
TRAC-IK: An Open-Source Library for
Improved Solving of Generic Inverse Kinematics

Patrick Beeson and Barrett Ames

Abstract— The Inverse Kinematics (IK) algorithms imple-
mented in the open-source Orocos Kinematics and Dynamics
Library (KDL) are arguably the most widely-used generic IK
solvers worldwide. However, KDL’s only joint-limit-constrained
IK implementation, a pseudoinverse Jacobian IK solver, re-
peatedly exhibits false-negative failures on various humanoid
platforms. In order to find a better IK solver for generic
manipulator chains, a variety of open-source, drop-in alter-
natives have been implemented and evaluated for this paper.
This article provides quantitative comparisons, using multiple
humanoid platforms, between an improved implementation
of the KDL inverse Jacobian algorithm, a set of sequential
quadratic programming (SQP) IK algorithms that use a variety
of quadratic error metrics, and a combined algorithm that
concurrently runs the best performing SQP algorithm and the
improved inverse Jacobian implementation. The best alternative
IK implementation finds solutions much more often than
KDL, is faster on average than KDL for typical manipulation
chains, and (when desired) allows tolerances on each Cartesian
dimension, further improving speed and convergence when an
exact Cartesian pose is not possible and/or necessary.

I. INTRODUCTION

Kinematics equations form the basis for all humanoid
manipulation research and are fundamental to the dynamics
equations needed for balancing, walking, and real-world tool
usage. Inverse Kinematics, when given the configuration of
a robot, provides a set of joint values that reach a desired
Cartesian pose for the robot’s end effectors. There are both
analytical and numerical solutions for Inverse Kinematics.
Analytical solutions suffer from an inability to generalize to
tool-use scenarios or changes in robot configuration, as the
solver must be constructed beforehand. Typically, Numerical
IK solvers are more generic in that they rely on a frequent,
runtime approximation of the local inverse Jacobian in order
to try to find joint solutions that come “close enough” to
the desired Cartesian solution. Numerical IK methods use
the Newton method or similar to iterate until the solution is
found. While theoretically sound, numerical approaches can
be quite slow compared to analytical approaches, and thus
there is active research to try and speed up the computation
of the Jacobian, speed up the matrix inversion, and converge
to a quality solution without getting continuously stuck in
bad local minima [1].

Arguably the most commonly used numerical IK imple-
mentation in the robotics community today is the joint-limit-
constrained pseudoinverse Jacobian solver found in the Orocos

This work was performed at TRACLabs Inc. in Houston, Texas, and was
supported by NASA Contracts NNX14CJ19P & NNX15CJ06C.

The open-source extensions/alternatives to the KDL IK solver can be down-
loaded from https://bitbucket.org/traclabs/trac_ik/.

Please send any correspondence to pbeeson@traclabs.com.

Kinematics and Dynamics Library (KDL).1 KDL contains the
kinematics framework used by various popular ROS packages
and by the popular MoveIt! planning library.2

Despite its popularity, KDL’s IK implementation3 exhibits
numerous false-negative failures on a variety of humanoid
and mobile manipulation platforms. In particular, KDL’s IK
implementation has the following issues:

1) frequent convergence failures for robots with joint
limits,

2) no actions taken when the search becomes “stuck” in
local minima,

3) inadequate support for Cartesian pose tolerances,
4) no utilization of tolerances in the IK solver itself.

As detailed in this paper, issues 2–4 above can be mitigated
by simple implementation enhancements to KDL’s inverse
Jacobian solver. Issue 1, however, requires consideration of
alternative IK formulations.

The remainder of this paper will describe a variety of
IK implementations created for this work, then compare
the algorithm solve rates and runtime speeds of these
implementations on various humanoid platforms. Section II
describes six implemented IK algorithms; included are simple
enhancements that drastically improve the KDL solver,
an alternative non-linear optimization formulation for IK
with several different metrics, and a final algorithm that
combines multiple metrics to consistently outperform the
alternatives in both average IK solves and average runtime.
The methodology for a rigorous quantitative comparison is
discussed in Section III. Comparison results are detailed in
Sections IV–VI. All of the algorithms are open-source, “drop
in” replacements to KDL’s ChainIkSolverPos NR JL
class (also referred to as “Plain KDL” in Tables I–III) and are
available for download at https://bitbucket.org/
traclabs/trac_ik/.

II. CANDIDATE IK ALGORITHMS

Inverse Jacobian methods are quite elegant in their sim-
plicity. Given a seed value for joints qseed (often the current
joint values), Forward Kinematics can be used to compute
1) the Cartesian pose for the seed, 2) the Cartesian error
vector perr between the seed pose and the target pose, and
3) the Jacobian J which defines the partial derivatives in
Cartesian space with respect to the current joint values. After

1KDL: http://www.orocos.org/wiki/orocos/kdl-wiki/.
2MoveIt!: http://moveit.ros.org/.
3In this paper, the KDL IK solver specifically refers to the

ChainIkSolverPos NR JL class, which handles robot chains that con-
tain joints with hard limits.



inverting the Jacobian, J−1 defines the partial derivatives in
joint space with respect to Cartesian space.4 Consequently, an
Inverse Kinematics solution is simply computed by iterating
the function

qnext = qprev + J−1perr, (1)

where Forward Kinematics of qnext is used to compute the
new value of perr. When all elements of perr fall below a
stopping criteria, the current joint vector q is the returned IK
solution.

