
Optimizing a Start-Stop Controller using Policy Search

Noel Hollingsworth1 Jason Meyer2 Ryan McGee2 Jeffrey Doering2

George Konidaris1 and Leslie Kaelbling1

Computer Science and Artificial Intelligence Laboratory1 Vehicle Controls, Research & Advanced Engineering2
Massachusetts Institute of Technology Ford Motor Company
{nholling, gdk, lpk}@mit.edu {jmeyer84, rmcgee3, jdoering}@ford.com

Abstract

We applied a policy search algorithm to the problem of
optimizing a start-stop controller—a controller used in
a car to turn off the vehicle’s engine, and thus save en-
ergy, when the vehicle comes to a temporary halt. We
were able to improve the existing policy by approxi-
mately 12% using real driver trace data. We also ex-
perimented with using multiple policies, and found that
doing so could lead to a further 8% improvement if we
could determine which policy to apply at each stop. The
driver’s behaviors before stopping were found to be un-
correlated with the policy that performed best; however,
further experimentation showed that the driver’s behav-
ior during the stop may be more useful, suggesting a
useful direction for adding complexity to the underly-
ing start-stop policy.

Introduction
Energy consumption is one of the most important problems
facing the world today. Most current energy sources pollute
and are not renewable, which makes minimizing their use
critical. The transportation industry accounts for a signifi-
cant fraction of the non-renewable energy consumed within
the US. Therefore, any improvements to the efficiency of
cars being driven could have a major effect on total energy
consumption.

This reduction can be significant even if the gain in ef-
ficiency is small. In 2012 Ford sold over 5.6 million auto-
mobiles (Ford Motor Company 2013), with an average fuel
efficiency of 27.1 miles per gallon. Assuming these vehi-
cles are driven 15,000 miles a year, a .01 miles per gallon
improvement in efficiency would saves more than 980,000
gallons of gasoline per year.

One approach that automobile manufacturers have used
to improve fuel efficiency is to create start-stop systems for
use in their cars. A start stop system turns off the vehicles
engine when the driver applies the brakes and stops the ve-
hicle and then restarts the engine when the driver lifts their
foot off the brake pedal. By temporarily shutting down the
engine, these systems avoid wasting fuel to idle the engine.
It is estimated that more than half of the light duty vehi-
cles sold by 2022 will be equipped with start-stop systems

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Navigant Research 2013). Although the systems are gener-
ally efficient, shutting the car’s engine down for very short
periods of time can result in a net energy loss due to the ad-
ditional energy required to restart the engine. By not turning
off the car’s engine as often for shorter stops and turning it
off more often for longer stops, it may be possible to con-
serve more energy. Current start-stop systems are capable of
fuel economy improvements of about 3.5% (Wang, McGee,
and Kuang 2013).

We applied a policy search algorithm to optimize Ford’s
existing start-stop controller by approximately 12% using
real driver trace data. We also experimented with using mul-
tiple policies, and found that doing so could lead to a fur-
ther 8% improvement if we could determine which policy
to apply at each stop. The driver’s behaviors before stop-
ping were found to be uncorrelated with the policy that per-
formed best; however, further experimentation showed that
the driver’s behavior during the stop may be more useful,
suggesting a useful direction for adding complexity to the
underlying start-stop policy.

Start-Stop Controllers
Ford uses a rule-based start-stop controller, similar to the
one shown in Figure 1. We are concerned here with start-
stop controllers for automatic transmission systems, where
only brake and accelerator pedal inputs are available (Wang,
McGee, and Kuang 2013). For manual transmission sys-
tems, the clutch and shift lever inputs are the primary in-
puts to shut off or restart the engine. This controller is
parametrized by the variables used in the control rules; our
aim is to find settings of those parameters that minimize cost.

