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ABSTRACT

While many skill discovery methods have been proposed to accelerate learning
and planning, most are heuristic methods without a clear relationship to the agent’s
objective. The conditions under which the algorithms are effective is therefore
often unclear. We claim that we should pursue skill discovery algorithms with
explicit relationships to the objective of the agent to understand in what scenarios
skill discovery methods are useful. We summarize the analysis on two scenarios,
planning and reinforcement learning by Jinnai et al. (2019a;b), and show how to
identify skill discovery criteria that directly address the relevant objectives. For
planning, we show that finding a set of options that minimizes planning time is
NP-hard, and give a polynomial-time algorithm that is approximately optimal un-
der certain conditions. For reinforcement learning, we target goal-based tasks with
sparse rewards—specifically, where the agent only receives useful reward signals
at the goal state. We show that the difficulty of discovering a distant rewarding
state in an MDP is bounded by the expected cover time of a random walk over
the graph induced by the MDP’s transition dynamics. We therefore propose an
algorithm which finds an option which provably reduces the expected cover time.

1 INTRODUCTION

An appropriate set of skills, or temporally extended actions, can significantly improve the perfor-
mance of an agent in many scenarios (Sutton et al., 1999). Thus, many heuristic algorithms have
proposed to discover skills based on intuitive descriptions of useful skills (Iba, 1989; McGovern &
Barto, 2001; Menache et al., 2002; Stolle & Precup, 2002; Şimşek & Barto, 2004; Şimşek et al.,
2005; Şimşek & Barto, 2009; Konidaris & Barto, 2009; Machado et al., 2017; Eysenbach et al.,
2019). While empirical results show that these algorithms are useful in some scenarios, the condi-
tions under which the methods are effective is often unclear because the relationship between the
objective of the skill discovery algorithm and that of the agent is often not established. In fact, Jong
et al. (2008) sought to investigate the utility of skills empirically and pointed out that introducing
skills might worsen the learning performance.

In order to discover options that are guaranteed to be useful, we claim that we should develop skill
discovery algorithms with an explicit connection to the objective of the agent. This allows us to
analytically evaluate the performance of the skill discovery algorithms instead of relying solely on
empirical evaluations on benchmark tasks.

We summarize our recent work on two scenarios, planning and reinforcement learning (Jinnai et al.,
2019a;b). We show that by explicitly targeting the objective function of the agent, it is possible
to derive new skill discovery algorithms with a guarantee on how much the algorithms improve
the agent’s objective. For planning, we show that the task of finding an option set that minimizes
planning time is NP-hard and we provide an approximate algorithm with performance guarantees
under certain conditions. For reinforcement learning, we show that minimizing the expected cover
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time—the number of steps required for a random walk to visit every state Broder & Karlin (1989)—
reduces the expected number of steps required to reach an unknown rewarding state. We introduce
an option discovery method that explicitly aims to minimize the expected cover time and show that
the algorithm provably reduces it.

2 OBJECTIVE FUNCTIONS FOR SKILL DISCOVERY

We describe our approach to two objectives: planning and exploration in reinforcement learning.
We show that by explicitly targeting the appropriate objective, we can derive new skill discovery
algorithms with theoretical performance guarantees.

2.1 FINDING OPTIONS THAT MINIMIZE PLANNING TIME

First, we consider planning with the value iteration algorithm. We formalize what it means to find
the set of options that is optimal for planning. More precisely, we consider the problem of finding a
subset of options from a candidate set of options so that planning converges within a given iteration
limit:

Definition 1 MOMI (MinOptionMaxIteration):
Given an MDP M = (S,A, R, T, γ), a non-negative real-value ε, a candidate option set O′,
and an integer `, return O minimizing |O| subject to L(O) ≤ ` and O ⊆ O′, where L(O) is
the number of value iteration passes to solve the MDP using the option set O.

MOMI has the following complexity results:

Theorem 1.

1. MOMI is Ω(log n) hard to approximate even for deterministic MDPs unless P = NP.
2. MOMI is 2log

1−ε n-hard to approximate for any ε > 0 even for deterministic MDP unless
NP ⊆ DTIME(npoly logn).

Here we describe the outline of the proof (see the Appendix for the full description). The proof is
by reduction from the label cover and the set cover problem respectively to a special case of the
problem where the set of options are constrained to be point options. A point option is a type of
option which has exactly one state in initiation set and one state with termination probability set to
one. Even for this limited setting, finding a set of point options is 2log

1−ε n-hard to approximate,
and Ω(log n)-hard to approximate even for deterministic tasks. As we showed inapproximability for
this special case, MOMI is also NP-hard to approximate. Thus, finding an optimal set of options for
planning is NP-hard in general.

This inapproximability result suggest that efficient option discovery algorithms for planning only
exist in a more restricted settings than the above cases. We now present a polynomial-time algorithm
A-MOMI for approximately computing the optimal set of point options for tasks with bounded
return and goal states:

1. Compute d : S × S → Z≥0 for every state pair where d is the number of iterations for si
to reach ε-optimal if we add a point option from sj to g, minus one.

