, Slide, Drawer, Lever).

(B) Joint limit violation rates for simulated tasks (Door, Slide, Drawer, Lever).

FIGURE 3.2: Task success rates and joint limit violation rates vs. the number of
training episodes. The shaded region around the average is the 95% confidence

interval over 5 seeds.

5. CIP: This setting incorporates all the structure of the CIP. Specifically, it extends the MV

approach to additionally perform active learning with UCB over grasp poses.

3.4 Results

The results for all our experiments are in Figure 3.2, where we show the best-to-date perfor-

mance for both metrics across all the tasks. Across all the tasks, the Unstructured baseline

performs the worst and is unable to learn any meaningful policy, and also has many joint vi-

olation rates throughout learning. This is expected as exploration is extremely challenging in

the absence of a strong reward signal for reaching the object and making contact. We also see

that once the head of the CIP is incorporated (the baseline with minimal additional structure

being Head), the agent is able to start achieving some amount of task success, but still encoun-

ters many joint state violations throughout the learning process. The Safety baseline is able

to achieve a task success rate on par with Head, but is able to significantly reduce the num-

ber of joint state violation rates during learning. The MV baseline has improved task success



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 24

over the Head baseline, which demonstrates the usefulness of incorporating the manipula-

bility value when selecting joint configurations for sustained-contact manipulation tasks, but

still has trouble learning an effective policy for the Lever and Drawer task in a small num-

ber of training episodes. Once the full structure of the CIP is incorporated (CIP), the agent

is able to rapidly learn a policy with a high success rate (at least an average of 80%) within

100 training episodes. These results demonstrate that each structural component of the CIP is

useful for ensuring that the agent is able to safely and efficiently learn across a diverse set of

sustained-contact manipulation tasks.

3.4.1 CIPs for multi-step plan execution

One of the advantages of the CIP structure is it enables zero-shot composition by construction.

The motion planning performed via the head h and tail t enable a robot to learn sustained-

contact manipulation skills in isolation using a model-free learning algorithm, and then se-

quentially execute the skills when multiple objects are in the scene with no additional learn-

ing necessary. This is particularly useful when an agent performs high-level planning with

the skill repertoire, since a plan involves composing actions together in sequence. We show a

demonstration of this behavior in Figure 3.3, where the agent has been trained to separately

slide a knob and open a door, and is now placed in a scene that has both. When tasked with

a plan that involves first sliding the knob and then opening the door, the robot is able to use

the head h to first motion plan to grasp the slide knob, execute the slide knob policy, and

then motion plan to the grasp the door handle to finally execute the open door policy before

returning to free space using the tail t.

FIGURE 3.3: Two CIPs executed in succession.



Chapter 3. Composable Interaction Primitives for Sustained-Contact Manipulaton 25

3.5 Conclusion

We proposed a new policy class for sustained-contact manipulation skills: Composable In-

teraction Primitives (CIPs). CIPs are designed to exploit readily-accessible structure in the

world and robot to enable sample-efficient and safe policy learning, and be easily leveraged

by high-level planners due to their sequential composability via motion planning. By exploit-

ing the spatial structure, we enable robots to autonomously learn action abstractions for object

manipulation in a safe and sample effecient manner.



26

Chapter 4

Bootstrapping Motor Skills with

Motion Planning

4.1 Introduction

Using RL to enable robots to autonomously acquire motor skills is important, but is a much

more challenging problem than the supervised learning regime. Supervised approaches for

policy learning like Learning From Demonstration (LfD) [10] can encode human prior knowl-

edge by imitating expert examples, but do not support optimization in new environments.

Combining RL with LfD is a powerful method for reducing the sample complexity of pol-

icy search, and is often used in practice [78, 100, 26, 108]. However, this approach typically

requires a human demonstrator for initialization, which fundamentally limits the autonomy,

and therefore utility, of a robot that may need to acquire a wide range of motor skills over its

operational lifetime. More recently, model-based control techniques (including Model Predic-

tive Control [92] and LQR [78]) have been proposed as exploration methods for policy search;

these methods still require human demonstrations or complete dynamic models of both the

robot and every object in the scene. This chapter addresses the question: how can robots

leverage supervised learning techniques to improve the abilities of robots to autonomously

acquire manipulation skills?

We propose the use of kinematic motion planning to initialize motor skill policies. While

previous work has leveraged sample-based motion planners for learning motor skills [122, 56,

54], they only focus on either free-space motions or do not learn a closed-loop controller. To



Chapter 4. Bootstrapping Motor Skills with Motion Planning 27

(A)

(B)

FIGURE 4.1: A robot using our method to autonomously learn to close a mi-
crowave that is out of reach. (a) The robot uses a motion planner to generate
an initial attempt at closing the microwave door using a kinematic model of
the microwave. The resulting plan is unable to fully close the microwave door
because of the robot’s limited reach. (b) After bootstrapping a motor skill with
the trajectory from (a), the robot learns a motor skill that gives the door a push,

exploiting its dynamics to fully close the microwave.



Chapter 4. Bootstrapping Motor Skills with Motion Planning 28

our knowledge, this is the first use of motion planning to provide initial demonstrations for

learning closed-loop motor skill policies by leveraging estimated object kinematics.

We show that given a (potentially approximate, and readily estimated) kinematic descrip-

tion of the environment and the robot, off-the-shelf motion planning algorithms can gener-

ate feasible (potentially successful but inefficient) initial trajectories (Figure 4.1a) to bootstrap

an object-manipulation policy that can subsequently be optimized using policy search (Fig-

ure 4.1b). This framework enables the robot to automatically produce its own demonstra-

tions for effectively learning and refining object manipulation policies. Our work enables the

robot to exploit kinematic planning to realize the benefits of an initial demonstration fully

autonomously.

To evaluate our method, we used two different motor policy classes (Dynamic Movement

Primitives (DMPs) [49] and deep neural networks [79]). We compared bootstrapping with

motion planning against learning from scratch in three simulated experiments, and against

human demonstrations in real hardware experiments. We show that motion planning using a

kinematic model produces a reasonable, though suboptimal, initial policy compared to a su-

pervised human demonstration, which learning adapts to generate efficient, dynamic policies

that exploit the dynamics of the object being manipulated. Our method is competitive with

human-demonstrated initialization. It serves as a suitable starting point for learning, and sig-

nificantly outperforms starting with a random policy. Taken together, these results show that

our method is competitive with human demonstrations as a suitable starting point for learn-

ing, enabling robotics to efficiently and autonomously learn motor policies for dynamic tasks

without human demonstration.

4.1.1 Related Work

An Action-Oriented Semantic Map is a spatial data structure that provides sufficient informa-

tion for synthesizing a navigation stack with a motion planner to support task planning with

manipulation skills. Because of this, our work is related to the Task and Motion Planning

(TAMP) literature.



Chapter 4. Bootstrapping Motor Skills with Motion Planning 29

TAMP solutions integrate high-level discrete task planning with low-level continuous

multimodal motion planning to induce a planning hierarchy where different specialized plan-

ning and learning algorithms can advantage of the structure present at each level [57]. Garrett

et al. [40] introduced the concepts of transit modes (when the robot is not in contact with any

object) and transfer modes, (when a robot is in contact with an object), which is closely related

to our intuitive notions of the distinction between navigation and manipulation. Similarly,

Wolfe et al. [128] propose a vertically integrated hierarchical task network for combined task

and motion planning for mobile manipulators which has built-in structure for suggesting lo-

cations the mobile base should be in to execute a pick and place action. Rather than assume

the given state abstraction is sound for a particular task, we formalize a data structure that

captures this regularity in task and motion planning for mobile manipulators and prove un-

der what conditions it is sufficient for planning with a given set of manipulation skills. Most

similar to our work in the TAMP literature are approaches that attempt to leverage semantic

maps for improving task and motion planning. Galindo et al. [39] investigate how seman-

tic maps can act as a hybrid knowledge base for task and motion planning in the context of

navigating around an environment. This work is similar to ours in that Galindo et al. [39]

use a semantic map to improve task planning, but differs in that they only extract additional

information from a semantic map, while we identify a new data structure (an AOSM) that is

built-on top of a semantic map and is provably sufficient for supporting planning with a set of

manipulation skills. Kuipers [73] proposed the spatial semantic hierarchy, which is a model

of knowledge for large-scale spaces that organizes qualitative and quantitative information

in a hierarchical fashion on top of geometric and semantic map information. Within the con-

text of a spatial semantic hierarchy, an AOSM can be constructed to aid with providing target

locations to the navigation control laws for supporting manipulation skills.

4.2 Bootstrapping Skills with Motion Planning

Our methodology is inspired by how humans generate reasonable first attempts for accom-

plishing new motor tasks. When a human wants to learn a motor skill, they do not start by

flailing their arms around in a random fashion, nor do they require another person to guide



Chapter 4. Bootstrapping Motor Skills with Motion Planning 30

their arms through a demonstration. Instead, they make a rough estimate of how they want

an object to move and then try to manipulate it to that goal. For example, before being able to

drive stick shift, a human must first learn how to manipulate a gear shifter for their car. Just

by looking at the gear shifter, humans can decide (1) what they should grab (the shaft), (2)

where they want the shaft to go (positioned in a gear location), and (3) how the shaft should

roughly move throughout the action (at the intermediate gear positions). Similarly, a robot

that has a good kinematic model of itself, and a reasonable kinematic model of the object it

wishes to manipulate, should be able to form a motion plan to achieve the effect it wishes to

achieve.

That plan may be inadequate in several ways: its kinematic model may be inaccurate, so

the plan does not work; object dynamics (like the weight of a door, or the friction of a joint)

may matter, and these are not represented in a kinematic model; or a feasible and collision-

free kinematic trajectory may not actually have the desired effect when executed on a robot

interacting with a real (and possibly novel) object. These are all the reasons why a novice

driver can immediately shift gears, but not very well. But such a solution is a good start; we

therefore propose to use it to bootstrap motor skill learning.

Our approach, outlined in Figure 4.2, leverages the (partial) knowledge the robot has about

its own body and the object it is manipulating to bootstrap motor skills. Our method first as-

sumes access to the configuration space of the robot, denoted as CR, as well as its inverse

kinematics function f�1
R . This assumption is aligned with the fact that the robot often has an

accurate description of its own links and joints and how they are configured during deploy-

ment. However, the world is comprised of objects with degrees of freedom that can only be

inferred from sensor data. Therefore, our approach only assumes access to estimated kine-

matics of the object to be manipulated, in the form of configuration space CO and forward

kinematics fO. Recent work has shown that estimating these quantities for novel objects from

sensor data in real environments is feasible [2, 80], though state-of-the-art estimates still in-

clude noise.

Finally, our approach assumes that the task goal can be defined in terms of kinematic states



Chapter 4. Bootstrapping Motor Skills with Motion Planning 31

FIGURE 4.2: System overview illustrating our proposed framework for generat-
ing demonstrations with a motion planner and subsequently performing policy

search. The dashed box contains the steps from Algorithm 2.

of the robot and environment. Examples of such tasks include pick-and-place, articulated ob-

ject manipulation, and many instances of tool use. (Note that this requirement cannot capture

reward functions defined in terms of force, for example exerting a specific amount of force

in a target location.) Such a goal, together with object and robot kinematics, enables us to

autonomously generate useful initial trajectories for policy search.

Our approach is outlined in Algorithm 1, and can broken down into five main steps: 1) col-

lect initial trajectories from a motion planner using estimated object kinematics, 2) fit a policy

with these initial trajectories, 3) gather rollouts to sample rewards for the current policy based

on the kinematic goal, 4) update the policy parameters based on the actions and rewards, 5)

repeat steps 3-4.