As mentioned in Section I, the widely-used KDL imple-
mentation of pseudoinverse Jacobian IK for robots with joint
limits has several issues when used on real-world robotic
configurations. Some of these issues can be overcome by
simply re-implementing the KDL solver to provide a more
usable API and more robust overall behavior. Other issues
are more fundamental, in that they violate assumptions in
the underlying Newton-method search. Six alternative IK
algorithms implemented for this paper are described next,
called KDL-RR, SQP, SQP-DQ, SQP-SS, SQP-L2, and
TRAC-IK.

A. The KDL-RR Algorithm

Some simple enhancements can be made to KDL’s pseu-
doinverse Jacobian solver that increase its performance
dramatically. First, the KDL Inverse Kinematics API takes as
input a maximum number of iterations to try when searching
for an IK solution. In general, the computational time to
compute and utilize the Jacobian will depend on the size and
complexity of the manipulation chain; thus, there is no way
for a user to really understand how the number of iterations
for a chain might result in IK compute time. This might not
only affect computational performance, but it makes it difficult
to compare the KDL implementation with other IK solvers.
It is quite easy to simply re-implement KDL’s IK solver to
loop for a maximum time rather than a maximum number of
counts. This is functionally equivalent to running KDL with a
number of iterations, but the maximum number of iterations
is dynamically determined based on the user-desired solve
time.

Second, and more importantly, Inverse Jacobian IK imple-
mentations can get stuck in local minima during the iteration
process. This is especially true in cases where joints have
physical limits on their range. In the KDL implementation,
there is nothing to detect local minima or mitigate this
scenario; however, local minima are easily detectable when
qnext − qprev ≈ 0. In an improved implementation of
pseudoinverse Jacobian IK, local minima are detected and
mitigated by changing the next seed. Consequently, the
performance of the KDL IK solver can be significantly
improved by simply using random seeds for q to “unstick”
the iterative algorithm when local minima are detected. This
implementation of KDL with random restarts and a time-
based run loop is what will be referred to as KDL-RR
throughout the rest of this paper.

4In KDL, the Moore-Penrose inverse of J is used because it is more
efficient to compute.

B. The SQP IK Algorithm

As will be detailed in Section IV, despite the drastic
improvements that simply adding random restarts makes to
the KDL IK solver, the failure rate for many robotic chains
was observed to still be too high. Analysis of the failures
in KDL-RR showed that many failures happen when the
iterative algorithm seems to be making progress (∆q 6≈ 0)
but is encountering joint limits in the robot configuration.

In theoretical applications, where joints have unbounded
motion, inverse Jacobian algorithms work quite well; however,
in practice, many robotic joints have hard limits. By iteratively
multiplying the inverse Jacobian, it is possible to set the
joint values beyond their limits. Thus after each iteration,
the KDL implementation must clamp the values of qnext
to the joint limits. Analysis from KDL-RR showed that this
clamping actually occurs repeatedly, as the inverse Jacobian
mathematics wants to push a joint through its limit to reduce
the Cartesian error. Thus, joint limits make the search space
non-smooth, lead the solver down “garden paths”, and cause
the IK solver to fail in scenarios where solutions do exist.

One way to avoid these failures is to solve IK using
methods that better handle constraints like joint limits. For
instance, IK as a nonlinear optimization problem can be solved
locally using sequential quadratic programming (SQP) [2].
SQP is an iterative algorithm for nonlinear optimization,
which can be applied to problems with objective functions
and constraints that are twice continuously differentiable.

As a comparison algorithm to KDL-RR, an IK solver using
previously cited SQP formulations [2], [3] was implemented.
This algorithm is referred to as SQP throughout the rest of
this paper. It is characterized as follows:

arg min
q∈Rn

(qseed − q)T (qseed − q), (2)

s.t. fi(q) ≤ bi, i = 1, ...,m,

where qseed is the n-dimensional seed value of the joints,
and the inequality constraints fi(q) are the joint limits, the
Euclidean distance error, and the angular distance error.

This SQP problem is evaluated using the NLopt library,
which is open source, compiles out of the box on Ubuntu
Linux 12.04, and can be installed via apt-get in the
standard Ubuntu Linux 14.04.5 Using the NLopt C++ API,
it was possible to create a “drop in” replacement for KDL’s
IK solver that uses the SLSQP [4] algorithm to implement
Equation 2.

NLopt’s implementation of SLSQP uses the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm as its iterative
search method. BFGS is a Newton-approximation method, so
one might expect to see similar results to KDL’s pseudoinverse
Jacobian IK, which is using Newton’s method; however
unlike Newton’s method, BFGS has proven to have good
performance even for non-smooth optimizations [5]. Despite
the improved performance in non-smooth optimizations,
BFGS can still get stuck in local minima. In order to properly
compare the sequential quadratic programming IK algorithm

5NLopt: http://ab-initio.mit.edu/wiki/index.php



with the alternatives in this paper, SQP also incorporates
the same local minima detection and random restarts as
implemented in KDL-RR.