2. For every state si, compute a set of states Xsi within `− 1 distance of reaching si. The set
Xsi represents the states that converge within ` steps if we add a point option from si to g.

3. Let X be a set of Xsi for every si ∈ S \ X+
g , where X+

g is a set of states that converges
within ` without any options (and thus can be ignored).

4. Solve the set-cover optimization problem to find a set of subsets that covers the entire state
set using the approximate algorithm by Chvatal (1979). This process corresponds to finding
a minimum set of subsets {Xsi} that makes every state in S converge within ` steps.

5. Generate a set of point options with initiation states set to one of the center states in the
solution of the set-cover, and termination states set to the goal.

The algorithm has the following properties:

Theorem 2.
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Figure 1: (a)–(d) Comparison of the optimal point options with options generated by the approxima-
tion algorithm. The green square represents the termination state and the blue squares the initiation
states. Observe that the approximation algorithm is similar to that of optimal options. Note that
the optimal option set is not unique: there can be multiple optimal option sets, and we are visual-
izing just one returned by the solver. We are only able to find optimal solutions up to 8 iterations
for MOMI and four options for MIMO within 10 minutes. (e)–(f) Figures show the number of op-
tions generated by A-MOMI and A-MIMO. OPT: an optimal set of options. APPROX: a bounded
suboptimal set of options generated by A-MIMO an A-MOMI. BET: betweenness options. EIG:
eigenoptions.

1. A-MOMI runs in polynomial time.
2. It guarantees that the MDP is solved within ` iterations using the option set acquired by

A-MOMI.
3. If the MDP is deterministic, the option set is at mostO(log n) times larger than the smallest

option set that solves the MDP within ` iterations.

See the Appendix for the proof.

We also consider MIMO, the complementary problem of finding a set of k options that minimize the
number of iterations until convergence. The problem is also NP-hard and exists a polynomial-time
approximate algorithm, A-MIMO. See the Appendix for the proof.

We empirically evaluated the performance of the approximate algorithms against the optimal option
set and two heuristic approaches for option discovery, betweenness options (Şimşek & Barto, 2009)
and eigenoptions (Machado et al., 2017) in simple grid-world tasks. The results indicate that the
approximation algorithm is on par with other heuristic algorithms. While heuristic algorithms have
no theoretical performance guarantees (e.g. betweenness options are not necessarily helpful when
the task has no bottleneck states), our algorithm offers a performance guarantee in any domain.

2.2 FINDING OPTIONS THAT MINIMIZE LEARNING TIME FOR HARD EXPLORATION TASKS

We now consider reinforcement learning tasks, where the environment model is not available. In
particular, we consider how options can improve exploration in goal-based tasks with sparse reward.
We model the initial exploratory behavior of a reinforcement learning agent in a sparse reward task
by a random walk induced by a fixed stationary distribution. This is because (1) it is a reasonable
model for an agent with no prior knowledge of the task and (2) it serves as a worst-case analysis: it
is reasonable to assume that efficient exploration algorithms explore faster than the random policy.
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We aim to minimize the time required by an agent to explore the task. More precisely, we aim to
minimize the expected cover time: the expected number of steps required for a random walk to visit
all the vertices in a graph (Broder & Karlin, 1989). The expected cover time quantifies how quickly
a random walk reaches to a rewarding state.
Theorem 3. Assume a stochastic shortest path problem to reach a goal state g ∈ S where a non-
positive reward rc ≤ 0 is given for non-goal states and γ = 1. Let P be a random walk transition
matrix: P (s, s′) =

∑
a∈A π(s)T (s, a, s′):

∀g : V πg (s) ≥ rcE[C(G)],

where C(G) is the expected cover time of the graph G.

See the Appendix for the proof. The theorem suggests that the smaller the expected cover time, the
easier exploration tends to be. Now the question is how to reduce the expected cover time of the
random walk without prior information about the task.

We now present covering options, an algorithm which discovers options that minimize the expected
cover time. The algorithm is approximate since the problem of finding such a set of options is com-
putationally intractable; even a good solution is hard to find due to the Braess’s paradox (Braess,
1968; Braess et al., 2005), which states that the expected cover time does not monotonically de-
crease as edges are added to the graph. Thus, expected cover time is often minimized indirectly
via maximizing algebraic connectivity (Fiedler, 1973; Chung, 1996). The expected cover time is
upper bounded by a quantity involving the algebraic connectivity, and by maximizing it the bound
can be minimized (Broder & Karlin, 1989). As adding a set of edges to maximize the algebraic
connectivity is still NP-hard (Mosk-Aoyama, 2008), we use the approximation method by Ghosh &
Boyd (2006):

1. Compute the second smallest eigenvalue and its corresponding eigenvector (i.e., the Fiedler
vector) of the Laplacian L of the state transition graph G.

2. Let vi and vj be the state with largest and smallest value in the eigenvector respectively.
Generate two point options; one with I = {vi} and β = {vj} and the other with I = {vj}
and β = {vi}.