More formally, the goal is to pick a parameter vector θ
for the policy that minimizes E[C|θ] over all drivers in the
population, where C is composed of three factors:

C = c1 + c2 + c3. (1)

The first factor, c1, represents the amount of time the en-
gine is kept running when the car is stopped, and is equal
to the time that car has spent stopped minus the time the
combustion engine was turned off during a driving session.
The second factor, c2, represents the cost of restarting the
car’s engine, and is equal to twice the number of times
the car’s engine has been restarted during a period of driv-
ing. This term ensures that for stopping durations less than

1 if CarStopped then
2 if EngineOn and BrakePressure > θ0 then
3 TURN ENGINE OFF;
4 if EngineOn and BrakePressure > θ1 and

AverageSpeed < θ2 then
5 TURN ENGINE OFF;
6 if EngineOff and BrakePressure < θ3 then
7 TURN ENGINE ON;
8 if EngineOn and ∆ BrakePressure < θ4 then
9 TURN ENGINE OFF;

Figure 1: An example rule-based start-stop controller.

two seconds it is desirable (i.e., lower cost) to keep the en-
gine running. The last factor, c3, penalizes situations where
the engine is not restarted fast enough to meet the drivers
torque demand. In practice, the engine must be restarted be-
fore the driver begins to apply the accelerator pedal. There-
fore, each time the engine is restarted, c3 is incremented
by 10×max(0, RestartAnticipationT ime− 0.15) where
RestartAnticipationT ime is the amount of time before
the accelerator pedal is applied that an engine restart is com-
manded.

Given a parameter vector θ, this controller is run 100
times a second during a stop in order to determine how to
proceed. The controller is responsible for both turning the
engine off when the car comes to a stop, as well as turning
the engine back on when the user is about to accelerate. This
helps to minimize c3 in the cost function, but may also lead
to more complicated behavior, as the controller may turn the
engine off and on multiple times during a stop if it believes
the car is about to accelerate but the car does not.

The inputs to the system are three data traces: vehicle
speed, the accelerator pedal position, and brake pressure,
which are each sampled at 100 Hz. Figure 2 shows a graph
of an example of input data.

We were given access to data obtained by Ford during its
participation in EuroFOT (the European Large-Scale Field
Operational Test on In-Vehicle Systems) (Csepinszky 2011).
The data consisted of a collection of traces for 19 different
drivers, each with on average 100 hours of driving data ob-
tained under real-world conditions, in automatic transmis-
sion vehicles without start-stop controllers. The presence or
absence of a start-stop system should not affect the behavior
of the driver and intrusions of the system are penalized by
the cost function. Therefore, the use of data from non start-
stop vehicles should not significantly impact the results.

Reinforcement Learning and Policy Search
Reinforcement learning (Sutton and Barto 1998) is a ma-
chine learning paradigm concerned with optimizing the per-
formance of agents that are interacting with their environ-
ment and attempting to maximize an accumulated reward
or minimizing an accumulated cost. Reinforcement learning
problems are typically formulated as a Markov decision pro-

0 2 4 6 8 10 12 140
2
4
6
8

10
12
14
16
18

Sp
ee

d
(k

m
/h

)

Ford Data

0 2 4 6 8 10 12 140
2
4
6
8

10
12
14

Br
ak

e
Pe

da
l %

0 2 4 6 8 10 12 14
Time (seconds)

0
5

10
15
20
25

Ac
ce

le
ra

to
r P

ed
al

 %

Figure 2: A slice of vehicle data, showing a driver coming to
a stop and then accelerating out of it.

cess (MDP) described by a tuple:

〈S,A, P,R〉, (2)

where S corresponds to the set of states that the agent may
be in; A is the set of all possible actions the agent may take;
P is the probability distribution for each state-action pair,
with p(s′|s, a) specifying the probability of entering state
s′, having been in state s and executed action a; and R is
the reward function R(s, a) specifying the reward received
by the agent for executing action a in state s. The goal is
to find a policy π mapping states to actions that leads to the
highest long-term reward, defined as the discounted sum of
the rewards received at all future steps:

Rπ =

∞∑
t=0

γtrt, (3)

where rt denotes the reward gained at time step t, and
γ ∈ (0, 1] is a discount factor. In the reinforcement learn-
ing setting the agent operates without an explicit model of
its environment, so it must improve its policy by directly in-
teracting with the environment.