Chapter 4. Bootstrapping Motor Skills with Motion Planning 32

Algorithm 1 Planning for Policy Bootstrapping

1: procedure PPB(CR, f�1
R , CO, fO, q⇤O)

2: D  ?
3: for 0 to N do
4: D  D[ InitialMPDemos(CR, f�1

R , CO, fO, q⇤O)
5: end for
6: q  FitPolicy(D0, ..., DN)
7: for 0 to E do
8: T0, .., Tn  Rollout(p, q, q⇤O)
9: q  UpdatePolicy(T1, .., Tn, q)

10: end for
11: end procedure

Algorithm 2 Initial Motion Plan Demos

1: procedure INITIALMPDEMOS(CR, f�1
R , CO, fO, q⇤O)

2: TO  MotionPlanner(CO, q⇤O)
3: g EstimateGrasp(CO, fO)
4: eepath GraspPath(TO, CO, fO, g)
5: TR  MotionPlanner(CR, eepath, f�1

R )
6: return TR
7: end procedure

(A) Human Demo (B) Bootstrapped from (a) (C) Motion Plan Demo (D) Bootstrapped from (c)

FIGURE 4.3: Real-world Ball Hitting Images comparing bootstrapping motor
skills with a human demonstration vs. a motion planner on a real-world robot
hitting a ball off a tee. In both cases, the bootstrapped motor skill outperforms
the initial demonstration. Videos can be found in our supplemental video. (a)
A demonstration provided by a human teleoperating the robot. (b) A motor
skill bootstrapped by the human demonstration. (c) A demonstration provided
by a motion planner. (d) A motor skill bootstrapped by the motion planner

demonstration.



Chapter 4. Bootstrapping Motor Skills with Motion Planning 33

4.2.1 Fitting a Policy to a Demonstration

After collecting initial demonstrations from the motion planner, D, we can bootstrap our mo-

tor policy by initializing the parameters to the policy q using any behavioral cloning tech-

nique; in practice, we use Locally Weighted Regression [110] for DMPs, and maximize the

likelihood of the demonstration actions under the policy for neural networks.

4.2.2 Policy Search with Kinematic Rewards

To improve the motor policies after bootstrapping, we can perform policy search based on the

given (kinematic) reward function. Specifically, we choose a number of epochs E to perform

policy search for. For each epoch, we perform an iteration of policy search by executing the

policy and collecting rewards based on the goal q⇤O. We define our reward functions using

estimated object states qO and goal states q⇤O, and add a small action penalty.

4.3 Experiments

The aim of our evaluation was to test the hypothesis that motion planning can be used to

initialize policies for learning from demonstration without human input. We tested this hy-

pothesis in simulation against learning from scratch, and on real hardware, against human

demonstrations, on three tasks: microwave-closing, drawer-opening, and t-ball. We note that

we do not show asymptotic performance because our emphasis is on learning on real hard-

ware from a practical number of iterations. All the elements of the motion planner—state

sampler, goal sampler, distance metrics, etc.—are reused between problems without modifi-

cation.

4.3.1 Simulation Experiments

We used PyBullet [30] to simulate an environment for our object manipulation experiments.

We used URDFs to instantiate a simulated 7DoF KUKA LBR iiwa7 arm and the objects to be

manipulated, which gave us ground-truth knowledge of the robot and object kinematics. For



Chapter 4. Bootstrapping Motor Skills with Motion Planning 34

all our simulated experiments, we compared implementations of our method against starting

with a random policy.

For all three tasks, the state was represented as st = [qR, qO]T where qR denotes robot

configuration and qO denotes object configuration. The action space A was commanded joint

velocity for each of the 7 motors. The reward at each timestep rt was given as:

rt = �c ||q⇤O � qO||22 � aT
t Rat, (4.1)

where qO denotes the object state at time t, q⇤O denotes desired object state, and at denotes the

agent’s action. We set c = 60 and R = I⇥ 0.001 for all experiments. As such, maximum reward

is achieved when the object is in the desired configuration, and the robot is at rest.

Our first simulated task was to close a microwave door, which consisted of three parts: a

base, a door, and a handle. The pose of the handle was used for the EstimateGrasp method

in Algorithm 2. The robot was placed within reaching distance of the handle when the mi-

crowave door was in an open position, but was too far to reach the handle in its closed con-

figuration. Thus, the agent was forced to push the door with enough velocity to close it.

We used Gaussian policies represented as multi-layer perceptrons with two hidden layers of

sizes (32,32) in this experiment. The randomly initialized policy was optimized with natural

policy gradient [59]. Ten demonstrations were generated by perturbing the start state and

initial kinematic plan with Gaussian noise. The behavior cloning was performed by maxi-

mizing likelihood over the demonstration dataset for 10 epochs. Our pretrained policy was

optimized using Demo Augmented Policy Gradient [100], which essentially adds the behav-

ior cloning loss to the natural policy gradient loss, annealing it over time. This ensures that

the agent remains close to the demonstrations early in learning, but is free to optimize reward

exclusively as learning progresses. Results are shown in Figure 4.5a.

The second simulated task was to open a drawer (Figure 4.4). This task required the agent

to grasp the drawer’s handle and pull the drawer open.

Again, the pose of the object’s handle was used for EstimateGrasp method in our algo-

rithm. In this experiment, we used DMP policies. The weights, goals, and speed parameters

of the policies were optimized using PI2-CMA [115]. We used 32 basis functions for each of



Chapter 4. Bootstrapping Motor Skills with Motion Planning 35

(A) (B) (C)

FIGURE 4.4: Opening a Drawer experiment in simulation, where the robot
needs to apply enough force on the handle to slide the drawer open. (a) An
image of the starting pose of the robot arm and drawer. When learning from
scratch, the robot random explores for many steps before grasping the handle.
(b) An image of the robot using our method to produce an initial demonstration
from a motion planner based on the drawer’s kinematics. This demonstration
guides the robot to the handle, but ignores the dynamics of the heavy drawer
which leads to failure. (c) An image after the robot has bootstrapped a skill
with our method. The final policy learns to leverage the dynamics to precisely
grasp the handle and then produce a strong pulling force to open the drawer

completely.

the DMPs. The pretrained policy was initialized using Locally Weighted Regression (LWR)

[110] with a single demonstration. The results of this experiment are shown in Figure 4.5b.

The third simulated task was to hit a ball off a tee. The ball started at rest on top of the

tee. The pose of the ball was used in the EstimateGrasp method. The object state was defined

as the object’s y position relative to its initial pose. This is a poor initialization for a hitting

task because it is based only on the ball’s kinematics and ignores the dynamics involved in

swinging, resulting in low-return, but it is effective for bootstrapping policy search. This

experiment again used DMPs initialized with LWR and optimized with PI2-CMA. Results of

this experiment are visualized in Figure 4.5c.

The results of our simulated tasks can be found in Figure 4.5. Across all three tasks, we

observe that policies initialized with our method dramatically outperform starting learning

with a random policy. This confirms our hypothesis that using motion planning to generate

demonstrations significantly speeds the acquisition of motor skills in challenging tasks like

articulated object manipulation and t-ball.



Chapter 4. Bootstrapping Motor Skills with Motion Planning 36

(A) Microwave closing (MLP) (B) Drawer opening (DMP) (C) T-ball (DMP)

FIGURE 4.5: Simulation Results. a) Comparison of our method optimized with
DAPG against Natural Policy Gradient starting with a random policy in a mi-
crowave closing task using Gaussian multi-layer perception policies. b) Com-
parison of our method against PI2-CMA starting with a random policy in a
drawer opening task with DMP policies. c) Our method compared with PI2-
CMA with a initially random policy in t-ball with DMP policies. Results are
shown as mean and standard error of the normalized returns aggregated across

20 random seeds.

4.3.2 Real-world Experiments

For all our real-world experiments, we used a 7DoF Jaco arm [22] to manipulate objects (Fig-

ure 4.1). We used ROS and MoveIt! [28] as the interface between the motion planner (RRT*

[60] in our experiments) and robot hardware. For all real-world experiments, we compared

implementations of our method against bootstrapping with a human demonstration, which

we supplied.1 To collect human demonstrations, we had an expert human teleoperate the

robot with joystick control to perform the task. For all tasks, the state space, action space, and

reward were defined in the same way as in our simulated results (Section 4.3.1). Both experi-

ments used DMP policies initialized with LWR [110] and optimized with PI2-CMA [115] with

10 basis functions for each of the DMPs.

Our first real-world task was to close a microwave door, similar to the one described in

our simulated domain (Section 4.3.1). As in the simulated microwave task, we used the pose

of the handle for the EstimateGrasp method in Algorithm 2, and also the robot was similarly

placed such that it was forced to push the door with enough velocity to close. We placed

an AR tag on the front-face of the microwave to track the microwave’s state using a Kinect2.

Results are shown in Figure 4.6.

1We acknowledge this potential bias in expert trajectories, and qualify our decision by only training on human
demonstrations that at least accomplished the task.



Chapter 4. Bootstrapping Motor Skills with Motion Planning 37

FIGURE 4.6: Hardware experiment comparing our initialization scheme with
human demonstration. Results are shown as mean and standard error, aggre-

gated across three random seeds.

We observe that the human demonstration is better than the one produced by the motion

planner, which we credit to the fact that the motion of the door was heavily influenced by the

dynamics of the revolute joint which the motion planner did not account for. Nonetheless,

both policies converge to a similar final performance, with our method converging slightly

faster. Note the importance of the policy search: the motion planner alone is insufficient for

performing the task efficiently.

Our second real-world task was to hit a ball off a tee as far as possible (Figure 4.3). Similar

to our simulated task, the ball started at rest on top of the tee. The pose of the ball was used in

the EstimateGrasp method. The object state was defined as the object’s y position relative to its

initial pose. We placed scotchlite-reflective tape on the surface of the ball and conducted our

experiments within an OptiTrack motion-capture cage to track the object pose. We observe

that when using a motion planner to hit the ball, it moves the bat in a linear motion to make

contact, therefore transferring only horizontal motion to the ball. We qualitatively observe

that during policy search, the robot learns a dynamic policy that accounts for the dynamics of

the ball by applying force under the ball to “scoop” the ball upwards and forwards.



Chapter 4. Bootstrapping Motor Skills with Motion Planning 38

4.4 Conclusion

We have presented a method that uses kinematic motion planning to bootstrap robot mo-

tor policies. By assuming access to a potentially noisy description of the object kinematics,

we are able to autonomously generate initial demonstrations that perform as well as hu-

man demonstrations—but do not require a human—resulting in a practical method for au-

tonomous motor skill learning.

Our methodology is agnostic to the motion planner, motor policy class, and policy search

algorithm, making it a widely applicable paradigm for learning robot motor policies. We

demonstrate the power of our methodology by bootstrapping different policy classes with

demonstrations from humans and a motion planner, and learn motor policies for three dy-

namic manipulation tasks: closing a microwave door, opening a drawer, and hitting a ball off

a tee. Our framework is the first to enable robots to autonomously bootstrap and improve mo-

tor policies with model-free reinforcement learning using only a partially-known kinematic

model of the environment. This enables robots to effectively learn action abstractions via

autonomous interaction with the environment.



39

Chapter 5

Learning Navigation Abstractions for

Planning with Manipulation Skills

5.1 Introduction

Planning for mobile manipulation is difficult because of its long-horizon nature. There are

two approaches to addressing this difficulty: subtask decomposition and structural decom-

position. The former approach decomposes the problem into smaller subtasks (e.g: hierar-

chical planning [16, 96]), and leverages abstractions in two forms: action abstractions, also

called skills, which package motor behaviors into a single invokable action, and perceptual

abstractions, typically represented as grounded symbols, which compactly represent the rele-

vant aspects of task state. Learned abstractions can address complex planning problems [66],

but existing approaches are sample inefficient because they do not exploit structure present

in the robot and the world. The second approach—structural decomposition—aims to de-

sign algorithms that do just that. Navigation stacks typically focus on building maps and

localizing a robot in a map [34, 12], and using those maps to navigate to a goal via path plan-

ning [84]. Research in robotic manipulation structures the task of effectively interacting with

objects [86] into component algorithms such as object recognition [17], interactive perception

[19], grasp synthesis [18], kinematic motion planning [76], and learning for manipulation [70].