C. The SQP-DQ IK Algorithm

As will be detailed in Section IV, the SQP algorithm
performs poorly when thoroughly tested, despite its use in
previously published work. Because SQP is focusing on
minimizing the overall amount of joint movement and is
only considering Cartesian error as a constraint, it is biasing
the search around the joint space of the seed value, rather
than making constant progress towards minimizing the overall
Cartesian error.

In another alternative IK algorithm, the nonlinear optimiza-
tion formulation was changed to minimize Cartesian pose
error directly. In this case, only the joint limits continue to
be constraints to the SQP formulation in Equation 2, while
Cartesian error is the function being minimized, with no
regard as to the amount of joint motion needed. In order
to do this, a scalar distance metric for Cartesian error is
needed. A distance metric from screw theory that combines
translation and orientation into a single-unit space using dual
quaternions [6] was used for the SQP-DQ IK algorithm.

In SQP-DQ, the objective function for minimizing the
distance between two poses defined by dual quaternions [7]
is:

φDQ = 4((log ê) · (log ê)T ), (3)

where ê is the dual quaternion that describes the error between
the target and current poses. In essence, the log operation on
the eight-element dual quaternion vector (ê) maps the pose to
an eight-element axis and angle formulation. The dot product
(including the scalar coefficient) then provides the squared
magnitude of the difference between the two poses.

D. The SQP-SS and SQP-L2 IK Algorithms

SQP-DQ uses dual quaternion error as a combined measure
of distance error and angular error in Cartesian space.
Generating the dual quaternion error does take non-trivial
computational time compared to simpler metrics. As such,
SQP-DQ was compared against two alternative SQP formula-
tions that minimize the Cartesian error using two very simple
metrics—Sum of Squares error for the 6-element vector perr
and L2-Norm of that Cartesian error vector. Specifically, the
objective function being minimized in the SQP formulation
for SQP-SS is

φSS = perr · pTerr, (4)

and the function being minimized for SQP-L2 is

φL2 =
√
perr · pTerr. (5)

Although choosing between two joint candidates based on
minimum error will always yield the same answer when
using Sum of Squares and L2-Norm, these different metrics
do affect the gradients of the search space and can yield
slightly different results in practice.

E. The TRAC-IK Algorithm

Section IV will detail the improved performance of the
various SQP IK methods over inverse Jacobian methods
on a variety of humanoid chains. In particular, SQP-SS
(one of the algorithms that was implemented as a baseline
that was not expected to outperform SQP-DQ) was the
top overall algorithm in terms of IK solve rate—achieving
comparable success rates across a large number of IK
solves. However, SQP-SS (like all the SQP-based nonlinear
optimization implementations) can have much longer solve
times than the pseudoinverse Jacobian methods for certain
robotic configurations. Consequently, a final IK solver, called
TRAC-IK, was implemented to leverage concurrency to
improve on the overall solve rate while keeping computation
time relatively low. For a single IK solver request, TRAC-IK
spawns two solvers, one running SQP-SS and one running
KDL-RR. Once either finishes with a solution, both threads are
immediately stopped, and the resulting solution is returned.

III. QUANTITATIVE TEST METHODOLOGY

In order to quantify the performance of the different IK
methods, an offline automated test process was used. This
allowed a large, statistically-valid number of random samples
to be used as inputs. Kinematics models of several different
robots were used to demonstrate the generality of the methods.
The comparison entailed:

1) selecting a kinematics chain of joints to test;
2) computing a nominal set of joint angles for the chain

by finding the midpoint between the joint limits;
3) selecting a random joint value (within joint limits) for

each joint in the chain;
4) performing Forward Kinematics to determine the target

Cartesian pose from the random joints;
5) calling each IK implementation for the target pose,

using the nominal joint values as the seed;
6) repeating steps 3–5 above, while summing the number

of successful IK solves for each IK implementation and
summing the time in microseconds for each successful
IK solve to complete;

7) averaging the success rate and solve time for each IK
implementation after 10,000 random samples.

A solve was considered successful if the difference in each
dimension between the pose and the target pose is no more
than ε=1E−6 in any of the dimensions.6 The maximum
timeout used in all comparison testing was 5 milliseconds
per solve. The robot models that were used for comparison
are shown in Figure 1.

IV. QUANTITATIVE IK RESULTS

Below are detailed comparisons of the six alternative IK
algorithms discussed in Section II using the methodology
detailed in Section III. All experimental data is averaged over

6While some humanoids, like the hydraulic-actuated Atlas, cannot achieve
1E−6 precision in control, other robots, like industrial robotic arms and the
TRACBot arm, can achieve such precision. Thus IK algorithms are compared
using high precision error.



(a) Robonaut2 (b) TRACBot (c) Atlas 2013 (d) Atlas 2015 (e) Valkyrie

Fig. 1. The five robot models used for testing. The Robonaut2 humanoid has 7-DOF arms and 7-DOF “legs” (used as arms to navigate the International
Space Station) and a 1-DOF waist. The TRACBot mobile manipulation robot has modular N-DOF arms (here 6- and 7-DOF arms are tested) mounted on a
differential drive base. The Atlas robot (circa the 2013 DRC Trials) has 6-DOF arms and a 3-DOF set of back/waist joints. The Atlas robot (circa the 2015
DRC Finals) has 7-DOF arms and a 3-DOF set of back/waist joints. The Valkyrie robot has 7-DOF arms and a 3-DOF back/waist.