The most common family of reinforcement learning
methods are based on learning a value function expressing
the agent’s predicated reward from a given state (or state-
action pair). A value function learned for a given policy can
be used to improve that policy, in a process called policy it-
eration (Sutton and Barto 1998). Unfortunately, value func-
tion methods are difficult to use directly when the policy to
be optimized is of a given parametrized form. In such cases,
we can use policy search methods.

Policy Search Methods
Policy search methods optimize a predefined policy π(θ)
with given a fixed vector θ of open parameters. As before,
we maximize return, or equivalently minimize a cost func-
tion C(θ). Instead of choosing actions directly, the goal is
to determine a parameter vector for the policy, which then

chooses actions based on the state of the system. This allows
for a much more compact policy representation, because the
number of elements of θ may be much smaller than those
required to learn a corresponding value function. Addition-
ally, background knowledge can be included in the policy,
for example restricting the set of reachable policies to a class
known to be sensible for the application in question.

Policy Gradient Algorithms. Policy gradient algorithms
are the most popular subset of policy search algorithms.
Here, cost is minimized by estimating the derivative of the
reward function with respect to the parameter vector, and
then descending the cost surface repeatedly until the algo-
rithm converges to a local minimum. If the derivative can be
computed analytically and the problem is an MDP then the
following equation, known as the policy gradient theorem
(Sutton et al. 2000), holds:

∂R

∂θ
=

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
Qπ(s, a). (4)

Here, dπ(s) is the summed probability of reaching a state s
using the policy π, with some discount factor applied, which
can be expressed as the following, where s0 is the initial
state, and γ is the discount factor:

dπ(s) =

∞∑
t=0

γtPr{st = s|s0, π}. (5)

Most algorithms for policy search rely on the policy gra-
dient theorem. Unfortunately, the stop-start controllers we
used are not differentiable; moreover, the actual policy avail-
able to us was an executable black-box, which only allowed
us to execute the policy with a given set of parameters. We
therefore used the derivative-free policy search algorithm
due to by Kohl and Stone (2004). In place of an analyti-
cal gradient, it obtains an approximation of the gradient by
sampling, an approach first used in the policy search context
by Williams (1992).

The algorithm, given in Figure 3, starts with an arbitrary
initial parameter vector θ. It then repeatedly creates random
perturbations of the parameters and determines the cost of
using those policies. A gradient is then interpolated from the
cost of the random perturbations. Next, the algorithm adds
a vector of length η in the direction of the negative gradient
to the policy. The process repeats until the parameter vector
converges to a local minima, at which point the algorithm
halts.

The algorithm has three parameters that must be tuned.
The first of these is the learning rate η. If the learning rate
is too low the algorithm converges very slowly, while if it
is too high the algorithm may diverge, or it may skip over a
better local minimum and go to a minimum that has higher
cost. The second parameter is the amount by which each pa-
rameter is randomly perturbed. If the value is set too low the
difference in costs due to noise may be much greater than the
differences in cost due to the perturbation. If it is set too high
the algorithm’s approximation of a gradient may no longer
be accurate. The final parameter that must be set is the ini-
tial policy vector. The policy gradient algorithm converges to

1 θ ← initialParameters;
2 while not finished do
3 create R1, ..., Rm where Ri = θ with its values

randomly perturbed;
4 determine(C(R1), C(R2), ..., C(Rm));
5 for i← 1 to |θ| do

// Perturb θ, retain costs.
6 AvgPos← average(C) ∀R where R[i] > θ[i];
7 AvgNone← average(C) ∀R where R[i] = θ[i];
8 AvgNeg← average(C)∀R where R[i] < θ[i];

// Determine ∂C/∂θi
9 if AvgNone > AvgPos and

10 AvgNone > AvgNeg then
11 changen ← 0;
12 else
13 changen ← AvgPos - AvgNeg;

// Ascend differential.

