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Abstract— We introduce the Sensorized Manipulation Chal-
lenge Kit (SMaCK) for benchmarking robotic manipulation
capabilities. Existing sets of physical objects for benchmarking
robotic manipulation focus on physical dexterity (e.g. grasping,
in-hand manipulation) but do not assess planning ability (e.g.
unlocking a box before the handle can be lifted), or goal-
directed exploration, critical features of embodied intelligence.
SMaCK is a collection of puzzle boxes that systematically test
manipulation and reasoning capabilities and which are cheap
and easy to fabricate. The boxes include sensors for measuring
object state information (e.g: inertial data, pose, articulated
joint state) that can be recorded and used to either evaluate or
train a manipulation policy. We also include simulated MuJoCo
domains using the CAD descriptions of the boxes, and evaluate
a deep reinforcement learning agent on the simplest benchmark.
Instructions for building the SMaCK and our codebase can be
found at https://github.com/babbatem/smack/.

I. INTRODUCTION

As robots become increasingly physically capable, bench-
marks will serve an essential role in quantitatively com-
paring the performance of different approaches to robotic
manipulation. Benchmarking is notoriously challenging in
manipulation, in particular, as individual research groups
typically choose objects and tasks to suit each experiment.
This prohibits the analysis of related approaches on a com-
mon benchmark, obfuscating the relationship between the
approaches.

Manipulation is unique in that it requires the coordination
of long sequences of fine motor behavior in order to reach
a goal. Solving these problems in unstructured environments
requires agents to perceive objects in a scene, reason about
their properties, and plan for the future, all while controlling
complicated physical interactions. As such, effective manip-
ulation benchmarks must test not only physical dexterity but
also an agent’s capability for exploration, abstract reasoning,
and planning. While many benchmarks have been proposed
in the literature [1]–[7], existing object sets fail to satisfy
these criteria. Benchmarks must also provide instrumented
physical objects in addition to CAD descriptions so that real
systems can be tested and meaningful human baselines can
be established.

We therefore introduce SMaCK, the Sensorized Manipu-
lation Challenge Kit, a set of puzzle boxes that consist of
articulated mechanisms that test an agent’s ability to plan
and execute multi-step manipulation sequences to achieve
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Fig. 1. The proposed puzzle boxes test physical dexterity and planning
ability, and sense their full state. The box shown requires a three-step plan
to open: rotating a lever, then sliding a locking mechanism, and finally
opening the lid.

a goal. The objects sense, record, and report their full
state in real-time, allowing quantitative comparisons between
algorithms and to human baselines without the limitations of
vision-based tracking systems. By adding articulated parts
and locking dependencies, the problems systematically scale
in breadth and depth, enabling evaluation of manipulation,
exploration, and planning capabilities along two axes of
difficulty. The designs scale in size, enabling the comparison
between agents of different sizes. We provide physical instan-
tiations of these objects, instructions for their fabrication,
CAD files, and simulated learning environments. We also
evaluate a standard reinforcement learning agent’s ability to
interact with the most basic box.

II. RELATED WORK

There are relatively few existing real-world manipula-
tion benchmarks. While simulation benchmarks offer con-
venience and a multitude of tasks [8]–[10], they fail to serve
as a benchmark for real-world manipulation capabilities, and
to facilitate comparisons to humans.

Physical object sets such as the YCB object set [1] and
the objects from the Amazon Picking Challenge [2], [3]
have been used to evaluate object recognition and grasp-
ing performance. Datasets consisting of CAD models and
3D scans have been similarly used to train and evaluate
grasping systems, e.g. BigBird [5], KIT [4], the Columbia
Grasp Database [7], but typically lack a readily available
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set of physical objects to test on. The NIST Manufac-
turing Objects and Assemblies Dataset (NIST-MOAD) [6]
dataset is designed to benchmark assembly tasks typical
in manufacturing. The Sensorized Objects benchmark [11]
provides rigid objects to benchmark in-hand manipulation
performance. Our initial design concepts were based on this
work, including the use of the Arduino Nano IOT for its
built-in IMU combined and BLE communication features.
Our development expanded on these efforts towards the
goal of producing stand-alone sensorized objects with clearly
defined manipulation objectives. Our work is inspired by the
puzzle boxes from the work of Baum et al [12] in which the
authors describe a stationary wooden puzzle to be solved by
a cockatoo and subsequently a robot by sliding and pulling
various levers and handles.