This approach can produce algorithms that generate useful behavior while avoiding learning

entirely.



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 40

(A) An Action-Oriented Semantic Map for a coffee
preparation task.

(B) Spot executing portable manipulation skills in
coffee preparation task. Given a new environ-
ment with these objects, our approach efficiently
constructs the navigation abstractions—both action
and state—to support planning using these skills.

FIGURE 5.1: An AOSM for a coffee preparation task. (a) The underlying seman-
tic map consists of a 3D point cloud of the scene (black points) along with the
detected pose and attributes of objects. (b) Given a set of portable manipula-
tion skills (start top left clockwise: pouring water, picking up a cup, placing a
cup, and pushing a brewing button), an AOSM also includes a distribution over
poses where the robot can execute each skill (visualized by colored areas in map

(a)).



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 41

We propose to combine these two complementary approaches by exploiting structural as-

sumptions to efficiently learn high-level abstractions. We begin by splitting abstractions to do

with manipulation from those to do with navigation. Manipulation abstractions are expensive

to learn but are typically object-centric and therefore portable, while navigation abstractions

are not portable: how the robot should abstract its map pose and navigate between locations

depends on the specifics of a single scene. Efficiently learning the navigation components of

the abstraction, which must be re-learned for each task, is thus critical. We therefore assume a

given (pre-learned or hand-constructed) set of portable manipulation abstractions (both skills

and symbols), and consider how to efficiently generate the navigation abstractions that sup-

port planning with them in a novel environment.

Our key insight is that spatial and non-spatial state variables typically contribute indepen-

dently to whether a motor skill can be executed; and that under those conditions, a unique

data structure—an Action-Oriented Semantic Map (AOSM) [104] (Figure 5.1a), which encodes

the spatial locations from which manipulation skills can be executed—is necessary and suffi-

cient to generate all the navigation abstractions required to support manipulation planning.

We provide an algorithm to autonomously and efficiently construct an AOSM from a given set

of manipulation skills using well-established mapping and path planning algorithms; a robot

can thereby complete its abstract representation of a new task by constructing its navigation

components in just a few minutes of robot time. We evaluate our approach in both simulation

(using AI2Thor [64]) and on real robot hardware (a Boston Dynamics Spot). In simulation, our

approach decreases the number of interactions required to learn navigation abstractions by an

order of magnitude compared to the state of the art, and enables the robot to transfer learned

symbols to new environments. On real robot hardware, our system generates a representation

of a coffee-making task for two different kitchen environments in a few minutes.

5.2 Related Work

Our work focuses on learning state abstractions that enable long-horizon task planning by

leveraging manipulation skills and semantic maps, similar to Task and Motion Planning (TAMP)

frameworks. However, our work differs from TAMP based on the assumptions we make:



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 42

Rather than use motion planning to generate manipulation behaviors, we treat manipula-

tion skills as black-box skills that can be implemented with or without motion planning (e.g:

learned motor policies [3]), and only require a model of the environment to support path

planning for locomotion, which is readily accessible using off-the-shelf SLAM.

TAMP solutions integrate high-level task planning with low-level continuous motion plan-

ning to exploit a planning hierarchy where different specialized planning and learning algo-

rithms can exploit the structure present at each level [57] and across modes [40]. However,

whereas standard TAMP approaches assume access a given state abstraction is sound for a

particular task [128, 57], we formalize an independence property between spatial and non-

spatial state variables to more efficiently learn a sufficient representation for planning with

given manipulation skills. Most similar to our work are TAMP approaches that leverage se-

mantic maps for improving task and motion planning. Galindo et al. [39] investigate how

semantic maps can act as a hybrid knowledge base for TAMP in the context of navigation.

This work also uses a semantic map to improve task planning, but only extracts additional

information from a semantic map, whereas we identify a specific augmentation to a seman-

tic map that is provably sufficient for supporting manipulation planning. Our work is also

related to approaches that leverage Large Language Models (LLMs) for task planning. These

approaches [4, 47] generally assume the existence of a preprocessed map that enables navi-

gation to support manipulation. Our work here formalizes this data structure and lays the

theoretical foundations for how this specific data structure can not just be used in task plan-

ning with LLMs, but also for learning symbols for task planning.

5.3 Exploiting Spatial Independence for Learning Abstractions

Problem Definition We are interested in the problem of a robot that must navigate an en-

vironment and manipulate objects to achieve a goal. To this end, we represent the decision

problem as an MDP, and factor the state s 2 S into the state of the robot Sr and the state of

the environment Se: S = Sr ⇥ Se. Furthermore, the state of the environment can be factored

into a discrete set of q objects (or entities) the robot may manipulate, SW = W1 ⇥ ... ⇥ Wq,

and a map of the environment m 2 M, Se = M ⇥ SW. This structured representation of the



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 43

environment is often called a semantic map [64]. Since the robot and all of the objects exist

in a physical space, they each have a pose in the map. Therefore, we factor the state of the

robot Sr into some pose Sb in the map and any other information describing the state of the

robot S0r: Sr = Sb ⇥ S0r, and similarly for each object Wi 2 W: Wi = Wb
i ⇥W0i. The task-specific

semantic map defines a constraint function on the feasible poses of the robot, and can be used

in conjunction with a path planner N(sb, s0b) to generate trajectories through the space of robot

poses Sb from a start state sb to a set of goal states s0b (i.e: locomote the robot around the scene).

Given the above setting, our problem is formalized follows. For a given set of portable

manipulation options O and a semantic map Se, we must take plans that consist only of ma-

nipulation actions (called a manipulation-only plan pO = {o1, ..., opo}, 8i 2 {1, ..., po}, oi 2 O,

where po is the length of the plan pO), and learn a portable abstract representation that sup-

ports generating task-specific navigation behaviors based on Se that can be interleaved into

the manipulation-only plan to make the probability of success non-zero. Note that even

though the state space is fully observable, it crucially does not include information about

what configurations in space afford manipulation, which is what our approach learns.

FIGURE 5.2: An example figure of a robot iteratively constructing an AOSM in
a novel environment. (Left): The robot has a partial map of the environment
and has not seen any objects. (Middle): The robot moves around to construct
more of the map, and the vision model identifies a cup (position visualized as
red circle). (Right): The robot uses a learned navigation symbol to sample a
pose to pick the cup, and then navigates to that pose in order to execute the

manipulation skill.

Approach Our approach is based on autonomously constructing an Action-Oriented Se-

mantic Map (AOSM) [104] and using it for task planning. Formally, an AOSM (O, Se, (V, E))



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 44

is a data structure where O is a set of k portable manipulation options, Se is a semantic map,

and (V, E) is a topological graph. The topological graph (V, E) is an undirected graph that

contains k nodes V = {v1, ..., vk}, where each node vj represents a region of configuration

space for the base of the mobile manipulator (i.e: each node vj represents a set of poses in

the semantic map). Node vj corresponds to the set of poses in the semantic map that have a

non-zero probability of being in the initiation set of option oj. So, vj = {p 2 Ioj |p 2 m}. The

node vj is also referred to as a navigation symbol soj for the option oj, since a symbol is a

probabilistic binary classifier for testing membership of a set, and this symbol only depends

on whether the robot’s configuration is within a specific region of space that is relevant for

navigation (discussed in more detail below). An edge e = (va, vb) 2 E represents that a mo-

tion planner N(va, vb) can be used to successfully navigate from the set of poses in va to the

set of poses represented by vb. AOSMs were introduced in Rosen et al. [104], where they were

hand-crafted by a user. Here, we assume access to a set of portable manipulation skills O and

the semantic map Se, and we provide a novel algorithm for learning the topological graph

(V, E) that consists of the navigation symbols and edge connectivity between them, which

together define an AOSM.

When a robot has access to an AOSM, it can sample poses in the map that enable the

robot to execute its manipulation skills (Figure 5.2). When the navigation symbols are learned

in an object-centric spatial frame (i.e: the regions of space are in an object-centric frame in-

stead of a map frame), they can be ported to new environments by grounding to global

poses based on the known poses of the objects in the semantic map Se. Once an AOSM

has been constructed, given a manipulation-only plan pO = {o1, ..., opo}, 8i 2 {1, ..., po}, oi 2

O, a starting base pose S0
b, and a path planner N(sb, s0b), we can use the AOSM to sample

poses from the navigation preconditions of each manipulation option {S1
b, ..., Spo

b }, 8Si
b ⇠

soi , and leverage the the path planner to synthesize a sequence of locomotion path plans

pN = {n1, ..., npo�1}, ni ⇠ N(Si�1
b , Si

b) that can be interleaved into the manipulation plan pO,

pO0 = {o1, n1, o2, n2, ..., , opo�1, npo�1, opo}. This augmented plan has the requisite additional

actions required to make the manipulation-only plan feasible in the specific map the robot

finds itself in. An AOSM can only can be used when it is possible to decompose initiation



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 45

sets into navigation and manipulation preconditions and represent them separately. In this

work, we prove this assumes a crucial independence property of the factors of the initiation

set, which we formally describe in the rest of this section.

First, note that we can define navigation symbol as a symbol s whose factors (the set of

state variables the grounding classifier depends on) are the robot’s mobile base state variables

Sb, Factors(s) = Sb (we call this type of factor a spatial factor). To determine whether a

state variable is in the factor associated with the initiation set of a manipulation option (i.e:

the state variable is a defining state variable for that set of states), we can use the notion of

projection. The projection of a list of state variables v out of a set of states X is defined as

Proj(X, v) = {s|9x 2 X, s[i] = x[i], 8i /2 v}, which removes any restrictions on the values of

the state variables v for the states in X. If we project out a state variable from a set of states and

it changes the set of states, we say that the state variable is a defining state variable for that set

of states (since deciding whether a state is a member of X depends on a restricted value for v).

If that set of states is the initiation set Io of an option o, then that collection of state variables is

by definition the factors of Io, Factors(Io). In this case, the set of states describing the initiation

set can be described by the intersection of independent state sets [66]. Formally, we say a

factor fs is independent in the initiation set Io when: Io = Proj(Io, Factors(Io)/ fs)\ Proj(Io, fs).

With this definition, we now define the spatial independence property:

Definition 5.3.1 (Spatial Independence). The initiation set Io for an option o’s has the spatial

independence property if:

Io = Proj(Io, Factors(Io)/Sb) \ Proj(Io, Sb). (5.1)

Note that when learning a probabilistic symbolic representation, the sets are replaced with

distributions and the intersection is replaced with multiplication, and therefore the indepen-

dence property is defined exactly as conditional independence. When an option’s initiation set

has the spatial independence property, we can construct an independent symbol to represent

Proj(Io, Factors(Io)/Sb) which by definition is a navigation symbol since it it only depends on

Sb. Intuitively, this projection represents the set of base locations the robot must be in order



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 46

to successfully execute the option o without regards to the state of the rest of the world. 1

Since an AOSM captures the navigation symbols, then when the spatial independence prop-

erty holds for an option, an AOSM is a necessary and sufficient characterization of the spatial

components of the initiation set.

We now formally describe under what conditions we will resolve a manipulation option o

for some set of starting states Z. Consider an option o that has an associated navigation sym-

bol so to characterize part of its initiation set Io: Io = Proj(Z, Sb) \ so. Then this implies that if

the agent is in a state that is an element of Z, and only changes the robot’s mobile base pose

to be an element of the navigation symbol without changing anything else, then the resulting

state would be an element of the initiation set of the option. We prove that if our assumptions

regarding the initiation set of a manipulation option are satisfied, then we can synthesize a

locomotive behavior from our navigation stack using our learned navigation symbol, which

means we can generate the navigation stack to support a specific option. Since the state is

Markovian, proving for the more general case where we aim to generate a navigation stack

to support a manipulation plan follows from repeated applications of Theorem 1, and so we

omit it.

If a manipulation option’s oi initiation set can be written using the definition of spatial

independence (Equation 1) from the current set of states Z, then sampling a location l from soi

and synthesizing and executing a path plan from the navigation stack to l from a start state in

Z is sufficient for enabling the robot to execute the manipulation option oi.