10,000 random samples for each robot configuration. The
desired Cartesian error was 1E−6, and the timeout was 5 ms.

A. Solving IK for Typical Manipulation Chains

Table I details the comparison of the success rates of the
six Inverse Kinematic algorithms for standard manipulation
chains of different humanoid platforms.

1) KDL-RR: It is clear (from the first two gray columns)
that many more IK solutions can be found by simply adding
random restarts when the regular KDL solver stops making
progress. For example, just for the 6-DOF arms on the 2013
Atlas humanoid (see Figure 1(c)), the percentage of IK solves
(to 10,000 known-reachable Cartesian poses from the nominal
joint space with a maximum of 5 ms allowed) went from
75.53% to 90.66%. Likewise, there was an increase from
44.83% success using the stock KDL IK implementation
to 82.1% success with KDL-RR on the 7-DOF arms of the
Valkyrie humanoid (see Figure 1(e)).

It is clear that despite improving upon the stock KDL IK
implementation, KDL-RR still performs poorly on many test
cases. Some examples of the poor performance of KDL-RR
are for the 7-DOF arm chains of the Robonaut2 grasping “legs”
(77.37% solve rate), the Atlas 2015 7-DOF arms (76.95%
solve rate), and the TRACBot 6-DOF arms (71.86% solve
rate).

2) SQP variants: For the most part, the various SQP
algorithms demonstrate the improvements made by using
nonlinear optimization algorithms, which better handle dis-
continuities in the search space caused by joint limits, over
inverse Jacobian methods that mathematically assume no joint
limits.

The exception, SQP, performed poorly as expected. Despite
its use in previously cited work, the SQP algorithm spends
a lot of time attempting to minimize the overall joint
motion rather than trying to minimize the Cartesian error.
Initial, unpublished experimental results show that SQP
performs much better when the desired Cartesian error is

high (ε ≥1E−3) and when the number of degrees of freedom
are small.

On the other hand, KDL-RR was outperformed by the all
the SQP methods that minimize Cartesian error directly. In
particular, SQP-SS seems to consistently outperform all the
SQP-based algorithms. In fact, SQP-SS and SQP-L2, which
conflate orientation and position errors in a single error metric,
were not expected to outperform SQP-DQ, which in theory
better models a unified distance metric of 3D pose error.
More analysis would be needed to fully explore why dual
quaternions were outperformed by a simple dot product of the
Cartesian error vector. An initial hypothesis is that this may
be from the large computational overhead needed to compute
the dual quaternion error (and gradients) on each iteration
of the algorithm; thus, while SQP-DQ often converges very
quickly to the right answer, sometimes it is stopped by the 5
ms timeout.

3) Runtime analysis: In addition to solve rates, the run-
times associated with each of these algorithms was recorded.
Table I (non-gray columns) details that SQP-L2 linearly
increases in computation time with the length of the chain.7

On the other hand, the runtime of SQP-DQ and SQP-SS is
not a function of chain length (or degrees of freedom).

Of additional importance, the runtime results show that
when KDL-RR does have a high success rate, it is correlated
with a low solve time. That is, in the cases where pseu-
doinverse Jacobian solutions can be found without hitting
joint limits in the search, those solutions are found very
quickly. This, along with the fact that SQP-SS is the clear
winner in terms of solve rate despite being relatively constant
in runtime over different length chains on the same robot,
inspired the combined TRAC-IK algorithm that attempts to
equal or surpass the solve rates of SQP-SS while achieving
solve speeds closer to KDL-RR.

7Presumably, Forward Kinematics from longer chains yield flatter Cartesian
spaces in the L2-Norm space, which result in smaller gradients, thus
increasing the gradient-based search time.



TABLE I
A COMPARISON OF THE SOLVE RATES FOR THE SIX IK ALGORITHMS TESTED ACROSS VARIOUS MANIPULATIONS CHAINS ON FOUR DIFFERENT ROBOT

PLATFORMS. THE POSES WERE RANDOM (YET KNOWN REACHABLE) CARTESIAN POSES, SEEDED BY THE NOMINAL JOINT CONFIGURATION. FOR

ROBONAUT2, IK ALGORITHMS WERE TESTED ON THE 7-DOF ARMS WITH AND WITHOUT THE WAIST JOINT. THE 7-DOF ROBONAUT2 “LEGS” WERE

ALSO TESTED, AGAIN WITH AND WITHOUT AN EXTRA DEGREE OF FREEDOM IN THE WAIST. FOR TRACBOT, EVALUATION IS PERFORMED FOR BOTH THE

7-DOF ARM AND A 6-DOF VERSION OF THE ARM, WHICH IS OFTEN USED IN PRACTICE TO REDUCE POTENTIAL COLLISIONS OF THE DUAL ARM SYSTEM.
THE 6-DOF ARMS FROM THE 2013 VERSION OF ATLAS, ALONG WITH 3 LONGER CHAINS COMPRISED OF VARIOUS BACK JOINTS, WAS EVALUATED.

SIMILARLY, THE 2015 ATLAS AND THE VALKYRIE HUMANOIDS THAT BOTH HAVE 7-DOF ARMS AND 3 BACK JOINTS HAD 7–10 DOF CHAINS TESTED.