III. SENSORIZED OBJECT DESIGN AND
IMPLEMENTATION

Effective manipulation benchmarks must test not only
physical dexterity but also cognitive abilities like exploration
and planning. They must include physical objects so that
robotic systems can be tested and compared to humans;
they must also be instrumented such that the state of the
objects can be tracked without complicated computer vision
or motion capture systems. SMaCK consists of several puzzle
boxes designed to meet these criteria.

A. Benchmark Task Design

The set of puzzle boxes is designed to test both physical
dexterity and abstract reasoning abilities like goal-directed
exploration and planning. The goal of each puzzle is to
open the lid of box; complexity is added by introducing de-
pendencies between additional articulated parts. This allows
experimenters to compare algorithms and agents across a set
of tasks that systematically scale in difficulty.

As shown in Figure 1, the puzzle boxes are rigid cubes
with optional levels of complexity. A base set of boxes
includes models at three levels of complexity: a) box with
hinged lid that may be swung open by lifting handle (step
3 in Figure 1), denoted “depth 1 box” b) box with slider
that must be slid to the right, unlocking the lid (step 2 then
3), denoted “depth 2 box” c) box with lever that must be
rotated clockwise to permit movement of the slider (steps 1
then 2 then 3), denoted “depth 3 box”. In this way, the depth
of the planning problem increases as more sequential steps
are required to achieve the goal. The three basic benchmark
tasks are then:

• depth 1 box (basic)
• depth 2 box (slider) (Fig. 2 right).
• depth 3 box (slider + lever) (Fig. 2 middle)
We can also increase the breadth of each planning problem

by introducing “distractor” parts - for example, adding an
additional lever opposite the original one with no function,
or adding a “distractor” slide to the front of the object that
does not serve to lock the box. This increases the effective
action space of the agent and serves as an additional axis
along which we may evaluate performance. One such box

Fig. 2. Completed SMaCK boxes (right to left) slider, slider + lever, slider
+ lever + dummy lever. Boxes are painted yellow for improved camera
visibility.

is pictured in Figure 2 (left)—one lever locks the sliding
mechanism (which in turn locks the lid) and one lever does
nothing. The agent must determine which of the parts are
actually functional and the dependencies that arise in order
to succeed in opening the lid. By adding articulated parts
without locking mechanisms, we can add breadth to the
problems, introducing several additional benchmark tasks:

• depth 1 box (basic) + distractor slide (breadth 2)
• depth 1 box (basic) + distractor lever (breadth 2)
• depth 1 box (basic) + distractor slide + distractor lever

(breadth 3)
• depth 1 box (basic) + 2 distractor levers (breadth 3)
• depth 1 box (basic) + distractor slide + 2 distractor

levers (breadth 4)
• depth 2 box (slider) + distractor lever (breadth 3)
• depth 2 box (slider) + 2 distractor levers (breadth 4)
• depth 3 box (slider + lever) + distractor lever (breadth

4) (Fig. 2 left)
This allows us to create 8 additional tasks from the original

three by adding distractor parts and disabling some locking
mechanisms.

B. Design and Fabrication

A research objective is to compare quantitative perfor-
mance measurement of goal-directed behavior by humanoid
robots to that of other intelligent agents. As one population
for comparison is humans, the manipulation objects must be
scalable in proportion to varying hand size. A child’s hand is
about one-half the size of an adult human hand. In contrast,
the Brown University humanoid manipulates objects using
Schunk Grippers, roughly twice the size of human hands.
The sensorized objects must be scalable both in size and
durability to permit exploratory manipulation by a variety of
hands.

We designed stand-alone puzzle boxes to meet the various
requirements of durability, scalability and clear manipulation
objective. Boxes are self-contained objects with the clear
manipulation objective of opening their lid. Boxes may be
picked up, shaken, and manipulated, all the while sensing
their orientation and the positions of their moving parts.



Fig. 3. Electronics insert located in false bottom of all boxes. Central
component is the Arduino Nano IoT.

To date we have scaled the designs for human hands, the
humanoid grippers at Brown, and the Boston Dynamics Spot
manipulator.

Boxes are constructed of one-eighth inch Delrin™1 sheets
laser-cut and hand assembled using 4-40 threaded nylon
fasteners and a few metal components such as hinges and
support braces. The handle is the only wood component
as it light, inexpensive and easily gripped. Delrin is self-
lubricating, tough and easily formed into working mechanical
components. Boxes are relatively tough, withstanding a drop
from shoulder height to a hard floor for example. For
stronger than human manipulators, all structural components
are specifically designed to be produced from one-eighth inch
aluminum sheets on a standard 3-axis mill.