Theorem 1. If, for a starting set of states Z, the initiation set Ioi for a manipulation option oi 2 O

can be characterized as in Equation 1, then a location l sampled from the associated navigation symbol

l 2 soi can be used in conjunction with a path planner to locomote the robot to a state s that is within

Ioi the initiation set of oi as long as there is a collision-free path.

Proof. By our assumptions, we know that the initiation set for the manipulation option can

be decomposed into Io = Proj(Z, Sb) \ so
s . We also assume that the agent starts in a state z

element of Z (z 2 Z). We can then use the pose l that is sampled from the navigation symbol

1We note that this assumption may be violated in realistic domains (for example, the location of objects may
constrain what locations the robot can execute a manipulation option from), but we later discuss how we can still
use an AOSM to synthesize effective navigation abstractions even when this assumption is not met.



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 47

FIGURE 5.3: Results for our experiments on transferability of learning abstrac-
tions (left and right are single-scene setting/multi-scene setting respectively).
We report the cumulative number of sampled locations that manipulation ac-
tions are attempted from against the average cumulative number of times the
agent has successfully completed the plan (bars are standard error across 5

seeds.)

soi to synthesize a navigation action ni that starts from z and ends at location l, ni 2 N(z, l) as

long as there is a collision free path through the environment. The effect of executing ni from

z by definition only affects spatial state variables Sb, and so the resulting state is an element

of Proj(Z, Sb) and also an element of navigation symbol so
s . Therefore it the resulting state is

an element of the intersection of Proj(Z, Sb) and so
s , which is by definition the initiation set of

oi based on the Equation 1.

With an AOSM, given a manipulation-only plan, we can synthesize the requisite naviga-

tion actions to interleave into the plan and support execution. To evaluate the probability of

the entire plan, we first learn a portable symbolic vocabulary similar to James et al. [51] (de-

scribed in Section 2.1.3) but do not include spatial information about the objects or robot in the

observations, and then separately learn navigation symbols using the spatial data in an object-

centric frame. With the portable symbolic vocabulary, manipulation-plans can be generated,

and with the addition of the navigation symbols grounded for a specific environment, we can

evaluate the probability of a manipulation-only plan with navigation actions interleaved in.



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 48

5.4 Simulation and Hardware Experiments

We test the hypothesis that exploiting the spatial independence property of manipulation op-

tions increases sample efficiency and transferability of learned abstractions. First, we investi-

gate the effect of leveraging the spatial independence assumption on the number of samples

required to learn a useful set of abstractions for planning. Secondly, we evaluate the effec-

tiveness of transferring abstractions from a training environment to a novel environment. To-

gether, these experiments highlight how AOSMs can be used to efficiently learn and transfer

abstractions with only a few number of interactions with the environment.

Coffee Preparation Task We conduct both of our experiments in a simulated mobile manip-

ulation domain, AI2Thor [64], using a coffee preparation task in 15 virtual kitchens. In this

task the robot must navigate through a large simulated kitchen and manipulate objects; to suc-

cessfully make coffee, it must pick up a cup, bring it to a coffee machine, turn on the coffee ma-

chine to make the beverage, and then pick up the prepared coffee mug. We assume the robot

has access to a set of portable manipulation skills (PickUp(Mug), ToggleOn(CoffeeMachine),

PutIn(Mug,CoffeeMachine), MakeCoffee(Mug,CoffeeMachine)) that can be reused across

different kitchen scenes, but that the agent must construct navigation abstractions for each

different scene. AI2Thor provides semantic maps of each scene, which include a 2D occu-

pancy grid of the environment, the number of objects in the environment, their object type

and attributes, and their pose. We use 77 different objects, each characterized by a vector of

length 108. We also include the 3D position and 1D yaw of the robot’s base (4 additional state

variables), resulting in a low-level observation vector of 8320 elements.

Simulation Experiment: Spatial Independence for Learning Symbols In the first exper-

iment, our goal is to evaluate how leveraging the spatial independence assumption affects

the samples required to construct a symbolic vocabulary that supports planning. We there-

fore evaluate a state-of-the-art baseline [53] for learning symbols that does not incorporate the

spatial independence assumption against an augmentation of the approach that does leverage



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 49

FIGURE 5.4: Learning symbols for the coffee preparation task, without the spa-
tial independence assumption (James et al. [53]) and with the spatial indepen-
dence assumption (AOSM). We report the number of sampled interactions with

the environment against the planning success rate across 10 seeds.

the spatial independence assumption. We report performance as a function of the number of

samples from the environment.

Part of the model learning process requires identifying which factors are independence

since there is no a priori assumption about the structure of the initiation and effect sets of

the skills. Partitioning is done via DBSCAN clustering [35], and the precondition classifiers

are learned using a SVM [29] with an RBF kernel (hyperparameters are optimized using grid

search. The effect density estimation is performed with a kernel density estimators [105, 94]

with a Gaussian kernel, with a grid search over the bandwidth.

Approaches We use a codebase for learning symbols [53] that is state-of-the-art but does not

leverage any spatial independence assumptions as our baseline. More details on the algorithm

can be found in [53], but in summary: the robot collects transition data in an environment by

either randomly navigating to a pose or choosing manipulation skills to execute, and then

uses this data to learn a model describing the preconditions and effects of the skills via a

partitioning and clustering process. Part of the model learning process requires identifying

which factors are independent since there is no a priori assumption about the structure of the

initiation and effect sets of the skills.

For these set of experiments, all of the approaches perform a similar procedure. For a



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 50

given scene and current step of the plan o, the robot 1) uses rejection sampling to sample a

pose l from the associated navigation symbol so 2) uses the path planner to move to location

l, and 3) attempts to run the manipulation option o. If the agent fails to successfully execute

the manipulation option, the location l is added as a negative sample to the dataset used to

train so; the robot repeats these steps until successful execution. When the robot is successful

in executing the manipulation option, location l is added as a positive sample to the dataset

used to train so, and the robot proceeds to the next plan step. These navigation symbols are

trained using Gaussian Process classifiers with an RBF kernel.

There are two important design choices when learning navigation symbols that can be

chosen indepedently of each other: 1) which spatial frame are the navigation symbols learned

in, and 2) what proposal distribution is used for rejection sampling. In [66], the global map

frame is used as the spatial frame and a random distribution for sampling, and we call this

baseline random global. Learning symbols in the map frame enables the robot to leverage a

path planner to generate navigation behaviors, but it means that the robot must relearn the

symbols when the scene changes. To exploit the structure of object-centric skills, an object-

centric spatial frame can be used to learn the symbols, which the agent can transform into a

map frame given a semantic map that includes object pose. This enables the agent to effec-

tively transfer learned information from one map to another. Using an object-centric frame

with a random sampling distribution is akin to the approach in James et al. [51], which we

term random object. However, using a uniform distribution as the proposal distribution is

extremely inefficient since the robot will try manipulating objects from locations extremely

far from the object. Kaelbling and Lozano-Pérez [57] proposed exploiting the nature of space

using a geometric heuristic that samples poses near the object, and so we call the baseline that

uses the geometric heuristic for sampling poses and learning in a global map frame heuristic

global. The final approach learns in an object-centric spatial frame and uses the geometric

heuristic to sample poses, which to our knowledge has not been used in conjunction to learn

symbols. We call this baseline heuristic object, and it corresponds to our assumption. To give

an upper-bound on performance, we also evaluate an oracle, which always samples feasible

manipulation locations.



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 51

To determine how effectively each approach enables learned abstractions to be transferred

to different environments, we use investigate two experimental settings: when the agent suc-

cessfully finishes executing the plan, 1) the scene is reset to the initial configuration and the

agent retries executing the plan (the single-scene setting), and 2) a new scene is chosen and the

agent retries executing the plan (the multi-scene setting). In the single-scene setting there is

no need for transfer and the choice of spatial frame does not matter. This lets us evaluate how

important the chosen proposal distribution is for learning navigation symbols. In the multi-

scene setting, the agent must also transfer the learned symbols to different scenes, which lets

us evaluate how useful the choice of frame is for transfer.

Metrics To evaluate the usefulness of the resulting abstractions, we use Fast Downward [44],

an off-the-shelf symbolic planner, to plan using the resulting symbolic vocabulary. We then

use a binary metric to determine how useful the representation is for planning: if the resulting

plan accomplishes the goal, then the symbolic vocabulary is deemed successful. Otherwise,

the symbolic vocabulary is deemed a failure. Our goal is to minimize the interactions required

to learn a successful symbolic vocabulary for planning. We collect 1000 transitions with 10

different random seeds.

Results The results of our experiment are in Figure 5.4. As the number of environmen-

tal samples increases, the success rate of planning with the symbols improves for both ap-

proaches, as expected. Learning with the spatial independence assumption, however, is able

to learn a successful symbolic vocabulary with a nearly 100% planning success rate with about

50 samples, where as the baseline approach that does not leverage the spatial independence

requires about 300 samples. This is due in part to the fact that, without leveraging the spatial

independence assumption, the baseline requires more samples to learn to disentangle spa-

tial information from non-spatial information, which is challenging since the spatial data is

continuous. Our approach builds in the disentanglement between the spatial and non-spatial

data, easing learning. These results demonstrate that our approach—which structures in the

independence assumption—is more sample efficient than state-of-the-art approaches to learn-

ing abstractions. Examples of the learned symbolic vocabulary are in Figure 5.5.



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 52

FIGURE 5.5: Example operators for two manipulation skills with the naviga-
tion symbols injected into the preconditions (red highlight). (Left): A learned
operator for the PickUp(Mug) skill in AI2Thor. Symbols are renamed manu-
ally to provide human interpretability (Right): A hand-specified operator for

the PutIn(Mug,CoffeeMachine) skill in the Spot experiment.

Simulation Experiment: Transfer of Learned Abstractions In the second set of experi-

ments, our goal is to evaluate how AOSMs help transfer learned abstractions to novel envi-

ronments. For these experiments, we provided a manipulation-only plan that prepares coffee.

The robot must construct the navigation symbols that enable it to generate navigation behav-

iors that enable those actions to be executed. There are two important design choices when

learning navigation symbols that can be chosen independently of each other: 1) which spatial

frame are the navigation symbols learned in, and 2) what proposal distribution is used for

rejection sampling. We evaluate different choices of these design choices in two settings: one

where the robot learns symbols in a single scene, and one where it must learn symbols across

different scenes (i.e: transfer is necessary). For each task execution in a scene, we report the

cumulative total number of manipulation skills the robot executed, until the plan succeeded.

Our results can be see in Figure 5.3. The main takeaway is that learning symbols in an

object-centric frame is important for transferability.

FIGURE 5.6: An example demonstration of the Spot building an AOSM and
using it to prepare coffee. (Left): Spot navigates around the space, identifies
objects, and constructs an AOSM. (Right): With the AOSM and a manipulation-
only plan, the Spot can synthesize the navigation abstractions to locomote

around the environment to successfully execute the manipulation skills.

Robot Hardware Demonstration We demonstrate the effectiveness of AOSMs for enabling

mobile manipulators to plan long-horizon tasks by executing a coffee preparation task on a



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 53

Boston Dynamic Spot platform (Figure 5.1b). In this coffee preparation task, the robot must

gather coffee grinds and water, pour them both into a coffee maker, close the lid of the coffee

maker, and push a button to turn it on. We supply the robot with a set of portable manipula-

tion skills PickUp(CoffeeGrinds), PickUp(WaterCup), Place(CoffeeGrinds), Place(WaterCup),

Pour(WaterCup), Pour(CoffeeGrinds), CloseLid(CoffeeMachine) and PushButton(CoffeeMachine),

whose implementation on the robot can be seen in Figure 5.1b. The objects are scattered

around the room, and so the robot must navigate the environment correctly to successfully

execute the manipulation skills.