Humanoid Kinematics Chain IK Error IK Technique

Robot Chain Description DOFs

Position/
Rota-
tion
Error

Plain KDL KDL-RR SQP SQP-DQ SQP-SS SQP-L2 TRAC-IK

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Robonaut2

Arm + Waist 8 1E-6 / 1E-6 78.18 0.61 85.36 0.75 17.93 3.43 96.46 1.06 97.76 0.91 97.12 1.81 98.72 0.68

Arm 7 1E-6 / 1E-6 85.82 0.61 91.21 0.50 27.66 2.95 97.76 0.88 98.85 0.64 98.29 1.31 99.54 0.40

Leg + Waist 8 1E-6 / 1E-6 76.05 0.71 81.21 0.83 17.41 3.52 96.93 1.34 97.99 1.16 97.08 2.17 99.13 0.71

Leg 7 1E-6 / 1E-6 60.82 0.58 77.37 0.87 22.31 3.42 97.59 1.32 98.36 1.13 97.81 1.88 99.26 0.73

TRACBot
Long Arm 7 1E-6 / 1E-6 78.88 0.39 90.13 0.59 26.85 3.24 99.85 0.93 99.88 0.75 99.83 1.73 99.95 0.44

Short Arm 6 1E-6 / 1E-6 46.09 0.17 71.86 0.63 26.91 2.92 98.55 1.09 97.45 1.01 97.08 1.56 98.81 0.68

Atlas
2013

Arm + Back (r,p,y) 9 1E-6 / 1E-6 89.59 0.79 91.95 0.84 31.00 3.04 99.57 0.65 99.88 0.47 99.72 1.37 99.89 0.39

Arm + Back (p,y) 8 1E-6 / 1E-6 87.76 0.78 91.21 0.85 28.69 2.75 99.82 0.60 99.91 0.41 99.88 1.14 99.90 0.38

Arm + Back yaw 7 1E-6 / 1E-6 85.36 0.59 90.84 0.69 30.53 2.63 99.84 0.53 99.92 0.36 99.89 0.95 99.95 0.34

Arm 6 1E-6 / 1E-6 75.53 0.15 90.66 0.25 27.04 2.25 99.71 0.60 99.11 0.43 99.23 0.83 99.85 0.26

Atlas
2015

Arm + Back (r,p,y) 10 1E-6 / 1E-6 93.93 0.75 94.18 0.76 19.93 3.35 98.90 0.94 99.44 0.81 99.37 1.73 99.65 0.56

Arm + Back (p,y) 9 1E-6 / 1E-6 91.22 0.83 91.99 0.85 22.00 3.45 99.28 0.86 99.52 0.78 99.54 1.47 99.72 0.53

Arm + Back yaw 8 1E-6 / 1E-6 83.26 0.66 86.60 0.72 27.65 3.13 99.20 0.79 99.53 0.68 99.57 1.25 99.50 0.51

Arm 7 1E-6 / 1E-6 75.39 0.39 85.50 0.55 28.38 3.02 98.98 0.78 99.32 0.65 99.28 1.09 99.45 0.42

Valkyrie

Arm + Back (r,p,y) 10 1E-6 / 1E-6 84.32 1.08 85.43 1.10 24.97 3.26 99.63 0.85 99.82 0.63 99.72 1.69 99.90 0.57

Arm + Back (p,y) 9 1E-6 / 1E-6 77.62 1.25 80.40 1.32 24.91 3.36 99.38 0.82 99.65 0.60 99.44 1.45 99.85 0.58

Arm + Back yaw 8 1E-6 / 1E-6 66.73 1.08 77.49 1.28 27.90 3.06 99.17 0.82 99.69 0.58 99.52 1.26 99.67 0.59

Arm 7 1E-6 / 1E-6 44.83 0.60 82.10 1.16 31.67 2.96 99.05 0.90 99.61 0.62 99.40 1.16 99.83 0.51

4) TRAC-IK: By running a pseudoinverse Jacobian IK
method and a nonlinear optimization IK method concurrently,
an increase in solve rate was achieved as expected. As shown
in Table I, TRAC-IK consistently outperforms all other IK
algorithms tested in terms of solve rate. The three (out of
eighteen total) chains where it is beat by another algorithm
(Atlas 2013 8-DOF chain, Atlas 2015 8-DOF chain, Valkyrie
8-DOF chain) is only by a total of 10 solves out of 30,000.
Such small numbers are within the expected variation due
to the randomness of the nonlinear search methods and the
randomness of the restarts when local minima are detected.
This result, given the 180,000 samples over 18 chains, is
statistically significant, with the successes of TRAC-IK
being unquestionably different than those of SQP-SS with p-
value<5E−7 (McNemar’s test χ2=274.72). Thus, TRAC-IK
is the clear winner in terms of IK solve rate.

As planned, TRAC-IK not only outperforms in terms of
solve rate, but also improves upon the overall runtime of all
the other IK methods tested. It largely outperforms SQP-SS,

except for a few instances on the Valkyrie robot configurations,
where the algorithms are essentially the same speed. Similarly,
TRAC-IK outperforms KDL-RR on all chains >6 degrees of
freedom, and even those smaller 6-DOF chains have equal
runtimes for the two IK implementations.