Box lid angle is sensed by a cam depressing a linear
potentiometer as shown in the left image of Figure 4.
Motion of the slider unlocks the lid and also turns a rotary
potentiometer through a rack and pinion mechanism shown
in the center image of Figure 2. Rotating the handle unlocks
the slider and also rotates a potentiometer through a meshing
gear pair as shown in the right image of Figure 2. Total cost
for mechanical components is approximately $110 requiring
two 1/8x12x24in Delrin sheets at $40 each, fasteners and
assorted hardware.

As shown in Figure 2, boxes are constructed with interior
walls to protect sensing electronics. Each box has a false
bottom containing an electronics insert, as shown in Figure 3.
The core of the insert is an Arduino Nano IoT equipped with
8, 10-bit A/D channels, built-in LSM6DS3 IMU and Nina
W102 uBlox Bluetooth communication module. Potentiome-
ters measuring lid, slider and lever positions are powered
by the Nano and read using the analog input channels. The

1Delrin® is the brand name for polyoxymethylene (POM)

LSM6DS3 IMU provides box roll, pitch and yaw relative to
gravity orientation. BLE communication permits real-time
transmission of one-byte IMU and sensor readings at 8HZ
to moderately close receivers, for example in the same room,
with proportionate degradation in data rate with distance. The
unit is powered by a single 9V battery that, in our testing,
lasts for several weeks. An SD Card permits data recording
at 100Hz for later transfer. Experimentation is controlled
through a magnetic sensor and LED displays, where an
experimenter can initiate a test by placing a magnetic pendant
on the sensor. On initiating a test, an LED will flash a
countdown sequence to permit later synchronization between
sensor data and potentially a video of the manipulation.
Total cost for electrical components is approximately $95
including Arduino Nano, instrumentation potentiometers and
SD card reader.

Publicly available documents at https://github.
com/babbatem/smack/ provide detailed fabrication in-
structions. The document includes templates both in Solid-
Works Drawing and PDF format for immediate use by a
laser cutter. Cutting and etching the parts from Delrin sheets
requires about three hours on our 50W Epilog Fusion Laser
Cutter. A texture is etched on the Delrin to improve the
adherence of spray paint. Completed parts can be assembled
in about five hours using hand tools. A parts list and circuit
diagram for the electronic insert is also included in the
documentation. Hand assembly requires about eight hours
using soldering and wire management tools.

IV. SIMULATED LEARNING ENVIRONMENTS

The CAD files were converted to URDF format and
imported into the MuJoCo simulator [13]. Learning envi-
ronments were implemented through the ROBOSUITE bench-
mark suite [9] allowing for different robots, observation
modes, and controllers. Locking physics are implemented
by modulating joint stiffness as the CAD files contain
penetrating geometries. Thus far, the three basic benchmark
tasks are implemented.

A reinforcement learning agent was trained to complete
the simplest benchmark task, opening the depth 1 basic box’s
lid. The learning algorithm was TD3 [14]. The observation
space consisted of the agent’s proprioceptive state (joint
positions, velocities, tactile data, force/torque data from the
wrist) as well as low-dimensional object state data (the angle
of the lid). The action space employed was operational space
control with variable impedance [15], allowing the agent to
learn to control the relative displacement and orientation of
its end-effector and regulate its stiffness. The reward function
incentivized opening the lid and reaching for the handle. The
success rate, aggregated over 10 seeds, is plotted in Figure 5.
After 5000 episodes, the agent is only 30% successful.
Preliminary experiments with the more complicated boxes
suggest that these problems are prohibitively challenging
for naive reinforcement learning approaches. Humans, in
contrast, are typically able to solve the puzzles in under
a minute. Future work will investigate hierarchical rein-
forcement learning approaches and model-based methods for
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Fig. 4. Sensor mechanisms of boxes, (left to right) lid cam, slider rack/pinion, level gear mesh.

perceiving and manipulating the objects in order to establish
competent baselines.

Fig. 5. Success rate for the basic box opening task, smoothed and
aggregated over 10 seeds.

V. SUMMARY

SMaCK, the Sensorized Manipulation Challenge Kit, is a
robot manipulation benchmark that poses constrained ma-
nipulation problems that require goal-directed exploration
and planning, which systematically scale in difficulty. Future
work will quantify the performance of humans and robots on
these tasks to establish a baseline.

In our testing, the one-byte potentiometer readings of lid,
slider and lever positions reflect the time history with an-
ticipated accuracy. IMU readings appear reliable for modest

handling of the box but can be confused with aggressive
handling, (i.e. shaking or flipping) and are subject to some
drifting over time. For example, when tilting and then
returning the box to its original location the IMU will show
a net change in orientation. We have constructed more than
ten operational boxes out of Delrin, but to date have not
attempted aluminum construction.
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