Our demonstration of using an AOSM on a real robot can be seen in full detail in Figure

5.6. We first manually drive the robot around and use an off-the-shelf SLAM implementation

to generate a 3D geometric map of the environment which the robot can use to navigate to 3D

poses. The robot then constructs a semantic map that captures the spatial pose and semantic

attributes of each of the relevant objects in the scene. Once the robot is equipped with a set of

manipulation skills, it generates an AOSM of the scene using hand-crafted navigation sym-

bols, which enables it to sample navigation poses that support successfully executing each

of its manipulation skills. The robot then uses a hand-specified PDDL of the coffee prepa-

ration task to generate the manipulation-only plan using Fast Downward, which results in:

PickUp(WaterCup),Pour(WaterCup), Place(WaterCup),PickUp(CoffeeGrinds),Pour(CoffeeGrinds),

Place(CoffeeGrinds), and then CloseLid(CoffeeMachine), PushButton(CoffeeMachine). With

the AOSM, the robot can synthesize a navigation stack to support plan execution (Figure 5.6).

We time how long it takes the robot to construct an AOSM in 2 different environments.

Navigating the environment to observe the objects and then constructing the AOSM takes an

average of 82.5 seconds. Executing the plan for the coffee preparation task takes on average

140 seconds. These timings demonstrate the efficacy of AOSMs to enable a robot to rapidly

generate the navigation abstractions for supporting task execution.



Chapter 5. Learning Navigation Abstractions for Planning with Manipulation Skills 54

5.5 Conclusion

We have proven that an Action-Oriented Semantic Map is a sufficient spatial data structure

that can be constructed on top of a semantic map for synthesizing a navigation stack to sup-

port task planning with manipulation skills. Once a robot has built an AOSM, it can produce

plans using its manipulation skills and synthesize a sufficient navigation stack to execute the

task plan. This enables robots to autonomously learn perceptual abstractions, given a set of

action abstractions (such as those provided in Chapters 4 and 5).



55

Chapter 6

Constructing Abstractions for Robotic

Planning with Mixed Reality

6.1 Introduction

A long-term goal of robotics is designing robots intelligent enough to enter a person’s home

and perform daily chores for them. This requires the robot to learn specific action and percep-

tual abstractions that can only be acquired after entering the home and interacting with the

humans living there. For example, there may be a trinket that the robot has never encountered

before, and the owner might want to instruct the robot on how to handle the item (i.e., object

manipulation information), as well as directly specify where the item should be kept (i.e.,

navigation information). To approach this problem, one must consider two sub-problems: a)

the agent’s representation of object manipulation actions and semantic information about

the environment, and b) the method with which an agent can learn this knowledge from a

teacher.

Semantic maps provide a representation sufficient for navigating an environment [126],

but map information alone is insufficient for enabling object manipulation. Conversely, there

are knowledge bases that store requisite object manipulation information [129, 71, 15, 101, 97],

but do not help with navigation or grasping in novel orientations. Previous studies [38, 103,

46] have shown that Mixed Reality (MR) interfaces are effective for specifying navigation

commands and programming egocentric robot behaviors. However, none of these works have

demonstrated the use of MR interfaces for teaching high-level object manipulation actions,



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 56

and semantic information of the environment.

FIGURE 6.1: Our MR system being used to generate an AOSM so the robot can
flip a light switch. (1): Initially, the robot does not know the location of the light
switch, how to grasp it, nor how to turn it off. (2): A human using MR teaches
the robot the object’s global pose G, the “grasp” attribute, and the initiation and
termination pose for the “turn off” action (highlighted in orange).(3): The robot
is now able to autonomously plan to navigate to the lights, motion plan to grasp

the light switch, and execute the policy to flip it off.

Our contribution is a system that enables humans to teach robots both object manipulation

actions—in a local object frame of reference—and b) semantic information about objects in a

global map. We use a Mixed Reality Head Mounted Display (MR-HMD) to enable humans to

teach a robot a plannable representation of their environment. By plannable, we mean struc-

tured representations that are searchable with AI planning tools [75]. By teach, we mean hav-

ing the human explicitly provide information necessary for instantiating our representation.

Our representation, the Action-Oriented Semantic Map (AOSM), enables robots to perform

complex object manipulation tasks that require navigation around an environment. To test

our system for building AOSMs, three novice humans used our MR interface to teach a robot

an AOSM, allowing the robot to autonomously plan to navigate to a bottle, pick it up, and

throw it out. In addition, we report the quantitative results of two expert users who demon-

strated the power of learning AOSMs via MR by also teaching a robot to autonomously plan

to flip a light switch off (Figure 6.1) and manipulate a sink faucet to the closed position. To

the best of our knowledge, this is the first work that presents a learnable representation for

planning manipulation and navigation tasks on a robot via an MR interface.



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 57

FIGURE 6.2: The perspective of a user with our MR interface (all visualizations
here are from the actual interface). Left: A closeup image of a user grounding
the global pose G of the light switch using our MR interface. Middle: A user
specifying the terminating pose for the “throw away” action of the bottle object,
with the annotated grasp pose visualized as a white robot gripper. Right: An
image of the virtual robot overlaid on top of the real robot while calibrating the
MR-HMD’s map with the robot’s map M. The text “CALIBRATE” indicates to

the user what information they are specifying.

6.2 Action-Oriented Semantic Maps

We first formalize AOSMs by describing the object classes, object instances, and object ma-

nipulation actions it contains, which are all defined with a local frame. Next, we illustrate

the grounding of an object’s semantic information to a global frame of reference. Lastly, we

describe our method of using MR to build an AOSM from a human trainer.

6.2.1 Defining Action-Oriented Semantic Maps

An Action-Oriented Semantic Map is a tuple AOSM = hC, O, M, Ai, where C is a set of object

classes; O is a set of objects instantiated from C, where we define instantiation as assigning all

attributes of a class to values representing a real-world object; M is a 2D occupancy grid of the

environment; and A is a set of high-level object-specific actions parameterized over objects in

O.

Each high-level action a 2 A is akin to an option [117]. Given an object from o 2 O and

a high-level action a, a “policy”, an “initiation set”, and a “termination set” for the option is

specified. In the next subsection we will describe using MR to acquire each of these compo-

nents in detail.

Each class within C is constructed with a set of attributes a, a 6D local frame L, a global

pose G, and a kinematic mesh model t. The 6D (position and orientation) local frame L is



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 58

necessary to define spatial attributes for high-level actions with respect to an object, regardless

of the global pose G. The model t is defined in the local frame with respect to L.

The 3D kinematic mesh model of each object class, t, is specified with respect to L. The

purpose of the 3D mesh is twofold. Firstly, it provides an interface for the teachers to ma-

nipulate and specify the local coordinate frame of an object so that the skill specification is

intuitive. Secondly, it allows a manipulable interface to the object in MR allowing the trainer

to visualize and manipulate a virtual object, which is the typical mode of interaction with an

object in MR.

Each class has a set of attributes a, akin to class attributes in Object-Oriented Markov

Decision Processes [33]. Attributes are used to represent information required for planning

object manipulation behaviors. Spatial attributes, like “grasp”, which defines how the object

should be grasped with respect to t, are specified with respect to L. In our experiments, the

only attribute we have for our classes is “grasp”, but other complex domains require more

attributes for planning.

Once objects are instantiated, they have a global pose G in the map, and the agent knows

where the object is and can navigate to it. Moreover, a high-level action a is defined with

respect to the local frame L of the object class c. Specifically, the policy, initiation set and

termination set of a high-level action a are all defined in the object class’s local frame. This

allows transfer of learned high-level actions to different objects within the same class and to

different poses in the global frame, enabling the robot to reproduce and generalize the learned

skill later when executing a plan.

Whenever an object is instantiated, G is grounded to M, and t is rendered by the MR-HMD

based on G. G is the pose of the local frame’s origin with respect to M’s origin. The purpose

of the global pose G is so that information defined with the local frame L for an object is now

grounded within the map M, enabling the robot to know where in the environment it should

navigate to in order to perform object manipulation behaviors. The purpose of rendering t

in MR is so that the teacher can specify G by dragging the virtual object model, and directly

view whether G is correctly specified (i.e: if the virtual t is overlaid on top of the real object).



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 59

6.2.2 Instantiating AOSMs with Mixed Reality

In order to ground the poses of the virtual items to our semantic map, the map maintained

by the MR-HMD must be linked to the robot map M. MR-HMDs already have a built-in

capability to make a 3D mesh model of the environment for mapping, which is used for local-

ization. However, there is no inherent link between the MR-HMD’s map and the robot map

M, which is required to use MR to specify an object’s global pose G. To resolve this issue, a

static transform that defines how to convert global poses in the virtual environment main-

tained by the MR-HMD to poses in the robot’s map must first be defined (Figure 6.2). Our

method of performing this calibration using MR is explained in Section 6.3.

After calibrating the MR-HMD and the robot map, the user can teach the robot object ma-

nipulation and semantic information of the environment (as described in Section 6.3.2). The

user is presented with a list of object classes C from the AOSM. When the user selects a class,

a virtual representation of the object’s mesh t is visualized in front of the user as a 3D mesh

(Figure 6.2), and an interaction process is initiated, where the user supplies each of the nec-

essary attribute values within the object’s local frame L. For example, in case of the “grasp”

attribute, the user is presented with a visualization of the object’s mesh t along with a virtual

model of the robot’s end effector (Figure 6.2). The user is then able to pose the virtual end

effector to grasp the virtual object mesh t. Users are able to supply manipulation information

using the high-level actions for an object by filling in the parameters. The users first select an

object to add an high-level action to, and then manipulate a virtual representation of the ob-

ject’s mesh t into the desired initiation and termination poses. Because t is an articulated 3D

mesh model, users can specify the initiation and termination poses by selecting a link with the

controller, and then manipulate it with their controller to the desired pose. For the purposes

of our MR interface implementation, these initiation and termination poses were in terms of

the mobile-manipulator’s end effector so that our system could check when these poses were

reached. This process allows users to not have to specify any low-level manipulation control

such as environment-specific grasp operations.

Because there are several design choices for the MR interface that can be made based on

the desired task, we selected several household tasks and conducted an iterative design study



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 60

to understand what factors were important for enabling novice humans to teach a robot an

AOSM. This design process allowed us to include features that were not initially considered

by the expert designers, but were desired by the novice users.

FIGURE 6.3: Images from our Household AOSM. Left: One perspective image
with our three classes C being instantiated with objects O (light switch (purple),
bottle (blue), sink (red)) and robot (orange). Right: The 2D occupancy grid
M in our Household AOSM (Colored shapes and robot added to the map for

visualization purposes).

6.3 Iterative Design Study

We conducted an iterative design study with two expert users (two of the project researchers)

and three novice users in order to design and improve our MR interface, as well as demon-

strate the capabilities of AOSMs.1

6.3.1 Study Task

To demonstrate that an AOSM can be built by a human using MR, we selected several house-

hold tasks for a mobile manipulator to perform, which we represent within what we term

the “Household AOSM”. We chose three different chores: throwing away bottles, turning off

light switches, and closing sink faucets. Our test environment is shown in Figure 6.3.

Each element of our Household AOSM (AOSM = hC, O, M, Ai) is defined as follows:

• C: a list of three object classes: bottle (a drinking container with no kinematic articula-

tion), faucet (a sink faucet, which has a revolute joint connected to a sink base, which

could be closed), and light switch (which has a revolute joint connected to the wall).

Each of the classes have a 6D local frame L, a global pose G, and a kinematic mesh

1A video can be found at https://youtu.be/-09b250TTe8



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 61

model t. In order to keep the AOSM as simple as possible, we only encoded one at-

tribute: “grasp”, which represents a 6D pose in the class frame L that indicated how to

grasp the object for manipulation.

• O: a list of the instantiated objects from the list of classes. In our experimental space,

we had one bottle, one light switch, and one sink faucet. Rather than requiring users

to build t from scratch, we supplied various primitive shapes and predefined object

models for the user to choose from to represent the objects, which is reasonable con-

sidering there are many existing object models freely available to be downloaded [1].