14 change← change
|change| ∗ η;

15 θ ← θ+ change;
Figure 3: Kohl and Stone’s policy search algorithm.

a local minimum, and the starting policy vector determines
which local minimum the algorithm will converge to. If the
problem is convex there will only be one minimum, so the
choice of starting policy will not matter, but in most prac-
tical cases the problem will be non-convex. One solution to
this problem is to restart the search from many different lo-
cations, and choose the best minimum that is found. When
the policy is found offline this adds computation time, but
is otherwise relatively simple to implement. We adjusted all
three parameters by hand to maximize performance.

Results
Since the EuroFOT data consisted of data from several
drivers, we held out data to test against both performance
on drivers with data in the training set, and also on drivers
that are not present in the training set. We therefore used
a training set of 80% of the EuroFOT data from 15 ran-
domly selected drivers, out of 19 in the data. We ran policy
search 35 times, 5 times starting with Ford’s existing policy
and 30 times starting with random policies. We ran the al-
gorithm for 100 iterations and recorded the policy with the
lowest cost on the test set (the remaining 20% of driving ses-
sions from drivers in the training set, and all data from the
4 drivers completely removed from the training set). The re-
sulting learning curve for a single policy, averaged over 35
trials, is shown in Figure 4, and the results obtained on the
test sets are shown in Table 1. These results show that we
can expect an approximate reduction of 12% in cost by re-
placing Ford’s existing start-stop controller calibration with
the one found using policy search.

For a randomly selected validation driver, the numerically
optimized calibration policy typically reduced the amount
of time the engine was left idling with the vehicle stopped

0 20 40 60 80 100
Number of Iterations

420000

440000

460000

480000

500000

520000

540000

560000

580000

600000
Av

er
ag

e
Co

st
Average Training Set Cost for All Trials

Figure 4: Cost, averaged over 35 trials, as policy search pro-
ceeds over 100 iterations.

Data Set Original Cost Optimized Improved

Training Set 494397 424515 14.1%
Different Drivers 90329 77895 13.8%
Same Drivers 121205 105899 12.6%

Table 1: A comparison of the performance of Ford’s exist-
ing start-stop controller calibration and that obtained using
policy search. Comparisons are shown against held-out data
from the same set of drivers used during optimization (Same
Drivers), and on drivers whose data was completely with-
held from training (Different Drivers).

by between 2%–10%, depending on the drive cycle. Addi-
tionally, the policy also improved the engine shutdown and
restart consistency and reduced the number of exceptionally
early or late shutdown and restart events by as much as 20%.

Experiments with Multiple Policies
So far we have considered optimizing a single policy across
all drivers. As a first step in improving this, we considered
using multiple policies. Our intuition was that there might
be multiple “driver modes” in the data (for example, one for
highway driving, and one for urban driving) that we might be
able to use to improve performance. We experimented with
an algorithm based on expectation-maximization (Bishop
2006) to identify driver modes. This algorithm generated
two random start policies, then repeatedly found the per-stop
cost for each policy and applied policy search to both poli-
cies, including only the stops where each policy was best.
We repeated this process 35 times, and obtained the best pair
of policies.

We found two policies, one of which (policy 1) was as-
signed to 80% of the stops, and another (policy 2) which
was assigned to 20% of the stops. A perfect assignment of
these policies to the stops in the data would result in a further
8% reduction in cost. We tried predicting the right policy to
apply to a stop based on a set of 60 features provided by
Ford that included information about both the previous stop
and driving behavior immediately before the target stop.

Unfortunately, none of these features had any correlation
with the policy to choose next, so we were unable to do bet-
ter than always predicating the majority policy (policy 1).
To understand whether the problem was because we did not
have the right features, or because the drivers behavior be-
fore the stop just did not predict the right policy to use, we
plotted the mean, 90th percentile, and 10th percentile speed,
accelerator pressure, and brake pressure values for the 60
seconds before the car came to a stop. These are shown in
Figure 5.

0 1000 2000 3000 4000 5000 60000

10

20

30

40

50

60

(a)

0 1000 2000 3000 4000 5000 60000

5

10

15

20

25

30

(b)

0 1000 2000 3000 4000 5000 60000

5

10

15

20

(c)

Figure 5: Distributions for speed (a), accelerator pressure (b)
and brake pressure (c) in the 60 seconds before a car comes
to a stop. The solid line shows the mean value, while the
dashed lines show the 90th and 10th percentiles (sometimes
not visible as they are at zero). Blue lines are for stops as-
signed to policy 1, and green lines are for for stops assigned
to policy 2. The x-axis is in hundredths of a second.