3. Set G← G ∪ {(vi, vj)} and repeat the process until the number of options reaches k.

The algorithm is guaranteed to reduce the upper bound of the expected cover time:
Theorem 4. Assume that a random walk induced by a policy π is a uniform random walk and the
multiplicity of the second smallest eigenvalue of L is one. Adding the two options identified by the
algorithm improves the upper bound of the cover time:

E[C(G′)] ≤ n2 lnn

λ2(L) + F
(1 + o(1)), (1)

where E[C(G′)] is the expected cover time of the resulting random walk, F =
(vi−vj)2

6/(λ3−λ2)+3/2 , vi, vj
are the maximum and minimum values of the Fiedler vector, and λ2 is the second smallest eigenvalue
of L, and n is the number of states. If the multiplicity of the second smallest eigenvalue is greater
than one, then adding any single option cannot improve the bound.

See the Appendix for the proof. Note that the procedure is similar to eigenoptions, proposed by
Machado et al. (2017). Both algorithms use the eigenvectors of the Laplacian matrix to generate
options. While eigenoptions have no performance guarantees, by explicitly targeting an objective
we are able to derive a lower bound on improving the expected cover time and also achieve better
empirical performance (Fig 2). Table 2a shows our preliminary results on comparing the expected
cover time on simple tabular domains. Our algorithm successfully generates a set of options which
reduce the cover time more than eigenoptions (Machado et al., 2017). In addition, covering options
is fast to compute as it only needs to compute the Fiedler vector. Although computing the whole
graph spectrum is a computationally complex matrix operation, the Fiedler vector can be computed
efficiently even for very large graphs (Koren et al., 2002).

We now evaluate the utility of each type of discovered options when learning. We used Q-learning
(Watkins & Dayan, 1992) (α = 0.1, γ = 0.95) for 100 episodes of 100 timesteps each and gen-
erated 8 options with each algorithms using the adjacency matrix representing the state-transition
of the MDP. Figure 2 shows the comparison of accumulated rewards averaged over 5 runs. In all
experiments, covering options outperformed or was on par with eigenoptions.
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fourroom λ2 Cover Time
covering options 0.065 672.0

Eigenoptions 0.054 695.9
No options 0.023 1094.8

9x9 grid λ2 Cover Time
covering options 0.24 258.6

Eigenoptions 0.19 261.5
No options 0.12 460.5
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Figure 2: (a) Comparison of the algebraic connectivity and the expected cover time. For covering
options and eigenoptions we add 8 options. (b)–(c) Comparison of performance with different option
generation methods. Options are generated offline from the adjacency matrix for four-room and
9x9grid. Reward information is not used for generating options.

3 RELATED WORK

While many option discovery algorithms are heuristic, a few have proposed methods with well-
defined objectives.

Several works have proposed learning the policy and the termination condition of the option by gra-
dient descent using the observed rewards (Mankowitz et al., 2016; Bacon et al., 2017; Harb et al.,
2018). Bacon et al. (2017) proposed the option-critic framework and generated options which di-
rectly minimize the expected accumulative reward (i.e. the objective of the agent). Harb et al. (2018)
proposed to generate options which minimize the sum of expected accumulative reward and the de-
liberation cost (Simon, 1957) using the option-critic framework (Bacon et al., 2017). The method
successfully sped up the learning time by taking into account of the deliberation cost to prefer op-
tions with long duration. However, as they require the reward information, options discovered are
task-dependent. Eysenbach et al. (2019) proposed to learn a policy for each option so that the diver-
sity of the trajectories by the set of options are maximized. The method seeks to generate options
to explore infrequently visited states. Several works have proposed an architecture to learn goal-
conditioned policies (i.e. options) to reach certain subgoal states Vezhnevets et al. (2017); Nachum
et al. (2018); Levy et al. (2019). They showed that the method can speed up the learning even in
long-horizon problems by discovering short horizon subgoals automatically. Brunskill & Li (2014)
targeted the lifelong reinforcement learning setting and proposed an option generation method for
lifelong reinforcement learning. They analyzed the sample complexity of RMAX using options and
proposed an option discovery targeting to minimize the sample complexity. Solway et al. (2014)
formalized an optimal behavioral hierarchy as a model which fits the behavior of the agent in tasks
the best.

Mann et al. (2015) analyzed the convergence rate of approximate value iteration with and without
options and showed that options lead to faster convergence if their durations are longer and the value
function is initialized pessimistically. As in reinforcement learning, how to find efficient temporal
abstractions for planning automatically remains an open question.

4 CONCLUSIONS

We analyzed two scenarios, planning and reinforcement learning. For planning, we considered the
problem of minimizing the size of the option set given a maximum number of iterations (MOMI)
and showed that the problem is computationally intractable. We described a polynomial-time ap-
proximate algorithm for solving MOMI under certain conditions. For reinforcement learning, we
proposed covering options and showed that it has a guarantee on how much it improves the expected
cover time of a random walk. These theoretical guarantees are available because the skill discovery
algorithms are directly tailored to the objective of the agent.
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