Therefore, when instantiating objects, users were responsible for defining the “grasp”

attribute needed for the high-level action manipulation actions, as well as the global

pose G of the object within the map M which is needed for navigation (Figure 6.2).

• M: a 2D occupancy grid M that represents the experimental space (Figure 6.3). The

map is updated with new semantic information when an object o is instantiated and its

global pose G is grounded in the map. It is this underlying map that enables the robot to

autonomously plan navigation around the environment.

• A: For our demonstration, we paired one high-level action with each object to represent

the three chores. However, it should be be noted our framework is flexible enough to

allow an arbitrary number of high-level actions to be defined throughout the interaction

by the user. Our actions are as follows:

1. For the bottle class objects, the high-level action “throw away” was meant to pick

up a bottle and move it to a trash can in a fixed spot (Figure 6.2).

2. For the light switch class, a “turn off” high-level action was meant to flip the switch

to the off position from the on position.

3. For the sink faucet class, a “close faucet” high-level action was meant to close the

faucet.

Users were responsible for using our MR interface to define the initiation and termi-

nation poses of these actions, while the policy attached p was implemented using an



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 62

existing motion planner to move the robot’s end effector to the grasp pose with respect

to the initiation pose, and then compute and execute a motion to manipulate the object

to the termination pose. The policy was first planned within the local frame L, and then

transformed into the global map frame based on G, enabling the robot to move its end

effector to the necessary locations in the map to manipulate the object. We can also use

Dynamical Movement Primitives [50] as a policy within the local frame L.

Our study was implemented on a Kinova Movo with a single 7 DoF arm. Movo is equipped

with the capability to make a 2D occupancy map of its environment using a LIDAR sensor,

as well as localize and navigate to specified poses. When planning any of the object manip-

ulation actions, the robot would autonomously move its base between 0.8 and 1.25 meters

behind the object’s global pose G, depending on what the “grasp” attribute and global pose

G of the object was, enabling the agent to execute the local policy and manipulate the object

into its termination pose from the initiation pose (Figure 6.1). While this range of approach

distances was chosen by hand for the purposes of completing our specified chores, they could

in practice be specified by the user via the MR interface. For all of these motion behaviors, we

use the motion and path planning stack that is included with the Movo robot. By supplying

our metric map M to the path planning stack, we are able to autonomously navigate the robot

to specific points while avoiding occupied space.

6.3.2 Mixed Reality Interface

The two most commercially-available MR-HMDs are the Microsoft HoloLens and the Magi-

cLeap. We have previously used the Microsoft HoloLens for facilitating human-robot interac-

tions [103], but chose to use the Magic Leap for this work because it provides higher precision

head-pose estimation. However, the following work can be applied to any MR-HMD system.

Our codebase for the MR interface is publicly available.2

We used Unity, a 3D game engine, to develop the virtual environment for the MR inter-

face, by developing a scene that maintains virtual objects, and deploy it to the Magic Leap.

By connecting the Magic Leap to a ROS network, we are able to share information between

2
https://github.com/h2r/ActionOrientedSemanticMaps



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 63

the MR interface and a ROS-enabled robot. (A more detailed description of how this can be

done may be found in Whitney et al. [127]). Crucially, our system is developed such that no

objects in the Unity scene need to be pre-instantiated; the user is able to construct the scene

completely at runtime via our MR interface.

The Unity-ROS interface allows the Unity scene to output information on the ROS network

to communicate to the robot, or listen to information from the robot to update the virtual

scene. In general, MR interfaces enable users to see visualizations of 3D meshes overlaid on

top of the physical workspace, as well as interact with these visualizations using controllers

or hand gestures. We leverage MR to enable users to instantiate virtual representations of

the objects from a set of classes using an MR menu, supply attribute and high-level action

information needed for object manipulation by interacting with the model t of objects in order

to specify initiation and termination poses, and ground objects to the map (i.e: specify G) for

the purpose of navigation by dragging the virtual objects over their real-world counterparts

(Figure 6.1).

To define the static transform that is needed to convert Unity poses to ROS poses, we

enable users to drag a virtual model of the robot over the real one to align them together (Fig

6.2), similarly to how they would ground the global pose G of an object. After the user drags

the virtual robot over the real one, we save the transformation from the virtual robot pose

to the real robot pose as the static transform from Unity to ROS poses. With this transform,

we now have a way to use a MR-HMD to ground poses of objects in the robot’s map. More

information on pose transformation between MR-HMDs and robot maps can be found in

Whitney et al. [127].

6.3.3 Rapid Iterative Testing and Evaluation

We took a Rapid Iterative Testing and Evaluation (RITE) [87] approach to quickly identify and

fix issues with the system.

For the purpose of the iterative design study, we limited the Household AOSM by re-

moving the light switch and sink faucet from the Household AOSM, and only focused on the

bottle object. Users in our study were instructed to specify the “grasp” attribute for the bottle



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 64

class, the initiation and termination pose of the “throw away” action, and the global pose G

of the object in the map. The expert users then completed the full Household AOSM by also

handling the sink faucet and light switch.

We built an initial interface for the system, and tested and iterated on the design of the

interface. We tested the initial system with two expert users (two of the project researchers),

iterated on the design, and then tested and iterated with three novice users, who used our

interface until they successfully performed the task. We then tested the final system with the

expert users.

System V0

We started with an initial design for the MR interface, system V0, that was derived from

previous MR interfaces we have used with robotic systems [103]. The interface allows users

to drag virtual representations over objects in the real world that they want to interact with,

as described in the Section 6.3.2. However, we noticed that users have slight calibration issues

with hand gestures (i.e., it is hard to accurately capture hand gestures), such that we decided

to use a hand controller instead to circumvent this calibration issue. We drew inspiration

from the MagicLeap’s toy app which uses the hand controller to orient objects in front of the

controller. Thus, our initial design improved on our previous interfaces by introducing a hand

controller to replace gesture in order to attempt to address user issues with positioning virtual

representations.

We then tested system V0 with the expert users. We quickly found that the expert users

would sometimes unknowingly misalign the virtual representations over the real-world ob-

jects. For example, after specifying the global pose for a specific bottle, the user would walk

around the room to specify other attribute and action information; however, after physically

walking in the room, and thus changing perspective, the user would notice that global pose

of the object appeared misaligned with the real-world object. We implemented an interven-

tion (i.e., edit) function for the sequence of human actions for an item, such that the MR

interface would permit users to respecify and edit information in the AOSM. We also noticed



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 65

that scenes would sometimes become cluttered with specifications for multiple items; conse-

quently, we implemented a color scheme for objects to make differentiation between virtual

objects easier.

System V1

We tested system V1 with the first novice user. The major observation from the user concerned

the sensitivity of the hand controller, which the user found to be overly sensitive to touch

and thus difficult to use to precisely position the virtual representations. We reduced the

sensitivity of the controller for the subsequent version.

System V2

Feedback from the second novice user centered on a desire to know what action they were

specifying for the robot at any given time, as they sometimes lost their place in the sequence

while adding states. We addressed this issue for the subsequent version by implementing

a text display in the virtual workspace that identifies whether they were specifying action

information, object pose/attribute information or calibration information (Figure 6.2).

System V3

The third novice user tested system V3, and did not have any major issues with using the

system.

We therefore proceeded to test system V3 with the original expert users. The experienced

users were able to use this final version of the system to complete more complex cleanup

tasks, such as turning off sinks and turning off lights.

6.3.4 Overall Impressions of System

The interviews with the three novice users revealed that, overall, they liked the system and

found the system intuitive when they used it.

One notable consideration revealed during user testing concerns sensitivity of the hand

controller; users varied in how sensitive they wanted the hand controller to be in response



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 66

to their input. The first novice user found the hand controller too sensitive (prompting a

reduction in sensitivity); the second novice user did not report any issues with sensitivity; the

third novice user found it not sensitive enough.

Ultimately, the insight from novice user expectations of the system helped guide the de-

sign of the final system. The two expert users tested the final system with complex tasks of

flipping light switches and turning off faucets.

As predicted, a major problem of the MR interface was the decalibration due to drift. Over

time, users would see the virtual objects drift away from their calibrated poses because the

MR-HMD was not able to accurately localize itself within a large space with a constantly

moving user, making their groundings inaccurate for the robot. To resolve this, multiple in-

terventions to edit specified information was required. Although allowing users to readjust

the transform between Unity and ROS made this issue less pressing, users reported that it

was cumbersome to do this repeatably. Therefore, high-precision pose tracking is crucial for

using MR to specify semantic information about the robot’s environment. Another option is

to incorporate autonomous perception modules beyond SLAM into the MR interface, such

as object detection and pose estimation, which can leverage the user-specified information to

enable the object’s pose estimate to be robust to decalibration due to drift between the robot

and the MR-HMD. The human-specified information can be used in conjunction with itera-

tive computer vision algorithms, like ICP for pose registration [27], which are are sensitive to

initial starting points and would benefit from human input.

6.4 Results

In order to evaluate our system, we demonstrated that our final MR interface enables an

expert user to build the full Household AOSM to sufficiently perform all three high-level

behaviors: navigating to a bottle and throwing it away, navigating to a light switch and turn

it off, and navigating to a sink faucet to close it. For each object, users were tasked with

specifying an object’s G, “grasp” attribute, and the initiation and termination pose for the

associated action (as discussed in Section 6.3). Once the users trained the robot with this

information, the robot was able to plan with the Household AOSM. For planning, the agent



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 67

autonomously performs a multi-step plan of a) moving to a position near the object’s G (as

described in Section 6.3), b) grasping the object based on the “grasp” attribute and initiation

pose, and c) manipulating the object into its termination pose (Figure 6.1). Whenever the agent

fails to execute the plan, we enable the user to intervene (i.e., edit) any specified information.

To quantify our evaluation, we recorded both the total time it took to teach the high-level

action, specify the global pose of the instantiated object, and have the robot autonomously

plan to execute the behavior. In addition to the total time, we also record the number of

interventions required until a successful plan is executed.

There is no fair baseline comparison to our method because we are the first work to present

a representation that has both semantic and planning information that is learnable via MR.

Comparing against direct teleoperation or kinesthetic teaching in the real workspace is not a

valid baseline because there is no way to specify the position and orientation of all the links

in an object by controlling the robot’s arm, which is needed for specifying the initiation and

termination pose of an action. A 2D visual interface that uses our metric map M is also not a

valid baseline because it does not provide any geometric information about the location of the

objects, only geometric information of obstacles slightly above floor height, and therefore can

not be used to label object pose information. Making a 3D static map of the environment and

visualizing it on a 2D monitor is also not a valid baseline because user intervention requires

a dynamically updated model of the room to respecify information, which a static map does

not provide. Continuously mapping a large 3D dynamical scene with on-board robot sensor

data is not a fair comparison because it requires the user to move the robot to acquire desired

view points, introducing a conflating factor of robot control that is not encountered with the

MR interface. A projector-based augmented reality interface is also not a feasible comparison

because it does not provide a method for manipulating or visualizing 3D kinematic mesh

models, which is necessary for defining our high-level actions.

For the bottle task, our expert user took 31 seconds, and had 0 interventions. For the light

switch task, the expert user took 91 seconds, and had 4 interventions. For the sink faucet task,

the expert user took 45 seconds and 3 interventions. Note that the total times include all of the

interventions (i.e: the timer was not stopped between each intervention). Therefore, the light



Chapter 6. Constructing Abstractions for Robotic Planning with Mixed Reality 68

switch and sink faucet task have longer reported times due to the number of interventions

needed to complete the task, but the average intervention time for the light switch task was

22.75 seconds, and 15 seconds for the sink faucet. It took less than 2 minutes to complete each

of our tasks.

6.5 Conclusion

We present a solution to enable users to teach robots both high-level actions for object manip-

ulation and semantic map representations for navigation via an MR interface. We introduced

Action-Oriented Semantic Maps (AOSMs), a plannable representation which can enable a hu-

man to teach a robot information needed for object manipulation and navigation through MR.