As these graphs show, the gross statistics of the drivers
behavior do not really differ in the full minute before a stop,
and we therefore cannot expect to be able to predict the right
policy to choose based on that behavior. We also added a fic-
titious feature corresponding to the actual length of the stop
to classification, in order to determine whether or not the
policies were specialized to the length of the stop. This fea-
ture was also found to be uncorrelated to the classification,
from which we concluded that the difference between the
two policies has to do with their engine restart behavior. We
therefore plotted a histogram of the delay between the driver
pressing the accelerator pedal and engine restarting for pol-
icy 1 and policy 2, shown in Figure 6.

0 1 2 3 4 5
Delay (Seconds)

0

2

4

6

8

10

O
cc

ur
re

nc
es

 (%
)

Engine Delay Policy 1

(a)

0 1 2 3 4 5
Delay (Seconds)

0

2

4

6

8

10

O
cc

ur
re

nc
es

 (%
)

Engine Delay Policy 2

(b)

Figure 6: Histograms for the delay between the driver press-
ing the accelerator pedal and the engine restarting, for stops
allocated to policy 1 (a) or policy 2 (b).

These two graphs show that both controllers generally re-
sult in a very low delay when they are the right controllers
to use. However, when we use policy 2 (the minority policy)
for stops when policy 1 was the preferred policy, we see a
very different histogram of delay lengths in Figure 7.

0 1 2 3 4 5
Delay (Seconds)

0

2

4

6

8

10

O
cc

ur
re

nc
es

 (%
)

Engine Delay with Mismatched Policy

Figure 7: A histogram if the delay between the driver press-
ing the accelerator pedal and the engine restarting, for stops
allocated to policy 1 but executed using policy 2.

Using policy 2 at the wrong time can lead to a long de-
lay in the engine restarting. Note that in this case the value
5 is a catch-all that includes delays longer than 5 seconds,
and delays where the driver wanted the car started but took
their foot off the pedal before that was completed. Policy 2
is less sensitive to the driver slowly releasing the brake pedal
(i.e. slow rate of brake pressure decrease). This means that
it does not restart the engine unnecessarily early in 20% of
cases. However, in 80% of the cases, when the brake pedal
is released at a comparatively slow rate, policy 2 tends to
do a poor job of anticipating the driver fully releasing the
brake pedal and thus restarts the engine too late. These re-
sults suggest that a good way to improve performance is to
add rules to the start-stop controller policy to make it adap-
tive to the patterns of pressure that the driver may exert on
the accelerator pedal during the stop.

Related Work
Artificial intelligence techniques have seen extensive use
in automative applications (Prokhorov 2008), for example
in predicting engine power and torque for automated tun-
ing (Vong, Wong, and Li 2006), learning to diagnose faults
(Murphey et al. 2006), learning driver models for adaptive
cruise control (Rosenfeld et al. 2012), and improving vehi-
cle power management by estimating road time and traffic
congestion conditions (Park et al. 2009). However, although
a great deal of effort has gone into the design of the electrical
and mechanical aspects of start-stop systems (Bishop et al.
2007; Furushou et al. 2012), reinforcement learning has not
(to the best of our knowledge) been applied to optimizing
the software start-stop controller prior to our work. How-
ever, machine learning has wide applicability to the broader
class of energy conservation problems. We cover four ex-
ample applications here, to illustrate where it can be applied
and what methods are used.

Machine Learning for Adaptive Power Management.
Machine learning can be used for power conservation by
minimizing the power used by a computer, turning off com-
ponents that have not been used recently, provided the user

does not begin using the components again shortly there-
after. Theocharous et al. (2006) applied supervised learning
to this area, learning a model of user behavior that classified
the current state as a suitable time to turn the components
of the laptop off. One notable aspect of their approach was
that they created custom contexts and trained custom classi-
fiers for each context. This is an interesting area to explore,
especially if the contexts can be determined automatically.