B. Solving IK for Longer Manipulation Chains
The results above demonstrate the poor performance of

KDL-RR versus SQP methods on typical manipulation chains
of 6–9 degrees of freedom. However, there are robots, like the
Robonaut2 humanoid, that use longer chains for manipulation.
The Robonaut2 robot uses its “legs” and “feet” as arms and
hands to move around the International Space Station in a
quasi-static fashion. So, for Robonaut2, computing the IK of
a foot or hand with respect to another “static” foot that is
grasping a handrail is not uncommon. KDL typically performs
reasonably well on long, redundant chains (here 14–15 DOFs),
as joint limits do not typically affect overall progress towards
the target pose. If KDL performs well on longer chains, the
TRAC-IK algorithm is expected to handle these scenarios



TABLE II
IK SOLVER EVALUATIONS ON LONGER MANIPULATION CHAINS. TESTS WERE RUN ON A 14-DOF CHAIN, WHICH STARTS ON THE LEFT FOOT OF THE

ROBONAUT2 HUMANOID AND ENDS AT THE RIGHT ROOT, AND A 15-DOF CHAIN THAT STARTS AT THE LEFT FOOT AND ENDS AT THE LEFT HAND.

Humanoid Kinematics Chain IK Error IK Technique

Robot Chain Description DOFs

Position/
Rota-
tion
Error

Plain KDL KDL-RR SQP SQP-DQ SQP-SS SQP-L2 TRAC-IK

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Robonaut2
Arm + Waist + Leg 15 1E-6 / 1E-6 97.62 0.78 97.65 0.78 0.0 – 98.37 1.41 99.14 1.25 88.86 4.64 99.87 0.70

Left Leg + Right Leg 14 1E-6 / 1E-6 96.55 0.52 96.59 0.52 0.0 – 95.90 1.27 96.96 1.10 93.07 3.94 99.03 0.56

as well; thus, the algorithms were evaluated on the 14-DOF
chain between the two feet of the Robonaut2 humanoid and
the 15-DOF chain between the left foot and left hand of the
Robonaut2 humanoid.

Table II shows the solve rates and run times of the six
algorithms on the two long manipulation chains. Note that
KDL-RR performs better on these higher-DOF chains, where
limitations on joint range are less of an issue in achieving a
solution. Of the 20,000 random Cartesian poses evaluated on
these two chains, TRAC-IK solved for 99.45% of them while
SQP-SS only solved 98.05% and KDL-RR solved 97.1%.
On the other hand, KDL-RR took an average of 0.65 ms per
solve and SQP-SS took an average of 1.175 ms per solve,
while TRAC-IK took only 0.63 ms per solve. This illustrates
that even as the chain length increases, which is a problem for
methods like SQP-L2 in terms of finding solutions quickly
and SQP in terms of finding solutions at all, TRAC-IK still
finds the most solutions in the shortest amount of time.

V. SYSTEM INTEGRATION RESULTS
The TRAC-IK algorithm has been integrated into a

trajectory control system for the simulated Robonaut2 robot
for an end-to-end evaluation of the algorithm. TRAC-IK was
tested both against a timer-wrapped version (again, all 5 ms
timeouts) of KDL’s pseudoinverse Jacobian IK algorithm
and against KDL-RR. This test used a simulated Robonaut2
humanoid, where the Robonaut2 control system was given a
predetermined pose trajectory that moves a tooltip across the
surface of a stationary rectangular object.

A video demonstrating this comparison side-by-side has
been made available.8 While the video shows only a single
run for each comparison, in fact every experimental run
demonstrated that the TRAC-IK algorithm will solve each
point faster than the stock KDL IK algorithm. Additionally,
with TRAC-IK, all points along both trajectories are always
considered reachable, whereas KDR-RR and the stock KDL
inverse Jacobian IK algorithm sometimes fail to solve for
reachable poses.

VI. ADDING TOLERANCES TO INVERSE KINEMATICS

The results in Section IV detail that the SQP methods
described in Section II improve the IK solve rates over inverse

8http://traclabs.com/˜pbeeson/CRAFTSMAN/videos/
TRACIKvsKDL.mp4

Jacobian methods; however, these results were all gathered by
solving IK for exact (within 1E−6) 3D Cartesian poses that
were known to be reachable. As discussed in Section I, it is
desirable to allow for tolerances on the Cartesian poses in the
IK solution. Ensuring that the IK algorithms from Section II
adequately handle tolerances on the Cartesian pose improves
the robustness of IK solutions for many common scenarios,
including straight-line motion, tool use, or Cartesian motion
with a robot whose low-level control system is not extremely
precise (e.g., the hydraulic arms of the Atlas humanoid robot).

Often, as in MoveIt!, such Cartesian tolerances are handled
at the planning stage. That is, a higher-level algorithm knows
that there are tolerances for x, y, z, roll, pitch, and yaw, and
searches for an IK answer by calling an IK solver repeatedly
on exact Cartesian poses that are within the tolerances until
an answer is found (if one exists at all). In doing this, the
underlying IK solver is actually repeatedly searching a lot of
the same space, making this search very inefficient. Instead,
it is preferable that the IK solver itself incorporate these
tolerances. This means 1) the IK solver only has to be called
once per desired Cartesian pose and 2) the IK solver can
use the tolerances to bias the search and get even faster
performance.