To demonstrate that humans can build AOSMs to plan for complex object manipulation tasks,

we showed that novice and expert users can program a mobile manipulator to perform three

tasks: picking up a bottle and throwing it in the trash, closing a sink faucet, and flipping a

light switch. Ultimately, our contributed methods and interfaces enable humans to intuitively

and effectively teach mobile manipulators both perceptual and action abstractions that are

sufficient for planning in long-horizon tasks.



69

Chapter 7

Conclusion

The thesis of this dissertation is that algorithms and interfaces that exploit spatial structure can

enable mobile manipulators to effectively acquire perceptual and action abstractions via au-

tonomous interaction with the environment, or from a human teacher. As we have discussed,

action abstractions are crucial for enabling robots to overcome the inherent long-horizon na-

ture present in tasks that humans face every day. And in order to leverage action abstrac-

tions, robots must also acquire perceptual abstractions that can provide the agent to plan for

a wide range of tasks, and in novel environments. While acquiring both of these abstractions

through autonomous interaction with the environment offers avenues to scalable robot learn-

ing, robots still ultimately also need to learn user-specific abstractions directly from humans

to adapt to their preferences and lifestyles. This dissertation has demonstrated that by lever-

aging algorithms and interfaces (like MR devices) that exploit spatial structure, both types of

abstractions (perceptual and action) can be acquired effectively from both sources of informa-

tion (autonomous interactions and from human teachers).

While this dissertation has offered solutions to key problems in enabling robots to enter so-

ciety and help humans at large, there are still critical assumptions made across the works that

need to be relaxed in order to be more practical. Most critically, we assume our state is fully

observable, which is practical in cases where the robot can view the object it is manipulating

entirely, or when the robot has premapped and environment it intends to interact with. But

in dynamic scenes where other agents are present, it is unreasonable to assume the robot will

maintain accurate information about the state of the world. Future work will address how

to learn perceptual and action abstractions for mobile manipulators in the face of partially



Chapter 7. Conclusion 70

observable domains. In addition, we have proposed methods for robots to autonomously ac-

quire action abstractions (Chapters 3 and 4) and perceptual abstractions (Chapter 5), and sep-

arately proposed interfaces and methods for humans to teach action and perceptual abstrac-

tions (Chapter 6). Future work will combine all of these methods together, and investigate the

novel problems that arise when needing to resolve conflicts in human-specified abstractions,

and robot-specific learned abstractions.



72

Bibliography

[1] Unity 3D. Unity Asset Store. URL https://assetstore.unity.com/.

[2] Ben Abbatematteo, Stefanie Tellex, and George Konidaris. Learning to generalize kine-

matic models to novel objects. Proceedings of the 3rd Conference on Robot Learning, 2019.

[3] Ben Abbatematteo, Eric Rosen, Stefanie Tellex, and George Konidaris. Bootstrapping

motor skill learning with motion planning. In 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 4926–4933. IEEE, 2021.

[4] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron

David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al.

Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint

arXiv:2204.01691, 2022.

[5] M. Tuluhan Akbulut, Utku Bozdogan, Ahmet Tekden, and Emre Ugur. Reward condi-

tioned neural movement primitives for population-based variational policy optimiza-

tion. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages

10808–10814, 2021.

[6] Mete Akbulut, Erhan Oztop, Muhammet Yunus Seker, Hh X, Ahmet Tekden, and Emre

Ugur. Acnmp: Skill transfer and task extrapolation through learning from demonstra-

tion and reinforcement learning via representation sharing. In Jens Kober, Fabio Ramos,

and Claire Tomlin, editors, Proceedings of the 2020 Conference on Robot Learning, volume

155 of Proceedings of Machine Learning Research, pages 1896–1907. PMLR, 16–18 Nov 2021.

[7] Barrett Ames, Allison Thackston, and George Konidaris. Learning symbolic represen-

tations for planning with parameterized skills. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 526–533. IEEE, 2018.



BIBLIOGRAPHY 73

[8] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,

et al. Learning dexterous in-hand manipulation. The International Journal of Robotics

Research, 39(1):3–20, 2020.

[9] B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and Autonomous Systems, 57:469–483, 2009.

[10] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey

of robot learning from demonstration. Robotics and autonomous systems, 57(5):469–483,

2009.

[11] Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML,

volume 97, pages 12–20. Citeseer, 1997.

[12] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The slam problem: a

survey. Artificial Intelligence Research and Development, pages 363–371, 2008.

[13] Emanuele Bastianelli, Domenico Bloisi, Roberto Capobianco, Guglielmo Gemignani,

Luca Iocchi, and Daniele Nardi. Knowledge representation for robots through human-

robot interaction. arXiv preprint arXiv:1307.7351, 2013.

[14] Patrick Beeson and Barrett Ames. Trac-ik: An open-source library for improved solv-

ing of generic inverse kinematics. In 2015 IEEE-RAS 15th International Conference on

Humanoid Robots (Humanoids), pages 928–935. IEEE, 2015.

[15] Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan, Asil Kaan Bozcuoğlu,

and Georg Bartels. Know rob 2.0—a 2nd generation knowledge processing framework

for cognition-enabled robotic agents. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 512–519. IEEE, 2018.

[16] Pascal Bercher, Ron Alford, and Daniel Höller. A survey on hierarchical planning-one

abstract idea, many concrete realizations. In IJCAI, pages 6267–6275, 2019.

[17] Aude Billard and Danica Kragic. Trends and challenges in robot manipulation. Science,

364(6446), 2019.



BIBLIOGRAPHY 74

[18] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-driven grasp

synthesis—a survey. IEEE Transactions on Robotics, 30(2):289–309, 2013.

[19] Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock, Danica Kragic, Stefan

Schaal, and Gaurav S Sukhatme. Interactive perception: Leveraging action in percep-

tion and perception in action. IEEE Transactions on Robotics, 33(6):1273–1291, 2017.

[20] Gabriele Bolano, Christian Juelg, Arne Roennau, and Ruediger Dillmann. Transparent

robot behavior using augmented reality in close human-robot interaction. In 2019 28th

IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),

pages 1–7. IEEE, 2019.

[21] R.R. Burridge, A.A. Rizzi, and D.E. Koditschek. Sequential composition of dynamically

dextrous robot behaviors. International Journal of Robotics Research, 18(6):534–555, 1999.

[22] Alexandre Campeau-Lecours, Hugo Lamontagne, Simon Latour, Philippe Fauteux,

Véronique Maheu, François Boucher, Charles Deguire, and Louis-Joseph Caron

L’Ecuyer. Kinova modular robot arms for service robotics applications. In Rapid Automa-

tion: Concepts, Methodologies, Tools, and Applications, pages 693–719. IGI Global, 2019.

[23] Tathagata Chakraborti, Sarath Sreedharan, Anagha Kulkarni, and Subbarao Kambham-

pati. Projection-aware task planning and execution for human-in-the-loop operation of

robots in a mixed-reality workspace. In 2018 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), pages 4476–4482. IEEE, 2018.

[24] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey

Levine. Path integral guided policy search. In 2017 IEEE international conference on

robotics and automation (ICRA), pages 3381–3388. IEEE, 2017.

[25] C-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N. Ratliff.

Rmpflow: A geometric framework for generation of multitask motion policies. IEEE

Transactions on Automation Science and Engineering, 18(3):968–987, 2021.

[26] Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast Policy Learning

through Imitation and Reinforcement. arXiv e-prints, art. arXiv:1805.10413, May 2018.



BIBLIOGRAPHY 75

[27] Dmitry Chetverikov, Dmitry Svirko, Dmitry Stepanov, and Pavel Krsek. The trimmed

iterative closest point algorithm. In Object recognition supported by user interaction for

service robots, volume 3, pages 545–548. IEEE, 2002.

[28] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE Robotics &

Automation Magazine, 19(1):18–19, 2012.

[29] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

1995.

[30] Erwin Coumans et al. Bullet physics library. Open source: bulletphysics. org, 15(49):5,

2013.

[31] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search

for robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

[32] M.P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics.

Foundations and Trends in Robotics, 2(1–2):1–142, 2013.

[33] Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation

for efficient reinforcement learning. In Proceedings of the 25th international conference on

Machine learning, pages 240–247. ACM, 2008.

[34] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i.

IEEE robotics & automation magazine, 13(2):99–110, 2006.

[35] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algo-

rithm for discovering clusters in large spatial databases with noise. In kdd, volume 96,

pages 226–231, 1996.

[36] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of

deep networks. In Proceedings of the 34th International Conference on Machine Learning,

pages 1126–1135, 2017.



BIBLIOGRAPHY 76

[37] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation

error in actor-critic methods. In International conference on machine learning, pages 1587–

1596. PMLR, 2018.

[38] Samir Yitzhak Gadre, Eric Rosen, Gary Chien, Elizabeth Phillips, Stefanie Tellex, and

George Konidaris. End-user robot programming using mixed reality. In Proceedings of

the IEEE International Conference on Robotics and Automation (in press). IEEE, 2019.

[39] Cipriano Galindo, Juan-Antonio Fernández-Madrigal, Javier González, and Alessandro

Saffiotti. Robot task planning using semantic maps. Robotics and autonomous systems, 56

(11):955–966, 2008.

[40] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver,

Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning.

Annual review of control, robotics, and autonomous systems, 4:265–293, 2021.

[41] Nakul Gopalan, Eric Rosen, GD Konidaris, and Stefanie Tellex. Simultaneously learn-

ing transferable symbols and language groundings from perceptual data for instruction

following. Robotics: Science and Systems XVI, 2020.

[42] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement

learning for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE

international conference on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

[43] Marc Hanheide, Moritz Göbelbecker, Graham S Horn, Andrzej Pronobis, Kristoffer

Sjöö, Alper Aydemir, Patric Jensfelt, Charles Gretton, Richard Dearden, Miroslav Jan-

icek, et al. Robot task planning and explanation in open and uncertain worlds. Artificial

Intelligence, 247:119–150, 2017.

[44] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[45] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances

in neural information processing systems, pages 4565–4573, 2016.



BIBLIOGRAPHY 77

[46] Baichuan Huang, Deniz Bayazit, Daniel Ullman, Nakul Gopalan, and Stefanie Tellex.

Flight, camera action! Using natural language and mixed reality to control a drone.

ICRA, 2019.

[47] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,

Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embod-

ied reasoning through planning with language models. arXiv preprint arXiv:2207.05608,

2022.

[48] A.J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning

motor primitives. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural

Information Processing Systems 15, pages 1547–1554, 2002.

[49] Auke J Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes for

learning motor primitives. In Advances in neural information processing systems, pages

1547–1554, 2003.

[50] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.

Dynamical movement primitives: learning attractor models for motor behaviors. Neural

computation, 25(2):328–373, 2013.

[51] Steven James, Benjamin Rosman, and George Konidaris. Learning portable represen-

tations for high-level planning. In International Conference on Machine Learning, pages

4682–4691. PMLR, 2020.

[52] Steven James, Benjamin Rosman, and George Konidaris. Autonomous learning of

object-centric abstractions for high-level planning. In International Conference on Learning

Representations, 2021.

[53] Steven James, Benjamin Rosman, and George Konidaris. Autonomous learning of

object-centric abstractions for high-level planning. In International Conference on Learning

Representations, 2022.



BIBLIOGRAPHY 78

[54] Yuqian Jiang, Fangkai Yang, Shiqi Zhang, and Peter Stone. Task-motion planning with

reinforcement learning for adaptable mobile service robots. In IROS, pages 7529–7534,

2019.

[55] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias

Loskyll, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforce-

ment learning for robot control. In 2019 International Conference on Robotics and Automa-

tion (ICRA), pages 6023–6029. IEEE, 2019.

[56] Tom Jurgenson and Aviv Tamar. Harnessing reinforcement learning for neural motion

planning. arXiv preprint arXiv:1906.00214, 2019.