Design, Analysis, and Learning Control of a Fully Actu-
ated Micro Wind Turbine. Another interesting applica-
tion of machine learning is work by Kolter, Jackowski, and
Tedrake (2012), in maximizing the energy production of a
wind turbine. The goal is to choose the settings of a wind
turbine that maximize energy production. Their work used
a sampling based approach to approximate a gradient. This
approach is more complex than the Kohl-Stone algorithm,
as they form a second order approximation of the objective
function in a small area known as the trust region around
the current policy. They then solve the problem exactly in
the trust region and continue. This approach takes advantage
of the second order function information, hopefully allow-
ing for quicker convergence of the policy parameters. The
disadvantages of the approach are that it is more complex
requires more samples to form the second order approxima-
tion. In their case the calculations could be done before the
wind turbine was deployed, which meant the increased time
for computation was not an issue.

Energy conservation in buildings. Dalamagkidis and
Kolokotsa (2008) sought to minimize the power consump-
tion in a building subject to an annoyance penalty that was
paid if the temperature in the building was too warm or hot,
or if the air quality inside the building was not good enough.
Their approach was based on a value function method,
which was able to optimize a custom policy that was near
the performance of a hand-tuned policy in 4 years of simu-
lator time.

Adaptive Data Centers. The last example of machine
learning being used to minimize power is in data centers,
which have machines that can be turned off based on the
workload in the near future. The goal is to meet the demands
of the users of the data center, while keeping as many of the
machines turned off as possible. Bodik et al. (2008) wrote
about using linear regression to predict the workload that
would be demanded in the next two minutes. Based on this
prediction the parameters of a policy vector were changed.
This resulted in 75% power savings over not turning any
machines off, while only having service level violations in
.005% of cases.

Summary and Path to Deployment
Start-stop controllers are typically calibrated by through an
iterative process of manually adjusting control gains until
the control meets a defined set of fuel economy, performance
and drivability requirements. By applying machine learn-
ing, it is possible to simultaneously optimize these factors
and automatically generate a superior calibration—using
real data, we were able to improve Ford’s existing policy

by approximately 12%. This type of automated optimiza-
tion is more time-efficient than a conventional manual tun-
ing approach. Since policy search was conducted over the
parameters already present in Ford’s production start-stop
controller, the updated parametrization obtained by policy
search can be directly and immediately incorporated into
the start-stop controller calibration process. Prior to deploy-
ment, the new parametrization would have to go through a
verification process, which would typically include an ob-
jective verification of performance targets (such are engine
restart time under a wide range of conditions including stop-
ping on an incline) and a subjective verification of customer
acceptability (possibly through a customer clinic).

This work also shows that the use of multiple policies
could further improve the performance of the start-stop con-
troller. Multiple policies could be implemented via manual
driver selection (e.g. high sensitivity versus low sensitivity)
or through automatic policy selection. Our analysis found
that even with just two selectable policies, the better per-
forming policy can change from stopping event to stopping
event. We could thereby gain a further 8% improvement if
we were able to accurately identify which could be applied
to each stop. Our experiments showed that the right policy
to apply at each stop could not be determined based on the
driver’s behavior before the stop; however, they suggested
that the driver’s behavior during the stop might be more use-
ful, thus indicating directions for improving the policy used
for start-stop control. We conclude that a feed-forward pre-
diction based on the driver behavior immediately leading up
to the stopping event would be best suited to this problem.
The key challenge in implementing an adaptive start-stop
controller will be finding a reliable feed-forward indicator.

The future development of a method for selecting one
from a set of possible policies for use online presents a more
complicated path to deployment than using a single opti-
mized policy. The two (or more) policies are simply different
sets of parameters that can be swapped out of Ford’s exist-
ing parametrized start-stop controller, but determining the
thresholds for switching between policies will need to be
calibrated. For instance, a specialized policy might only be
selected over a base policy if the likelihood that it will im-
prove performance is greater than 95%. With this approach,
an online adaptive start-stop controller can be deployed with
minimal risk.