If the stock KDL IK implementation is used as is, it expects
a full 6-dimensional Cartesian pose in order to run. The
“max error” ε can be changed, but affects all dimensions
equally, which is often not desired. Furthermore, ε is only
used to check for termination (pierr ≤ ε) and does not bias
the IK solver search. However, with minor changes to the
definition of perr, tolerances can be used to not only evaluate
IK solutions, but also to bias the iterative IK search.

In Equations 1–5, if tolerances terr are provided, the i
elements in perr can be redefined prior to multiplication with
an inverse Jacobian for KDL-RR, to evaluating the constraints
in SQP, to computing the dual quaternion error in SQP-DQ, or
to computing the error metric during non-linear optimization
for SQP-SS and SQP-L2:

pierr =

{
0, if |pierr| ≤ |tierr|
pierr, otherwise.

(6)

This new perr is also used to evaluate against ε for termina-
tion.

The benefits of adding tolerances to the IK solver is



TABLE III
TRAJECTORY TESTS FOR THE ATLAS 2013 6-DOF ARM AND ATLAS 2015 7-DOF ARM. AT FIRST, DENSE TRAJECTORIES THAT SPECIFIED EXACT POSES

BETWEEN RANDOMLY GENERATED TARGET POINTS WERE TESTED. SECOND THE SAME TRAJECTORIES WERE RUN THROUGH THE VARIOUS IK SOLVERS

(MODIFIED TO USE TOLERANCES), BUT WITH UNBOUNDED TOLERANCES ON THE roll, pitch, yaw ERROR.

Humanoid Kinematics Chain IK Error IK Technique

Robot Chain Description DOFs

Position/
Rota-
tion
Error

Plain KDL KDL-RR SQP SQP-DQ SQP-SS SQP-L2 TRAC-IK

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Solve
Rate
(%)

Avg
Time
(ms)

Atlas 2013
Arm 6 1E-6 / 1E-6 27.53 0.03 37.35 0.03 5.96 2.57 37.75 0.31 37.75 0.19 37.75 0.54 37.75 0.05

Arm 6 1E-6 / ∞ – – 92.42 0.05 93.89 0.47 93.97 0.15 93.96 0.10 93.96 0.28 93.96 0.06

Atlas 2015
Arm 7 1E-6 / 1E-6 71.11 0.19 94.13 0.22 21.11 2.74 96.57 0.40 96.55 0.25 96.52 0.66 96.56 0.10

Arm 7 1E-6 / ∞ – – 98.05 0.07 99.66 0.54 99.77 0.19 99.77 0.15 99.77 0.33 99.77 0.06

demonstrated by an experiment using the Atlas 2013 6-DOF
arm model. Two scenarios were tested, one with exact poses
required (desired error is ≤1E−6 for x,y,z,roll,pitch,yaw)
for a 6-DOF arm and one where only the 3D location is
desired (roll,pitch,yaw error is unbounded). Each was tested
on the same data, which was generated by taking random,
reachable Cartesian poses and creating dense, straight line
trajectories, interpolating both location and angle between
the initial and target poses at 1 cm/1 degree increments. New
target poses were considered until 10,000 of these dense
waypoints had been specified. The IK algorithms were then
run for each waypoint along the trajectory, seeding the solvers
with the solution from the previous waypoint—if a waypoint
IK solve failed, the next waypoint along the trajectory was
given the seed from the last successful IK solve.

The 6 different IK solvers were tested, and the results are
shown in Table III for Atlas 2013. In the fully constrained
case, because both position and orientation were interpo-
lated between randomly selected Cartesian points, the IK
implementations were expected to largely fail, as many of
the requested poses are simply unreachable by the 6-DOF
arm. On the other hand, if only a straight line trajectory is
desired, the 6-DOF arm can follow this trajectory reliably
by using TRAC-IK. Note that ∼6% of the points along
the randomly computed trajectories actually fall outside the
configuration space of the robot; however, by ignoring those
points, a reasonable approximation of straight line motion
is computed by KDL-RR 98.46% of the time and TRAC-IK
100% of the time. Additionally, Table III illustrates (albeit an
extreme example) the drastic decrease in compute time that
incorporating tolerances can provide to IK solvers. Table III
also shows the results on the 7-DOF version of the Atlas
2015 arm, which reinforces the points above.

It should be noted that although expanding TRAC-IK to
use tolerances had a positive affect on finding solutions,
the current solution does not also constrain the amount of
joint motion that could occur; thus, it is not guaranteed that
actual joint trajectories will have minimal motion—though
the trajectories in the integration tests discussed in Section V
always resulted in smooth joint motion with no “rollouts”.

Such secondary criteria for acceptable IK solutions are left
for future work; however, the fast solve times of TRAC-IK
make it an ideal IK method to use if multiple IK solutions
are desired for further comparison.

VII. CONCLUSIONS

This article investigated how to improve upon several
failure points of KDL’s implementation of joint-limited
pseudoinverse Jacobian inverse kinematics. Specifically, the
low success rates of the stock KDL IK implementation are out-
performed by adding local minimum detection and mitigation,
by reformulating IK as a sequential quadratic programming
problem, and by utilizing Cartesian tolerances (when desired)
to speed up the IK search. The various IK algorithms detailed
in Section II were implemented, and the results demonstrated
in Sections IV–VI show improved numerical convergence,
increasing IK solve rates, and improved runtime.