[57] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning

in the now. In 2011 IEEE International Conference on Robotics and Automation, pages 1470–

1477. IEEE, 2011.

[58] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Plato: Policy learning

using adaptive trajectory optimization. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 3342–3349. IEEE, 2017.

[59] Sham M Kakade. A natural policy gradient. In Advances in neural information processing

systems, pages 1531–1538, 2002.

[60] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth Teller.

Anytime motion planning using the rrt. In 2011 IEEE International Conference on Robotics

and Automation, pages 1478–1483. IEEE, 2011.

[61] Oussama Khatib. A unified approach for motion and force control of robot manipula-

tors: The operational space formulation. IEEE J. Robotics Autom., 3:43–53, 1987.

[62] Alexander Khazatsky, Ashvin Nair, Daniel Jing, and Sergey Levine. What can i do

here? learning new skills by imagining visual affordances. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 14291–14297. IEEE, 2021.

[63] J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine Learning,

84(1-2):171–203, 2010.



BIBLIOGRAPHY 79

[64] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Her-

rasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interac-

tive 3d environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[65] G.D. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement learning

domains using skill chaining. In Advances in Neural Information Processing Systems 22,

pages 1015–1023, 2009.

[66] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to sym-

bols: Learning symbolic representations for abstract high-level planning. Journal of Ar-

tificial Intelligence Research, 61:215–289, 2018.

[67] George Dimitri Konidaris and Andrew G Barto. Building portable options: Skill transfer

in reinforcement learning. In IJCAI, volume 7, pages 895–900, 2007.

[68] Ioannis Kostavelis and Antonios Gasteratos. Semantic mapping for mobile robotics

tasks: A survey. Robotics and Autonomous Systems, 66:86–103, 2015.

[69] O. Kroemer, S. Niekum, and G.D. Konidaris. A review of robot learning for manipula-

tion: Challenges, representations, and algorithms. Journal of Machine Learning Research,

22(30):1–82, 2021.

[70] Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learn-

ing for manipulation: Challenges, representations, and algorithms. arXiv preprint

arXiv:1907.03146, 2019.

[71] Norbert Krügera, Christopher Geibb, Justus Piaterc, Ronald Petrickb, Mark Steedmanb,

Florentin Wörgötterd, Aleš Udee, Tamim Asfourf, Dirk Krafta, Damir Omrcene, et al.

Object-action complexes: Grounded abstractions of sensorimotor processes.

[72] Dennis Krupke, Frank Steinicke, Paul Lubos, Yannick Jonetzko, Michael Görner, and

Jianwei Zhang. Comparison of multimodal heading and pointing gestures for co-

located mixed reality human-robot interaction. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 1–9. IEEE, 2018.



BIBLIOGRAPHY 80

[73] Benjamin Kuipers. The spatial semantic hierarchy. Artificial intelligence, 119(1-2):191–

233, 2000.

[74] Andrey Kurenkov, Ajay Mandlekar, Roberto Martin-Martin, Silvio Savarese, and Ani-

mesh Garg. Ac-teach: A bayesian actor-critic method for policy learning with an en-

semble of suboptimal teachers. arXiv preprint arXiv:1909.04121, 2019.

[75] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learn-

ing plannable representations with causal infogan. In Advances in Neural Information

Processing Systems, pages 8733–8744, 2018.

[76] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[77] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor

policies. Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[78] Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on

Machine Learning, pages 1–9, 2013.

[79] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of

deep visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016. URL

http://jmlr.org/papers/v17/15-522.html.

[80] Xiaolong Li, He Wang, Li Yi, Leonidas Guibas, A Lynn Abbott, and Shuran Song.

Category-level articulated object pose estimation. arXiv preprint arXiv:1912.11913, 2019.

[81] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971, 2015.

[82] T. Lozano-Perez, M.T. Mason, and R.H. Taylor. Automatic synthesis of fine-motion

strategies for robots. International Journal of Robotics Research, 3(1):3–24, 1984.

[83] Tomas Lozano-Perez. Automatic planning of manipulator transfer movements. IEEE

Transactions on Systems, Man, and Cybernetics, 11(10):681–698, 1981.



BIBLIOGRAPHY 81

[84] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. Heuristic ap-

proaches in robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28,

2016.

[85] Roberto Martín-Martín, Michelle A Lee, Rachel Gardner, Silvio Savarese, Jeannette

Bohg, and Animesh Garg. Variable impedance control in end-effector space: An action

space for reinforcement learning in contact-rich tasks. In 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 1010–1017. IEEE, 2019.

[86] Matthew T Mason. Toward robotic manipulation. Annual Review of Control, Robotics,

and Autonomous Systems, 1:1–28, 2018.

[87] Michael C Medlock, Dennis Wixon, Mark Terrano, Ramon Romero, and Bill Fulton.

Using the rite method to improve products: A definition and a case study. Usability

Professionals Association, 51, 2002.

[88] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking

movements in robot table tennis. The International Journal of Robotics Research, 32(3):263–

279, 2013.

[89] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter

Abbeel. Overcoming exploration in reinforcement learning with demonstrations. In

2018 IEEE international conference on robotics and automation (ICRA), pages 6292–6299.

IEEE, 2018.

[90] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward trans-

formations: Theory and application to reward shaping. In Icml, volume 99, pages 278–

287, 1999.

[91] Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile robots.

Robotics and Autonomous Systems, 56(11):915–926, 2008.

[92] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos

Theodorou, and Byron Boots. Agile autonomous driving using end-to-end deep imita-

tion learning. arXiv preprint arXiv:1709.07174, 2017.



BIBLIOGRAPHY 82

[93] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Proba-

bilistic movement primitives. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26.

Curran Associates, Inc., 2013.

[94] E. Parzen. On estimation of a probability density function and mode. The Annals of

Mathematical Statistics, 33(3):1065, 1962.

[95] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and gen-

eralization of motor skills by learning from demonstration. In 2009 IEEE International

Conference on Robotics and Automation, pages 763–768. IEEE, 2009.

[96] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical

reinforcement learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54

(5):1–35, 2021.

[97] David Paulius and Yu Sun. A survey of knowledge representation and retrieval for

learning in service robotics. arXiv preprint arXiv:1807.02192, 2018.

[98] Doina Precup. Temporal abstraction in reinforcement learning. University of Massachusetts

Amherst, 2000.

[99] Andrzej Pronobis and Patric Jensfelt. Large-scale semantic mapping and reasoning with

heterogeneous modalities. In 2012 IEEE International Conference on Robotics and Automa-

tion, pages 3515–3522. IEEE, 2012.

[100] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,

Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with

deep reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[101] Karinne Ramirez-Amaro, Michael Beetz, and Gordon Cheng. Transferring skills to hu-

manoid robots by extracting semantic representations from observations of human ac-

tivities. Artificial Intelligence, 247:95–118, 2017.

[102] N.D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox. Riemannian motion policies.

arXiv preprint arXiv:1801.02854, 2018.



BIBLIOGRAPHY 83

[103] Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James Tompkin, George

Konidaris, and Stefanie Tellex. Communicating robot arm motion intent through mixed

reality head-mounted displays. In International Symposium on Robotics Research, 2017.

[104] Eric Rosen, Nishanth Kumar, Nakul Gopalan, Daniel Ullman, George Konidaris, and

Stefanie Tellex. Building plannable representations with mixed reality. In 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 11146–11153.

IEEE, 2020.

[105] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The

Annals of Mathematical Statistics, 27(3):832, 1956.

[106] F. Sadeghi and S. Levine. CAD2RL: Real single-image flight without a single real image.

In Robotics: Science and Systems XIII, 2016.

[107] S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sci-

ences, 3(6):233–242, 1999.

[108] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive

sciences, 3(6):233–242, 1999.

[109] Stefan Schaal. Dynamic movement primitives-a framework for motor control in hu-

mans and humanoid robotics. In Adaptive motion of animals and machines, pages 261–280.

Springer, 2006.

[110] Stefan Schaal and Christopher G Atkeson. Constructive incremental learning from only

local information. Neural computation, 10(8):2047–2084, 1998.

[111] Muhammet Yunus Seker, Mert Imre, Justus Piater, and Emre Ugur. Conditional neural

movement primitives. In Proceedings of Robotics: Science and Systems, FreiburgimBreis-

gau, Germany, June 2019.

[112] Seiji Shaw, Ben Abbatematteo, and George Konidaris. Rmps for safe impedance control

in contact-rich manipulation. In 2022 International Conference on Robotics and Automation

(ICRA), pages 2707–2713, 2022.



BIBLIOGRAPHY 84

[113] Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learn-

ing. arXiv preprint arXiv:1812.06298, 2018.

[114] Thorsten Spexard, Shuyin Li, Britta Wrede, Jannik Fritsch, Gerhard Sagerer, Olaf Booij,

Zoran Zivkovic, Bas Terwijn, and Ben Krose. Biron, where are you? Enabling a robot to

learn new places in a real home environment by integrating spoken dialog and visual

localization. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 934–940. IEEE, 2006.

[115] Freek Stulp and Olivier Sigaud. Path integral policy improvement with covariance ma-

trix adaptation. arXiv preprint arXiv:1206.4621, 2012.

[116] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[117] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112

(1-2):181–211, 1999.

[118] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-

bridge, MA, 1998.

[119] R.S. Sutton, D. Precup, and S.P. Singh. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–

211, 1999.

[120] R. Tedrake. LQR-Trees: Feedback motion planning on sparse randomized trees. In

Robotics: Science and Systems V, pages 18–24, 2009.

[121] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose detection

in point clouds. The International Journal of Robotics Research, 36(13-14):1455–1473, 2017.

[122] Tarik Tosun, Eric Mitchell, Ben Eisner, Jinwook Huh, Bhoram Lee, Daewon Lee, Volkan

Isler, H Sebastian Seung, and Daniel Lee. Pixels to plans: Learning non-prehensile

manipulation by imitating a planner. arXiv preprint arXiv:1904.03260, 2019.



BIBLIOGRAPHY 85

[123] Ming-June Tsai. WORKSPACE GEOMETRIC CHARACTERIZATION AND MANIPULA-

BILITY OF INDUSTRIAL ROBOTS (KINEMATICS). The Ohio State University, 1986.

[124] Maximilian Ulmer, Elie Aljalbout, Sascha Schwarz, and Sami Haddadin. Learning

robotic manipulation skills using an adaptive force-impedance action space. arXiv

preprint arXiv:2110.09904, 2021.

[125] Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafir. Communicating

robot motion intent with augmented reality. In Proceedings of the 2018 ACM/IEEE Inter-

national Conference on Human-Robot Interaction, pages 316–324. ACM, 2018.

[126] Matthew R Walter, Sachithra Hemachandra, Bianca Homberg, Stefanie Tellex, and Seth

Teller. Learning semantic maps from natural language descriptions. In Robotics: Science

and Systems, 2013.

[127] David Whitney, Eric Rosen, Daniel Ullman, Elizabeth Phillips, and Stefanie Tellex. ROS

reality: A virtual reality framework using consumer-grade hardware for ROS-enabled

robots. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 1–9. IEEE, 2018.

[128] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Combined task and motion planning

for mobile manipulation. In Twentieth International Conference on Automated Planning and

Scheduling, 2010.

[129] Florentin Wörgötter, Alejandro Agostini, Norbert Krüger, Natalya Shylo, and Bernd

Porr. Cognitive agents—a procedural perspective relying on the predictability of object-

action-complexes (oacs). Robotics and Autonomous Systems, 57(4):420–432, 2009.

[130] Mandy Xie, Karl Van Wyk, Ankur Handa, Stephen Tyree, Dieter Fox, Harish Ravichan-

dar, and Nathan D Ratliff. Neural geometric fabrics: Efficiently learning high-

dimensional policies from demonstration. In 6th Annual Conference on Robot Learning.

[131] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The international journal of

Robotics Research, 4(2):3–9, 1985.



BIBLIOGRAPHY 86

[132] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Martín-Martín. robosuite: A

modular simulation framework and benchmark for robot learning. In arXiv preprint

arXiv:2009.12293, 2020.