Acknowledgments
This research was funded by a grant from the Ford-MIT Al-
liance.

References
Bishop, J.; Nedungadi, A.; Ostrowski, G.; Surampudi, B.; Armiroli,
P.; and Taspinar, E. 2007. An engine start/stop system for improved
fuel economy. SAE Technical Paper 2007-01-1777.
Bishop, C. 2006. Pattern Recognition and Machine Learning. New
York, NY: Springer.
Bodik, P.; Armbrust, M.; Canini, K.; Fox, A.; Jordan, M.; and Pat-
terson, D. 2008. A case for adaptive datacenters to conserve energy
and improve reliability. Technical Report UCB/EECS-2008-127,
University of California at Berkeley.

Csepinszky, A. 2011. Operational results and conclusions of the
fot execution phase of eurofot european large scale field operational
test. In 18th ITS World Congress.
Dalamagkidis, K., and Kolokotsa, D. 2008. Reinforcement learn-
ing for building environmental control. In Weber, C.; Elshaw, M.;
and Mayer, N., eds., Reinforcement Learning, Theory and Applica-
tions. I-Tech Education and Publishing. 283–294.
Ford Motor Company. 2013. Ford motor company
2013 annual report. http://corporate.ford.com/doc/
ar2012-2012%20Annual%20Report.pdf.
Furushou, M.; Nishizawa, K.; Iwasaki, T.; and Tahara, M. 2012.
Stop-start system with compact motor generator and newly devel-
oped direct injection gasoline engine. SAE Technical Paper 2012-
01-0410.
Kohl, N., and Stone, P. 2004. Machine learning for fast quadrapedal
locomotion. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence, 611–616.
Kolter, J.; Jackowski, Z.; and Tedrake, R. 2012. Design, analysis,
and learning control of a fully actuated micro wind turbine. In
Proceedings of the American Control Conference.
Murphey, Y.; Masrur, M.; Chen, Z.; and Zhang, B. 2006. Model-
based fault diagnosis in electric drives using machine learning.
IEEE/ASME Transactions on Mechatronics 11:290–303.
Navigant Research. 2013. Stop-start vehicles. http:
//www.navigantresearch.com/research/
stop-start-vehicles.
Park, J.; Chen, Z.; Kiliaris, L.; Kuang, M.; Masrur, M.; Phillips, A.;
and Murphey, Y. 2009. Intelligent vehicle power control based on
machine learning of optimal control parameters and prediction of
road type and traffic congestion. IEEE Transactions on Vehicular
Technology 58(9):4741 – 4756.
Prokhorov, D., ed. 2008. Computational Intelligence in Automative
Applications, volume 132 of Studies in Computational Intelligence.
Springer.
Rosenfeld, A.; Bareket, Z.; Goldman, C.; Kraus, S.; LeBlanc, D.;
and Tsimoni, O. 2012. Learning driver’s behavior to improve
the acceptance of adaptive cruise control. In Proceedings of the
Twenty-Fourth Innovative Applications of Artificial Intelligence
Conference, 2317–2322.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An Intro-
duction. Cambridge, MA: MIT Press.
Sutton, R.; McAllester, D.; Singh, S.; and Mansour, Y. 2000. Policy
gradient methods for reinforcement learning with function approx-
imation. In Advances in Neural Information Processing Systems
12, 1057–1063.
Theocharous, G.; Mannor, S.; Shah, N.; Gandhi, P.; Kveton, B.;
Siddiqi, S.; and Yu, C.-H. 2006. Machine learning for adaptive
power management. Intel Technology Journal 10:299–312.
Vong, C.-M.; Wong, P.-K.; and Li, Y.-P. 2006. Prediction of au-
tomative engine power and torque using least squares support vec-
tor machines and Bayesian inference. Engineering Applications of
Artificial Intelligence 19:277–287.
Wang, X.; McGee, R.; and Kuang, M. 2013. Vehicle system con-
trol for start-stop powertrains with automatic transmissions. SAE
Technical Paper 2013-01-0347.
Williams, R. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learning
8:229–256.