The presented results clearly show the benefit of nonlinear-
optimization-based methods for performing IK on robots with
limited joint ranges, with SQP-SS achieving a 99.21% IK
success rate over 180,000 random samples, and KDL-RR only
reaching 85.86% success. Furthermore, the best overall algo-
rithm, TRAC-IK, demonstrated the benefit of concurrently
running inverse Jacobian and simple non-linear optimization
to achieve a 99.59% IK success rate over 180,000 random
samples while improving on the average time needed for a
single IK solution to converge. Finally, it was demonstrated
that by allowing dimensional tolerances in the IK solver
directly, adequate solutions for many manipulation domains
can be found reliably and quickly without need for a higher-
level search over feasible Cartesian poses. This is useful in
scenarios where control between exact Cartesian poses is not
wanted or not particularly useful.

All of the algorithms discussed in Section II
are open-source, “drop in” replacements to KDL’s
ChainIkSolverPos NR JL class (also referred to
as “Plain KDL” in Tables I–III) and are available at
https://bitbucket.org/traclabs/trac_ik/.



VIII. FUTURE WORK

The algorithms presented here are meant to be a beginning.
They were created out of necessity, due to a lack of quality
solutions provided by the stock KDL IK implementations
for joint-limited humanoid robots. While they work well, the
proposed implementations were created to minimize overall
runtime—returning the first solution (of possibly many) that
meets the specified input requirements. However, the non-
linear optimization framework for IK seems to be fertile
ground for further exploration. Specifically, it allows further
objectives to be specified to meet secondary criteria relevant
to the robot or task configuration. These objectives may bias
the robot toward areas of the workspace that are kinematically
well conditioned, both with respect to intrinsic qualities of the
robot (e.g., always keep the elbow pointed away from body),
or with respect to desired task-space requirements (e.g., move
to where the robot can exert wrenches most effectively to
tighten a bolt; move to where the robot has the best command
fidelity to place a peg in a tightly constrained hole). Robot and
task conditioning approaches have been well studied in the
literature and have been deployed in multiple contexts [8], [9],
[10], [11], [12], [13], typically through the use of prioritized,
null space control [14] that can provide a level of response
or reactivity more difficult to achieve in planning algorithms.
The integration of all of these secondary criteria into the
TRAC-IK implementation is left to future investigation.

ACKNOWLEDGMENT

The authors would like to thank Seth Gee and Stephen
Hart for their help in creating the simulation setup and video
described in Section V.

REFERENCES

[1] R. Nilsson, “Inverse kinematics,” Master’s thesis, Luleå University of
Technology, 2009.

[2] S. Kumar, N. Sukavanam, and R. Balasubramanian, “An optimization
approach to solve the inverse kinematics of redundant manipulator,”
International Journal of Information and System Sciences (Institute
for Scientific Computing and Information), vol. 6, no. 4, pp. 414–423,
2010.

[3] M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schneider,
H. Dai, C. P. D’Arpino, R. Deits, M. DiCicco, D. Fourie, T. T. Koolen,
P. Marion, M. Posa, A. Valenzuela, K.-T. Yu, J. Shah, K. Iagnemma,
R. Tedrake, and S. Teller, “An architecture for online affordance-based
perception and whole-body planning,” Journal of Field Robotics, vol. 32,
no. 2, pp. 229–254, March 2015.

[4] D. Kraft, “A software package for sequential quadratic programming,”
DLR German Aerospace Center–Institute for Flight Mechanics, Köln,
Germany, Tech. Rep. DFVLR-FB 88-28, July 1988.

[5] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal,
Numerical Optimization: Theoretical and Practical Aspects. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006.

[6] B. Kenwright, “A beginners guide to dual-quaternions: What they are,
how they work, and how to use them for 3d character hierarchies,” in
International Conference on Computer Graphics, Visualization and
Computer Vision, 2012, pp. 1–13.

[7] D.-P. Han, Q. Wei, and Z.-X. Li, “Kinematic control of free rigid
bodies using dual quaternions,” International Journal of Automation
and Computing, vol. 5, no. 3, pp. 319–324, 2008.

[8] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” The Interna-
tional Journal of Robotics Research, vol. 4, pp. 3–9, 1985.

[9] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Robotics &
Automation, vol. 3, no. 1, pp. 43–53, 1987.

[10] S. Chiu, “Control of redundant manipulators for task compatability,”
in International IEEE Conference on Robotics and Automation (ICRA),
vol. 4, March 1987, pp. 1718–1724.

[11] ——, “Kinematic characterization of manipulators: An approach to
defining optimality,” in International IEEE Conference on Robotics
and Automation (ICRA), vol. 2, April 1988, pp. 828–833.

[12] L. Sentis and O. Khatib, “Task-oriented control of humanoid robots
through prioritization,” in IEEE International Conference on Humanoid
Robots, 2004.

[13] S. Hart and R. Grupen, “Natural task decomposition with intrinsic
potential fields,” in IEEE International Conference on Intelligent Robots
and Systems (IROS), 2007, pp. 2507–2512.

[14] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Addison-Wesley, 1991.


